Supporting Information

Tungsten-Catalyzed Transamidation of Tertiary Alkyl Amides

Fang-Fang Feng,[†] Xuan-Yu Liu,[†] Chi Wai Cheung,^{†,‡,*} and Jun-An Ma^{†,‡,*}

Table of contents

General considerations	S3
Optimization of reaction conditions (Tables S1-S3)	S5
Synthesis of starting materials	S9
W-catalyzed transamidation of tertiary alkyl amides (General	S13
Procedure)	
Direct transformation of piperine to potential drug molecules	S35
Synthesis of Citalopram analogues	S37
Upcycling of less potent drugs to new amides for study	S40
Direct transformation of tertiary amide intermediate to amide	S41
agrochemical	
Installation of 8-aminoquinolyl directing group to tertiary	S42
amides for direct functionalization	
Mechanistic study of transamidation of tertiary amides	S45
(i) Study of the tungsten complex formation in the stoichiometric reactions of WCl ₆ with L1 and substrates (Figure S1 and S2).	S45
(ii) Probing the reactivity of viable W species (Scheme 5(b)).	S48
(iii) Probing the reactivity of viable W species using catalytic loadings of W (Figure S3).	S49
(iv) Probing the catalytic reactivity of viable W species under otherwise identical conditions (Scheme 5(c)).	S50

[†] Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China

[‡] Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China

(v) Probing the proposed mechanism (1): transamidation with N-	S51
trimethylsilylated amine (Figure S4).	
(vi) Probing the proposed mechanism (2): transamidation via W-catalyzed	S52
amide C=O bond cleavage (Figure S5).	
(vii) Probing the proposed mechanism (3): transamidation with	S55
trimethylsilyoxy-substituted imine intermediate (Figure S6).	
(viii) Competition experiments among tertiary, secondary and primary	S57
amides (Scheme 7(b)).	
References	S58
NMR spectra	S61

General Considerations

General Analytical Information. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker AV 400 MHz instrument at 400 MHz (¹H NMR), 100 MHz (¹³C NMR), and 376 MHz (¹⁹F NMR), or on JEOL AV 600 MHz instrument at 600 MHz (¹H NMR), 150 MHz (13 C NMR), 243 MHz (31 P NMR) or 565 MHz (19 F NMR). All 1 H NMR spectra were measured in parts per million (ppm) downfield from tetramethylsilane (TMS, 0 ppm), or were measured relative to the residual proton signals of d_1 -chloroform (CDCl₃, 7.26 ppm), dimethyl sulfoxide-d₆ (DMSO-d₆, 2.50 ppm) or d₄-methanol (CD₃OD, 3.31 ppm). All ¹³C NMR spectra were reported in ppm relative to residual carbon signals of CHCl₃ (77.16 ppm), DMSO-*d*₆ (39.52 ppm) or CD₃OD (49.03 ppm) and were obtained with ¹H decoupling. Coupling constants (J) are reported in hertz (Hz). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), and m (multiplet). High resolution mass spectrometry (HRMS) spectra were obtained on a Bruker miorOTOF-QII instrument. GC-MS analyses were performed on a Thermo Scientific Model Trace 1300 instrument. X-ray structural analysis was conducted on a Bruker APEX-II CCD instrument. Thin-layer chromatography (TLC) was performed on precoated GF254 silica gel plates (Qingdao Marine Chemical Inc.) and compounds were visualized with a UV light at 254 nm. Flash chromatography for purification of compounds were carried out using silica gel (200-300 mesh, Qingdao Marine Chemical Inc.).

General Reagents Information. Unless otherwise noted, commerically available materials were used without prior purification. Anhydrous *N*-methylpyrrolidone (NMP) was purchased from HEOWNS and it was added with anhydrous 3Å molecular sieves for storage. Chlorotrimethylsilane (TMSCl, 98% purity) was purchased from HEOWNS and was stored in refrigerator for storage. Phenanthroline (phen, 99% purity) was purchased from Bidepharm. Tungsten(VI) chloride (WCl₆, 99% purity) was purchased from HEOWNS. Tungsten(VI) chloride (WCl₆, 99.99% purity) was purchased from Energy Chemical. A small amount (~1 g) of WCl₆ (99% purity) was taken from the original bulk bottle of WCl₆ each time for reaction study. The bulk original bottle and the small bottle of WCl₆ were stored in a decciator for storage (Note: The WCl₆ used for study is a deep purple amorphous solid. It turns yellow slowly upon

prolonged use under air conditions due to hydrolysis under air conditions. The pale yellow residue should be ignored and only the deep purple portion should always be used). WCl₅ was prepared according to the literature procedure. The following teetiary amide substrates were prepared according to the literature procedures. ²⁻¹⁹

General Manipulation Considerations. All manipulations for transamidation reaction were performed in Teflon screw-capped Schlenk tubes. The eluents used for column chromatography were presented as ratios of solvent volumes. WCl₆ (99% purity) was used for scope study unless otherwise noted. Yields reported in the publication are isolated yields unless otherwise noted. All new starting materials and products were characterized by ¹H and ¹³C NMR spectroscopies and high-resolution mass spectrometry (HRMS).

Optimization of Reaction Conditions

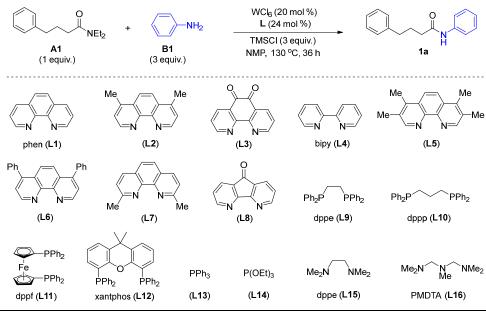

General procedure for optimizations of reaction conditions. An oven-dried 25 mL Teflon screw-capped Schlenk tube equipped with a stir bar was sequentially charged with tertiary amide A1, aniline B1, ligand, and catalyst. The tube was evacuated in vacuo and then backfilled with argon for three times. NMP solvent and TMSCl were transferred into the tube via a syringe. The resulting mixture was stirred under an argon atmosphere in a preheated heat block for 36 h. At this point, the reaction mixture was cooled down to room temperature. The reaction mixture was diluted with ethyl acetate and then washed with dilute aqueous HCl solution and saturated brine, dried with anhydrous Na₂SO₄, and finally concentrated in vacuo with the aid of rotary evaporator. The residue was purified by flash chromatography on silica gel using petroleum ether and ethyl acetate as eluent to give the transamidated product 1a.

Table S1. Screening of catalyst and control experiments.

Entry	Catalyst	Yield/%	
1	WCl ₆	68	
2	AlCl ₃	12	
3	CrCl ₂	0	
4	FeCl ₃	Trace	
5	NiCl ₂	Trace	
6	$ZnCl_2$	Trace	
7	$ZrCl_2$	10	
8	MoCl ₅	11	
9	$PdCl_2$	Trace	
10	none	0	
11	WCl ₆ ^a	Trace	
12	WCl ₆ ^b	20	

Reaction conditions: tertiary amide **A1** (0.2 mmol), aniline **B1** (0.6 mmol), catalyst (0.04 mmol), phen **L1** (0.048 mmol), TMSCl (0.6 mmol), NMP (2 mL), argon atmosphere, 130 °C, 36 h. ^a No phen. ^b No TMSCl.

Table S2. Screening of ligands.

Entry	Ligand	Yield/%	
1	L1	68	
2	L2	59	
3	L3	51	
4	L4	48	
5	L5	43	
6	L6	40	
7	L7	52	
8	L8	42	
9	L9 38		
10	L10	33	
11	L11	23	
12	L12	24	
13	L13	50	
14	L14	18	
15	L15	trace	
16	L16	trace	

Reaction conditions: tertiary amide A1 (0.2 mmol), aniline B1 (0.6 mmol), WCl₆ (0.04 mmol), ligand (0.048 mmol), TMSCl (0.6 mmol), NMP (2 mL), argon atmosphere, 130 °C, 36 h.

Table S3. Screening of loadings of catalyst, temperature, and additives.

Entry	WCl ₆	L1	Aniline B1	TMSC1	Temperature	Yield/%
•	(mol %)	(mol %)	(equiv.)	(equiv.)	(°C)	
1	20	24	3	3	130	68
2	20	24	2	2	130	70
3	20	24	1.5	1.5	130	80
4	20	40	1.5	1.5	130	86
5	20	60	1.5	1.5	130	88
6	20	80	1.5	1.5	130	70
7	10	20	1.5	1.5	130	71
8	15	30	1.5	1.5	130	86
9	15	30	1.5	1.5	140	90
10	15	30	1.5	1.2	140	80
11	15	30	1.5	0.5	140	41
12	15	30	1.5	1.5	120	30
$13^{a,b}$	15	30	1.5	1.5	140	80
14^c	15	30	1.5	1.5	140	30
15 ^c	15	30	1.5	0	140	0

Reaction conditions: tertiary amide **A1** (0.2 mmol), aniline **B1** (0.3-0.6 mmol), WCl₆ (0.02-0.04 mmol), **L1** (0.04-0.16 mmol), TMSCl (0.1-0.6 mmol), NMP (2 mL), argon atmosphere, 130 °C, 36 h. ^a tertiary amide **A1** (0.5 mmol), aniline **B1** (0.75 mmol), WCl₆ (0.075 mmol), **L1** (0.15 mmol), TMSCl (0.75 mmol), NMP (5 mL), argon atmosphere, 140 °C, 36 h. ^b WCl₆ (99.99% purity) was used. ^c KOH (0.50 equiv.) was added.

Synthesis of starting materials²⁰

To a 100 mL round bottom flask equipped with a magnetic stirrer bar was charged with the aliphatic carboxylic acid (10 mmol) and DMF solvent (20 mL). The aliphatic carboxylic acid was dissolved into DMF under an argon atmosphere. A solution of Obenzotriazol-1-yl-tetramethyluronium hexafluorophosphate (HBTU, 12 mmol) in DMF (10 mL) was added into the solution, followed by a solution of N,Ndisopropylethylamine (DIPEA, 21 mmol) in DMF (10 mL). The resulting reaction mixture was then stirred at room temperature for 15 min. At this point, dialkylamine (12 mmol) in DMF (10 mL) was added to the reaction mixture, and the resulting mixture was stirred at room temperature under the argon atmosphere for overnight. After the reaction, ethyl acetate (100 mL) was added to the reaction mixture and the organic fraction was washed successively with an aqueous solution of HCl (~1 M, ~30 mL; note: HCl was not added for pyridine/quinoline-containing amide products), water $(3 \times \sim 100 \text{ mL})$, and brine (30 mL). The organic fraction was concentrated in vacuo with the aid of rotary evaporator. The residue was purified by flash chromatography on silica gel using a mixture of ethyl acetate and petroleum ether as eluent to afford the tertiary amide substrate.

3-cyclopentyl-N,N-diethylpropanamide (A4).

Obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 3:1,
$$R_f$$
 = 0.4), 1.70 g, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 3.39 – 3.10 (m, 4H), 2.32 – 2.11 (m, 2H), 1.82 – 1.63 (m, 3H), 1.65 – 1.49 (m, 4H), 1.51 – 1.35 (m, 2H), 1.18 – 0.94 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 42.0, 40.0, 39.9, 32.6, 32.5, 31.8, 25.2, 14.4, 13.1. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₂₄NO⁺ 198.1858; Found 198.1867.

N,N-diethyl-4-(p-tolyl)butanamide (A7).

Obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.4), 1.86 g, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, J = 1.2 Hz, 4H), 3.54 (q, J = 7.1 Hz, 2H), 3.40 (q, J = 7.1 Hz, 2H), 2.81 (t, J = 7.6 Hz, 2H), 2.56 – 2.39 (m, 5H), 2.19 – 2.08 (m, 2H), 1.28 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 138.1, 135.0, 128.9, 128.3, 41.6, 39.9, 34.8, 32.0, 26.9, 20.9, 14.2, 13.0. **HRMS** (ESI)

4-(4-chlorophenyl)-N,N-diethylbutanamide (A9).

m/z: $[M+H]^+$ Calcd for $C_{15}H_{24}NO^+$ 234.1858; Found 234.1867.

Obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.4), 2.08 g, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.09 (m, 2H), 7.03 (dd, J = 8.3, 1.5 Hz, 2H), 3.27 (qd, J = 7.1, 1.3 Hz, 2H), 3.13 (qd, J = 7.2, 1.4 Hz, 2H), 2.54 (t, J = 7.7 Hz, 2H), 2.19 (td, J = 7.3, 1.3 Hz, 2H), 1.86 (pd, J = 7.4, 1.3 Hz, 2H), 1.01 (tdd, J = 7.2, 3.1, 1.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 140.3, 131.3, 129.7, 128.2, 41.7, 39.9, 34.4, 31.8, 26.5, 14.1, 12.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₂₁NOCl⁺ 254.1312; Found 254.1322.

4-(4-bromophenyl)-N,N-diethylbutanamide (A10).

Obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.4), 2.41 g, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.11 (dd, J = 8.3, 1.5 Hz, 2H), 7.01 (dd, J = 8.3, 1.5 Hz, 2H), 3.25 (qd, J = 7.1, 1.3 Hz, 2H), 3.12 (qd, J = 7.2, 1.3 Hz, 2H), 2.53 (t, J = 7.7 Hz, 2H), 2.18 (td, J = 7.4, 1.3 Hz, 2H), 1.84 (td, J = 7.5, 1.4 Hz, 2H), 0.99 (tdd, J = 7.2, 3.1, 1.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 140.3, 131.3, 129.7, 128.2, 41.7, 39.9, 34.4, 31.8, 26.5, 14.1, 12.9. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₂₁NOBr⁺ 298.0807; Found 298.0805.

(Z)-N,N-diethyloleamide (A11).

Obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 2.53 g, 75% yield. ¹H NMR (400 MHz, CDCl₃) 5.27 (h, J = 2.5 Hz, 2H), 3.31 (qd, J = 7.1, 2.2 Hz, 2H), 3.24 (qd, J = 7.1, 2.1 Hz, 2H),

2.23 (ddd, J = 10.0, 7.5, 3.5 Hz, 2H), 1.95 (q, J = 6.7, 6.0 Hz, 3H), 1.58 (p, J = 6.8 Hz, 2H), 1.26 (dt, J = 13.4, 7.4 Hz, 11H), 1.20 (d, J = 8.3 Hz, 10H),1.11 (td, J = 7.1, 2.3 Hz, 3H), 1.04 (td, J = 7.1, 2.3 Hz, 3H), 0.82 (td, J = 6.9, 2.2 Hz, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 172.5, 129.9, 129.8, 42.0, 40.1, 33.2, 31.9, 29.82, 29.80, 29.51, 29.52, 29.4, 29.3, 29.2, 27.23, 27.24, 25.5, 22.7, 14.4, 14.1, 13.1. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₄₂NO⁺ 324.3266; Found 324.3270.

N,N-diethylcyclobutanecarboxamide (A15).

Obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 1.13 g, 73% yield. 1H NMR (400 MHz, CDCl₃) δ 3.36 – 3.23 (m, 2H), 3.23 – 3.07 (m, 3H), 2.38 – 2.14 (m, 2H), 2.14 – 1.98 (m, 2H), 1.97 – 1.69 (m, 2H), 1.19 – 0.91 (m, 6H). ^{13}C NMR (100 MHz, CDCl₃) δ 173.8, 41.2, 39.8, 37.3, 25.3, 18.0, 14.5, 13.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₉H₁₈NO⁺ 156.1388; Found 156.1394.

N,N-diethylpivalamide (A17).

Obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 1.10 g, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 3.35 (d, J = 7.3 Hz, 4H), 1.22 (q, J = 0.8 Hz, 9H), 1.10 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 176.8, 41.7, 39.0, 28.6, 27.2, 13.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₉H₂₀NO⁺ 158.1545; Found 158.1549.

N,N-dibutyl-4-phenylbutanamide (A23).

Obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 1.04 g, 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.24 (dd, J = 8.2, 6.9 Hz, 2H), 7.16 (dt, J = 8.1, 2.0 Hz, 3H), 3.37 – 3.14 (m, 2H), 3.17 –

2.94 (m, 2H), 2.65 (t, J = 7.5 Hz, 2H), 2.36 – 2.13 (m, 2H), 2.09 – 1.82 (m, 2H), 1.59 – 1.35 (m, 4H), 1.36 – 1.10 (m, 4H), 0.88 (dt, J = 10.3, 7.3 Hz, 6H). ¹³C **NMR** (100 MHz, CDCl₃) δ 172.1, 141.8, 128.5, 128.2, 125.8, 47.6, 45.6, 35.3, 32.1, 31.2, 29.9, 26.9, 20.2, 20.0, 13.9, 13.7. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₃₀NO⁺ 276.2327; Found 276.2336.

N-isopropyl-N-methyl-4-phenylbutanamide (A25).

Me N Me O Me Obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 1.93 g, 88% yield. The compound exists in two rotamers such that the NMR spectra

became complex. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (t, J = 7.6 Hz, 2H), 7.14 – 7.03 (m, 3H), 4.82 (p, J = 6.8 Hz, 0.5H), 3.87 (p, J = 6.6 Hz, 0.4H), 2.68 (s, 1H), 2.62 (s, 2H), 2.61 – 2.55 (m, 2H), 2.26 (t, J = 7.5 Hz, 1H), 2.19 (t, J = 7.5 Hz, 1H), 1.90 (td, J = 7.6, 2.6 Hz, 2H), 1.08 – 0.90 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 171.4, 141.5, 141.4, 128.0, 127.9, 125.42, 125.43, 47.1, 43.1, 34.91, 34.92, 32.7, 32.0, 27.6, 26.5, 26.2, 25.2, 19.9, 19.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₂₂NO⁺ 220.1701; Found 220.1708.

N-(tert-butyl)-N-methyl-4-phenylbutanamide (A26).

Me N Me Me Me Obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 1.80 g, 77% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (tt, J = 7.7, 1.7 Hz, 2H), 7.21 – 7.08 (m, 3H), 2.86 – 2.74 (m, 3H), 2.64 (td, J =

7.7, 2.0 Hz, 2H), 2.27 (tt, J = 7.8, 1.7 Hz, 2H), 1.93 (tt, J = 7.9, 1.4 Hz, 2H), 1.38 (d, J = 2.8 Hz, 9H). ¹³C **NMR** (100 MHz, CDCl₃) δ 173.3, 142.0, 128.5, 128.3, 125.9, 56.6,

35.8, 35.3, 31.9, 28.4, 26.8. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₂₄NO⁺ 234.1858; Found 234.1864.

W-catalyzed transamidation of tertiary alkyl amides

General Procedure: An oven-dried 25 mL Teflon screw-capped Schlenk tube equipped with a stir bar was sequentially charged with tertiary alkyl amide (0.5 mmol, 1 equiv.), amine (0.75 mmol, 1.5 equiv.), phen L1 (0.15 mmol, 0.3 equiv.), and WCl6 (0.075 mmol, 0.15 equiv.). The tube was evacuated in vacuo and then backfilled with argon for three times. NMP solvent (5 mL) and TMSCl (0.75 mmol, 1.5 equiv.) were transferred into the tube via a syringe. The resulting mixture was stirred under an argon atmosphere in a preheated heat block at 140 °C for 36 h. At this point, the reaction mixture was cooled down to room temperature. The reaction mixture was diluted with ethyl acetate and then washed with dilute aqueous HCl solution (~0.1 M, 2 x 30 mL; note: water was used for washing instead of HCl (aq) for pyridine/quinoline-containing amide products) and saturated brine (~30 mL), dried with anhydrous Na₂SO₄, and finally concentrated in vacuo with the aid of rotary evaporator. The residue was purified by flash chromatography on silica gel using petroleum ether and ethyl acetate as eluent to give the transamidated product.

N,4-diphenylbutanamide (1a).

(i) Based on tertiary amide A1: Using the General Procedure, the title compound was obtained as a white solid after column chromatography based on 0.2 mmol of A1 (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 43.1 mg, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 7.9 Hz, 2H), 7.30 (q, J = 7.1, 6.6 Hz, 4H), 7.20 (d, J = 7.5 Hz,

- 4H), 7.10 (t, J = 7.4 Hz, 1H), 2.72 (t, J = 7.4 Hz, 2H), 2.34 (t, J = 7.5 Hz, 2H), 2.08 (p, J = 7.4 Hz, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 171.1, 141.5, 138.0, 129.1, 128.7, 128.6, 126.2, 124.4, 119.9, 36.9, 35.2, 27.0. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₈NO⁺ 240.1388; Found 240.1392.
- (ii) Based on tertiary amide A2: Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 133.7 mg, 95% yield. The spectra data were in agreement with that of the identical compound derived from (i).
- (iii) Based on tertiary amide A22: Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 100.5 mg, 84% yield. The spectra data were in agreement with that of the identical compound derived from (i).
- (iv) Based on tertiary amide A23: Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 95.7 mg, 80% yield. The spectra data were in agreement with that of the identical compound derived from (i).
- (v) Based on tertiary amide A24: Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 89.7 mg, 75% yield. The spectra data were in agreement with that of the identical compound derived from (i).
- (vi) Based on tertiary amide A25: Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 101.7 mg, 85% yield. The spectra data were in agreement with that of the identical compound derived from (i).
- (vii) Based on tertiary amide A26: Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 63.4 mg, 53% yield. The spectra data were in agreement with that of the identical compound derived from (i).
- (viii) Based on tertiary amide A27: Using the General Procedure, the title compound

was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 99.3 mg, 83% yield. The spectra data were in agreement with that of the identical compound derived from (i).

- (ix) Based on tertiary amide A28: Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 98.1 mg, 82% yield. The spectra data were in agreement with that of the identical compound derived from (i).
- (x) Based on tertiary amide A29: Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 90.9 mg, 76% yield. The spectra data were in agreement with that of the identical compound derived from (i).

4-phenyl-N-(p-tolyl)butanamide (1b).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f=0.5$), 103.3 mg, 82%

yield. ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.35 (m, 3H), 7.30 (t, J = 7.4 Hz, 2H), 7.25 – 7.15 (m, 3H), 7.11 (d, J = 8.1 Hz, 2H), 2.69 (td, J = 7.6, 2.7 Hz, 2H), 2.42 – 2.28 (m, 5H), 2.05 (p, J = 7.4 Hz, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 171.2, 141.5, 135.5, 133.9, 129.5, 128.6, 128.5, 126.1, 120.1, 36.8, 35.2, 27.0, 21.0. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₀NO⁺ 254.1545; Found 254.1546.

4-phenyl-N-(m-tolyl)butanamide (1c).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 96.2 mg, 76%

yield. ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.33 (m, 2H), 7.33 – 7.26 (m, 3H), 7.24 – 7.14 (m, 4H), 6.92 (d, J = 7.5 Hz, 1H), 2.70 (t, J = 7.5 Hz, 2H), 2.43 – 2.25 (m, 5H), 2.06 (p, J = 7.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 141.5, 139.0 138.0,

128.9, 128.6, 128.5, 126.1, 125.1, 120.7, 117.1, 36.8, 35.2, 27.0, 21.6. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₀NO⁺ 254.1545; Found 254.1545.

4-phenyl-N-(o-tolyl)butanamide (1d).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 107.6 mg, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.9 Hz, 1H), 7.30 (t, J = 7.5 Hz, 2H), 7.21 (t, J = 7.9 Hz, 3H), 7.19 – 7.12 (m, 3H), 7.07 (t, J = 7.5 Hz, 1H), 2.71 (t, J = 7.6 Hz, 2H), 2.36 (t, J = 7.5 Hz, 2H), 2.21 (s, 3H), 2.06 (p, J = 7.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 141.5, 135.7, 130.5, 129.7, 128.6, 128.5, 126.7, 126.1, 125.4, 123.7, 36.6, 35.2, 27.2, 17.9. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₀NO⁺ 254.1545; Found 254.1551.

N-(4-isopropylphenyl)-4-phenylbutanamide (1e).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 121.2 mg, 71% yield. 1 H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.5 Hz, 2H), 7.35 (s, 1H), 7.30 (dd, J = 8.4, 6.2 Hz, 2H), 7.24 – 7.12 (m, 5H), 2.88 (p, J = 6.9 Hz, 1H), 2.70 (t, J = 7.5 Hz, 2H), 2.33 (t, J = 7.5 Hz, 2H), 2.07 (q, J = 7.6 Hz, 2H), 1.23 (d, J = 6.9 Hz, 6H). 13 C NMR (100 MHz, CDCl₃) δ 171.1, 145.1, 141.5, 135.7, 128.6, 128.5, 127.0, 126.1, 120.2, 36.8, 35.2 33.7, 27.1, 24.1. HRMS (ESI) m/z: [M+H] $^{+}$ Calcd for C₁₉H₂₄NO $^{+}$ 282.1858; Found 282.1858.

N-(4-(tert-butyl)phenyl)-4-phenylbutanamide (1f).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 110.8 mg, 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, J = 8.6, 2.6 Hz, 2H), 7.38 – 7.24 (m,

5H), 7.19 (d, J = 7.7 Hz, 3H), 2.69 (t, J = 7.3 Hz, 2H), 2.33 (t, J = 7.5 Hz, 2H), 2.18 – 1.89 (m, 2H), 1.43 – 1.17 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 147.3, 141.5, 135.4, 128.6, 128.5, 126.1, 125.9, 119.8, 36.8, 35.2, 34.5, 31.5, 27.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₆NO⁺ 296.2014; Found 296.2014.

N-(4-(methylthio)phenyl)-4-phenylbutanamide (1g).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 115.6 mg,

81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.46 (d, J = 8.2 Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.27 – 7.11 (m, 5H), 2.70 (t, J = 7.5 Hz, 2H), 2.47 (s, 3H), 2.34 (t, J = 7.5 Hz, 2H), 2.06 (p, J = 7.5 Hz, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 171.3, 141.4, 135.7, 133.6, 128.6, 128.5, 128.1, 126.1, 120.7, 36.8, 35.2, 27.0, 16.7. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₀NOS⁺ 286.1266; Found 286.1268.

N-(4-methoxyphenyl)-4-phenylbutanamide (1h).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 87.5 mg, 65%

yield. ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.32 (m, 3H), 7.34 – 7.24 (m, 2H), 7.20 (td, J = 7.5, 1.7 Hz, 3H), 6.92 – 6.68 (m, 2H), 3.77 (s, 3H), 2.69 (t, J = 7.5 Hz, 2H), 2.31 (t, J = 7.5 Hz, 2H), 2.17 – 1.90 (m, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 171.2, 156.4, 141.5, 131.2, 128.6, 128.5, 126.1, 122.0, 114.2, 55.5, 36.6, 35.2, 27.1. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₀NO₂⁺270.1494; Found 270.1496.

N-(4-hydroxyphenyl)-4-phenylbutanamide (1i).

Using the General Procedure, the title compound was obtained as a yellow solid after column chromatography (petroleum ether/ethyl acetate = 1:1, $R_f = 0.2$), 96.9 mg, 76%

yield. ¹H NMR (400 MHz, DMSO- d_6) δ 9.61 (s, 1H), 9.15 (s, 1H), 7.42 – 7.32 (m, 2H), 7.28 (t, J = 7.5 Hz, 2H), 7.23 – 7.08 (m, 3H), 6.76 – 6.57 (m, 2H), 2.60 (t, J = 7.6 Hz, 2H), 2.27 (t, J = 7.5 Hz, 2H), 1.87 (p, J = 7.6 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 170.3, 153.2, 141.8, 131.0, 128.4, 128.3, 125.8, 121.0, 115.0, 35.7, 34.7, 27.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₈NO₂⁺256.1338; Found 256.1337.

N-(4-fluorophenyl)-4-phenylbutanamide (1j).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 123.5 mg, 96% yield. ¹H NMR (400 MHz, CDCl₃) 7.76 (s, 1H), 7.43 (ddd, J = 9.0, 4.8, 1.7 Hz, 2H), 7.28 (t, J = 7.4 Hz, 2H), 7.22 – 7.09 (m, 3H), 6.96 (t, J = 8.6 Hz, 2H), 2.67 (t, J = 7.5 Hz, 2H), 2.31 (t, J = 7.5 Hz, 2H), 2.03 (p, J = 7.5 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -117.85. ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 159.9 (d, J = 243.4 Hz), 141.8, 134.5, 129.0, 126.6, 122.5 (d, J = 8.9 Hz), 116.1 (d, J = 22.5 Hz), 37.1, 35.6, 27.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₇NOF⁺ 258.1294; Found 258.1295.

N-(2-fluorophenyl)-4-phenylbutanamide (1k).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 114.5 mg, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (td, J = 8.1, 1.6 Hz, 1H), 7.37 – 7.27 (m, 3H), 7.24 – 7.17 (m, 3H), 7.15 – 7.10 (m, 1H), 7.10 – 7.01 (m, 2H), 2.73 (t, J = 7.5 Hz, 2H), 2.40 (t, J = 7.5 Hz, 2H), 2.09 (p, J = 7.5 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -131.30. ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 152.4 (d, J = 242.7 Hz), 141.4, 128.64, 128.60, 126.5 (d, J = 10.0 Hz), 126.2, 124.7 (d, J = 3.7 Hz), 124.3 (d, J = 7.8 Hz), 121.9, 114.9 (d, J = 19.3 Hz), 36.9, 35.1, 26.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₇NOF⁺ 258.1294; Found 258.1296.

N-(4-chlorophenyl)-4-phenylbutanamide (11).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 130.0 mg, 95% yield. 1H

NMR (400 MHz, CDCl₃) δ 7.51 – 7.40 (m, 2H), 7.38 (s, 1H), 7.31 – 7.22 (m, 4H), 7.22 – 7.12 (m, 3H), 2.68 (t, J = 7.4 Hz, 2H), 2.31 (t, J = 7.5 Hz, 2H), 2.15 – 1.87 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 141.3, 136.6, 129.3, 129.1, 128.6, 126.2, 121.2, 36.8, 35.1, 26.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₇NOCl⁺ 274.0999; Found 274.0995.

N-(4-bromophenyl)-4-phenylbutanamide (1m).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 135.2 mg, 85% yield. 1H

NMR (400 MHz, CDCl₃) δ 7.42 (s, 4H), 7.37 – 7.26 (m, 3H), 7.27 – 7.11 (m, 3H), 2.72 (t, J = 7.4 Hz, 2H), 2.35 (t, J = 7.4 Hz, 2H), 2.07 (p, J = 7.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 141.3, 137.1, 132.1, 128.63, 128.60, 126.2, 121.5, 116.9, 36.8, 35.2, 26.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₇NOBr⁺ 318.0494; Found 318.0497.

N-(3-bromophenyl)-4-phenylbutanamide (1n).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 128.9 mg, 81% yield. 1H

NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.52 – 7.34 (m, 2H), 7.33 – 7.25 (m, 2H), 7.24 – 7.10 (m, 5H), 2.69 (t, J = 7.5 Hz, 2H), 2.33 (t, J = 7.4 Hz, 2H), 2.05 (p, J = 7.4 Hz, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 171.4, 141.3, 139.3, 130.4, 128.62, 128.59, 127.3, 126.2, 122.9, 122.7, 118.4, 36.8, 35.1, 26.8. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₇NOBr⁺ 318.0494; Found 318.0498.

N-(4-acetylphenyl)-4-phenylbutanamide (10).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1,

R_f = 0.5), 101.3 mg, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 7.83 (m, 3H), 7.66 (d, J = 8.3 Hz, 2H), 7.29 (t, J = 7.3 Hz, 2H), 7.25 – 7.08 (m, 3H), 2.71 (t, J = 7.4 Hz, 2H), 2.57 (s, 3H), 2.41 (t, J = 7.5 Hz, 2H), 2.09 (p, J = 7.6 Hz, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 197.3, 171.7, 142.7, 141.4, 132.8, 129.8, 128.6, 126.2, 119.0, 36.9, 35.1, 26.7, 26.5. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₂₀NO₂⁺ 282.1494; Found 282.1496.

methyl 4-(4-phenylbutanamido)benzoate (1p).

$$\bigcap_{O} \bigcap_{CO_2Me}$$

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1,

 $R_f = 0.5$), 116.0 mg, 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 7.88 (m, 2H), 7.60 (d, J = 8.7 Hz, 2H), 7.40 (s, 1H), 7.35 – 7.27 (m, 2H), 7.22 (td, J = 7.2, 6.7, 1.4 Hz, 3H), 3.91 (s, 3H), 2.74 (t, J = 7.4 Hz, 2H), 2.39 (t, J = 7.5 Hz, 2H), 2.27 – 1.98 (m, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 171.3, 166.7, 142.2, 141.3, 131.0, 128.64, 128.63, 126.3, 125.7, 118.9, 52.1, 36.9, 35.1, 26.8. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₂₀NO₃⁺ 298.1443; Found 298.1440.

4-(4-phenylbutanamido)benzoic acid (1q).

Using the General Procedure, the title compound was obtained as a yellow solid after column chromatography (petroleum ether/ethyl acetate = 1:1,

 $R_f = 0.1$), 136.0 mg, 96% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 10.19 (s, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.41 – 7.06 (m, 5H), 2.62 (t, J = 7.6 Hz,

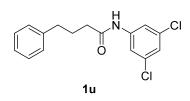
2H), 2.36 (t, J = 7.5 Hz, 2H), 1.90 (p, J = 7.5 Hz, 2H). ¹³C **NMR** (100 MHz, DMSO- d_6) δ 171.5, 166.9, 143.3, 141.6, 130.3, 128.32, 128.29, 125.8, 124.8, 118.3, 35.8, 34.6, 26.6. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₈NO₃⁺ 284.1287; Found 284.1296.

4-phenyl-N-(4-(trifluoromethyl)phenyl)butanamide (1r).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 122.9 mg, 80% yield. 1 H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.6 Hz, 2H), 7.55 (d, J = 8.8 Hz, 2H), 7.42 (d, J = 6.7 Hz, 1H), 7.33 – 7.25 (m, 2H), 7.25 – 7.11 (m, 3H), 2.71 (t, J = 7.4 Hz, 2H), 2.37 (dd, J = 8.0, 7.0 Hz, 2H), 2.16 – 1.98 (m, 2H). 19 F NMR (376 MHz, CDCl₃) δ -62.2. 13 C NMR (100 MHz, CDCl₃) δ 171.5, 141.2, 141.0, 128.6, 126.4 (q, J = 3.8 Hz), 126.3, 126.0, 124.2 (d, J = 271.4 Hz), 119.4, 36.8, 35.1, 26.8. HRMS (ESI)

N-(4-nitrophenyl)-4-phenylbutanamide (1s).

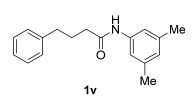
m/z: [M+H]⁺ Calcd for C₁₇H₁₇NOF₃⁺ 308.1262; Found 308.1257.


Using the General Procedure, the title compound was obtained as a yellow solid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 64.0 mg, 45% yield. 1H NMR (400 MHz, CDCl₃) δ 8.24 – 8.09 (m, 2H), 7.97 (s, 1H), 7.79 – 7.61 (m, 2H), 7.26 (dd, J = 8.6, 6.7 Hz, 2H), 7.22 – 7.03 (m, 3H), 2.69 (td, J = 7.5, 1.8 Hz, 2H), 2.40 (td, J = 7.5, 1.9 Hz, 2H), 2.06 (pd, J = 7.6, 1.8 Hz, 2H). 13 C NMR (100 MHz, CDCl₃) δ 171.9, 144.1, 143.3, 141.1, 128.58, 128.55, 126.3, 125.2, 119.1, 36.8, 35.0, 26.6. HRMS (ESI) m/z: [M+H] $^+$ Calcd for $C_{16}H_{17}N_2O_3^+$ 285.1239; Found 285.1246.

N-(2-cyanophenyl)-4-phenylbutanamide (1t).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 85.9 mg, 65%

yield. ¹H NMR (600 MHz, CDCl₃) δ 8.39 (d, J = 8.4 Hz, 1H), 7.65 (s, 1H), 7.61 – 7.53 (m, 2H), 7.35 – 7.27 (m, 2H), 7.21 (dt, J = 8.3, 2.3 Hz, 3H), 7.17 (qd, J = 7.5, 1.2 Hz, 1H), 2.73 (t, J = 7.5 Hz, 2H), 2.46 (t, J = 7.5 Hz, 2H), 2.21 – 1.91 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 171.5, 141.2, 140.6, 134.3, 132.4, 128.6, 126.2, 124.2, 121.5, 116.6, 101.9, 36.9, 35.1, 26.8. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₇N₂O⁺ 265.1341; Found 265.1349.


N-(3,5-dichlorophenyl)-4-phenylbutanamide (1u).

Using the General Procedure, the title compound was obtained as a yellow solid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 124.7 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H),

7.44 (d, J = 1.7 Hz, 2H), 7.33 – 7.22 (m, 2H), 7.22 – 7.11 (m, 3H), 7.06 (q, J = 1.6 Hz, 1H), 2.67 (t, J = 7.5 Hz, 2H), 2.33 (t, J = 7.5 Hz, 2H), 2.02 (p, J = 7.5 Hz, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 171.8, 141.2, 139.7, 135.2, 128.59, 128.56, 126.2, 124.3, 118.3, 36.7, 35.1, 26.8. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₆NOCl₂⁺ 308.0609; Found 308.0610.

N-(3,5-dimethylphenyl)-4-phenylbutanamide (1v).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 96.2 mg, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (dd, J =

8.4, 6.5 Hz, 2H), 7.24 – 7.17 (m, 3H), 7.14 (s, 2H), 7.10 (s, 1H), 6.75 (s, 1H), 2.71 (t, J = 7.5 Hz, 2H), 2.32 (t, J = 7.4 Hz, 2H), 2.29 (s, 6H), 2.06 (p, J = 7.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 141.5, 138.8, 137.8, 128.7, 128.6, 126.2, 126.1, 117.7, 36.9, 35.2, 27.0 21.5. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₂₂NO⁺ 268.1701; Found 268.1698.

N-(naphthalen-2-yl)-4-phenylbutanamide (1w).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 131.6 mg,

91% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 2.2 Hz, 1H), 7.76 (dd, J = 8.1, 6.1 Hz, 3H), 7.58 (s, 1H), 7.51 – 7.34 (m, 3H), 7.30 (t, J = 7.3 Hz, 2H), 7.25 – 7.14 (m, 3H), 2.72 (t, J = 7.5 Hz, 2H), 2.39 (t, J = 7.5 Hz, 2H), 2.10 (p, J = 7.5 Hz, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 171.5, 141.4, 135.5, 133.9, 130.7, 128.8, 128.62, 128.56, 127.7, 127.6, 126.6, 126.2, 125.1, 120.0, 116.8, 36.9, 35.2, 27.0. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₀NO⁺ 290.1545; Found 290.1537.

N-(naphthalen-1-yl)-4-phenylbutanamide (1x).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_{\rm f}$ = 0.5), 112.8 mg, 78% yield. $^{1}{\rm H}$

NMR (400 MHz, CDCl₃) δ 8.04 – 7.74 (m, 3H), 7.69 (d, J = 8.2 Hz, 1H), 7.66 – 7.58 (m, 1H), 7.54 – 7.41 (m, 3H), 7.32 (t, J = 7.6 Hz, 2H), 7.22 (d, J = 7.5 Hz, 3H), 2.86 – 2.62 (m, 2H), 2.62 – 2.32 (m, 2H), 2.28 – 1.93 (m, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 171.9, 141.5, 134.2, 132.4, 128.8, 128.7, 128.6, 127.5, 126.3, 126.2, 126.1, 126.0, 125.8, 121.5, 121.0, 36.6, 35.3, 27.2. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₀NO⁺ 290.1545; Found 290.1543.

4-phenyl-N-(pyridin-3-yl)butanamide (1y).

Ty N

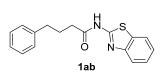
Using the General Procedure, the title compound was obtained as a yellow solid after column chromatography (petroleum ether/ethyl acetate = 2:1, $R_f = 0.2$), 55.0 mg, 45% yield. 1H NMR

(400 MHz, CDCl₃) δ 8.54 (d, J = 2.6 Hz, 1H), 8.32 (d, J = 4.8 Hz, 1H), 8.22 (d, J = 8.3 Hz, 1H), 7.81 (s, 1H), 7.38 – 7.26 (m, 3H), 7.25 – 7.10 (m, 3H), 2.73 (t, J = 7.4 Hz, 2H), 2.41 (t, J = 7.5 Hz, 2H), 2.10 (p, J = 7.5 Hz, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ

171.8, 145.0, 141.3, 140.9, 135.2, 128.7, 128.6, 127.5, 126.3, 124.0, 36.7, 35.2, 26.8. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₇N₂O⁺ 241.1341; Found 241.1343.

4-phenyl-N-(quinolin-3-yl)butanamide (1z).

H N O 1z Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 2:1, $R_f = 0.3$), 107.4 mg, 74% yield. 1H


NMR (400 MHz, CDCl₃) δ 9.55 – 9.24 (m, 1H), 8.80 (d, J = 2.9 Hz, 1H), 8.70 (d, J = 2.3 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.19 (t, J = 7.3 Hz, 2H), 7.16 – 6.98 (m, 3H), 2.61 (t, J = 7.5 Hz, 2H), 2.40 (t, J = 7.5 Hz, 2H), 2.19 – 1.88 (m, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 172.5, 144.6, 144.0, 141.2, 132.2, 128.40, 128.38, 128.31, 128.28, 127.8, 127.3, 126.0, 124.3, 36.5, 35.1, 26.9. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₉N₂O⁺ 291.1497; Found 291.1497.

N-(1H-indol-5-yl)-4-phenylbutanamide (1aa).

Using the General Procedure, the title compound was obtained as a yellow solid after column chromatography (petroleum ether/ethyl acetate = 1:1, R_f = 0.3), 60.1 mg, 44%

yield. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.83 (d, J = 2.0 Hz, 1H), 7.42 – 7.26 (m, 3H), 7.28 – 7.07 (m, 6H), 6.51 (s, 1H), 2.75 (t, J = 7.5 Hz, 2H), 2.38 (t, J = 7.5 Hz, 2H), 2.12 (t, J = 7.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 141.7, 133.4, 130.5, 128.7, 128.6, 128.2, 126.1, 125.3, 116.6, 112.9, 111.3, 102.9, 36.9, 35.3, 27.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₉N₂O⁺ 279.1497; Found 279.1506.

N-(benzo[d]thiazol-2-yl)-4-phenylbutanamide (1ab).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 2:1, $R_f = 0.3$), 109.7 mg, 74% yield. ¹H

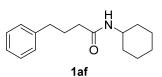
NMR (400 MHz, CDCl₃) δ 11.58 – 10.82 (m, 1H), 7.89 (d, J = 7.9 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.54 – 7.42 (m, 1H), 7.37 (t, J = 7.6 Hz, 1H), 7.25 (dd, J = 8.0, 6.4 Hz, 2H), 7.21 – 7.13 (m, 1H), 7.13 – 7.03 (m, 2H), 2.64 (t, J = 7.4 Hz, 2H), 2.49 (t, J = 7.5 Hz, 2H), 2.07 (p, J = 7.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 159.7, 147.9, 140.9, 132.1, 128.6, 128.5, 126.5, 126.3, 124.2, 121.9, 120.5, 35.6, 34.9, 26.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₇N₂OS⁺ 297.1062; Found 297.1069.

4-phenyl-N-(thiazol-2-yl)butanamide (1ac).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 2:1, R_f = 0.3), 67.6 mg, 55% yield. ¹H NMR (400 MHz, CDCl₃) δ 12.76 (s, 1H), 7.31 (dd, J= 8.5, 6.5 Hz, 2H), 7.26 – 7.16 (m, 3H), 7.07 (d, J= 3.6 Hz, 1H), 6.93 (d, J= 3.6 Hz, 1H), 2.77 (t, J= 7.3 Hz, 2H), 2.56 (t, J= 7.6 Hz, 2H), 2.29 – 1.90 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 160.3, 141.2, 136.1, 128.7, 128.6, 126.3, 113.4, 35.3, 35.2, 26.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₁₅N₂OS⁺ 247.0905; Found 247.0914.

N-hexyl-4-phenylbutanamide (1ad).

Using the General Procedure, the title compound was obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate =
$$3:1$$
, $R_f = 0.5$), 96.9 mg,


78% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.26 (m, 2H), 7.25 – 7.09 (m, 3H), 5.52 (s, 1H), 3.24 (td, J = 7.3, 5.8 Hz, 2H), 2.67 (t, J = 7.5 Hz, 2H), 2.18 (t, J = 7.5 Hz, 2H), 1.99 (h, J = 7.5, 6.9 Hz, 2H), 1.48 (q, J = 7.1 Hz, 2H), 1.38 – 1.18 (m, 6H), 1.00 – 0.73 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 141.7, 128.6, 128.5, 126.1, 39.7, 36.1, 35.3, 31.6, 29.8, 27.3, 26.7, 22.7, 14.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₂₆NO⁺ 248.2014; Found 248.2017.

N-benzyl-4-phenylbutanamide (1ae).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f=0.5$), 95.0 mg, 75% yield. 1H

NMR (400 MHz, CDCl₃) δ 7.36 – 7.22 (m, 7H), 7.22 – 7.10 (m, 3H), 5.87 (s, 1H), 4.40 (d, J = 5.7 Hz, 2H), 2.65 (t, J = 7.6 Hz, 2H), 2.20 (t, J = 7.6 Hz, 2H), 2.09 – 1.83 (m, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 172.7, 141.6, 138.5, 128.8, 128.6, 128.5, 127.9, 127.6, 126.1, 43.6, 35.9, 35.3, 27.2. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₀NO⁺ 254.1545; Found 254.1548.

N-cyclohexyl-4-phenylbutanamide (1af).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 98.1 mg, 80%

yield. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.29 (m, 3H), 7.29 – 7.17 (m, 3H), 3.83 (dq, J = 10.7, 3.3 Hz, 1H), 2.71 (t, J = 7.5 Hz, 2H), 2.19 (t, J = 7.4 Hz, 2H), 2.11 – 1.88 (m, 4H), 1.88 – 1.60 (m, 4H), 1.53 – 1.31 (m, 2H), 1.25 – 1.11 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 141.7, 128.7, 128.5, 126.1, 48.2, 36.3, 35.3, 33.4, 27.4, 25.7, 25.0. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₂₄NO⁺ 246.1858; Found 246.1859.

N-cyclopentyl-4-phenylbutanamide (1ag).

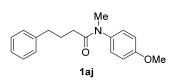
HN N

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 81.0 mg, 70% yield. 1H

NMR (400 MHz, CDCl₃) δ 7.37 – 7.24 (m, 2H), 7.24 – 7.06 (m, 3H), 5.52 (s, 1H), 4.21 (q, J = 7.0 Hz, 1H), 2.66 (t, J = 7.5 Hz, 2H), 2.15 (t, J = 7.5 Hz, 2H), 2.06 – 1.90 (m, 4H), 1.80 – 1.49 (m, 4H), 1.37 (dt, J = 12.9, 6.8 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.3, 141.7, 128.6, 128.5, 126.0, 51.2, 36.1, 35.3, 33.2, 27.3, 23.8. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₂₂NO⁺ 232.1701; Found 232.1696.

N-cyclobutyl-4-phenylbutanamide (1ah).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 76.1 mg, 70% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.32 – 7.23 (m, 2H), 7.21 – 7.10 (m, 3H), 5.52 (s, 1H), 4.50


-4.24 (m, 1H), 2.63 (t, J = 7.5 Hz, 2H), 2.39 -2.25 (m, 2H), 2.11 (dd, J = 8.3, 6.8 Hz, 2H), 1.95 (tt, J = 8.5, 6.8 Hz, 2H), 1.86 – 1.73 (m, 2H), 1.72 – 1.62 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 171.9, 141.6, 128.6, 128.5, 126.1, 44.7, 35.9, 35.3, 31.4, 27.2, 15.2. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₂₀NO⁺ 218.1545; Found 218.1554.

N-(tert-butyl)-4-phenylbutanamide (1ai).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 43.9 mg, 40% yield. ¹H

NMR (600 MHz, CDCl₃) δ 7.32 – 7.22 (m, 2H), 7.17 (dd, J = 8.6, 7.0 Hz, 3H), 5.27 (s, 1H), 2.68 - 2.59 (m, 2H), 2.08 (t, J = 7.5 Hz, 2H), 2.18 - 1.89 (m, 2H), 1.32 (d, J = 0.9Hz, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 172.3, 141.7, 128.6, 128.5, 126.0, 51.2, 36.9, 35.2, 28.9, 27.2. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₂₂NO₃⁺ 220.1701; Found 220.1709.

N-(4-methoxyphenyl)-N-methyl-4-phenylbutanamide (1aj).

Using the General Procedure as well as using 20 mol % of WCl₆ and 40 mol % of L1, the title compound was obtained as a yellow liquid after column chromatography (petroleum

ether/ethyl acetate = 3:1, R_f = 0.5), 110.5 mg, 78% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.22 (t, J = 7.6 Hz, 2H), 7.17 – 7.12 (m, 1H), 7.11 – 7.07 (m, 2H), 7.04 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H), 3.22 (s, 3H), 2.65 – 2.35 (m, 2H), 2.08 (t, J= 7.5 Hz, 2H), 1.94 - 1.79 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 173.3, 158.8, 141.9, 137.0, 128.5, 128.4, 128.3, 125.8, 114.9, 55.5, 37.5 35.3, 33.5, 27.1. **HRMS** (ESI) m/z:

[M+H]⁺ Calcd for C₁₈H₂₂NO₂⁺ 284.1651; Found 284.1657.

N-benzyl-N-methyl-4-phenylbutanamide (1ak).

Using the General Procedure as well as using 20 mol % of WCl₆ and 40 mol % of L1, the title compound was obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f= 0.5), 94.9 mg, 71% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.39 – 7.15 (m, 9H), 7.12 (d, J = 7.6 Hz, 1H), 4.68 – 4.36 (m, 2H), 3.07 – 2.79 (m, 3H), 2.78 – 2.61 (m, 2H), 2.38 (td, J = 7.5, 2.6 Hz, 2H), 2.19 – 1.94 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 173.2, 172.8, 141.8, 141.7, 137.5, 136.7, 128.9, 128.6, 128.51, 128.46, 128.4, 128.3, 128.0, 127.5, 127.3, 126.3, 125.9, 125.8, 53.3, 50.7, 35.30, 35.25, 34.7, 33.9, 32.6, 32.2, 26.8, 26.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₂₂NO⁺ 268.1701; Found 268.1708.

N,N-dibenzyl-4-phenylbutanamide (1al).

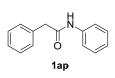
Using the General Procedure as well as using 20 mol % of WCl₆ and 40 mol % of L1, the title compound was obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 127.1 mg, 74% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.45 – 7.33 (m, 5H), 7.33 – 7.25 (m, 5H), 7.21 (dd, J = 7.9, 5.1 Hz, 3H), 7.15 (d, J = 7.6 Hz, 2H), 4.67 (s, 2H), 4.41 (s, 2H), 2.73 (t, J = 7.6 Hz, 2H), 2.47 (t, J = 7.4 Hz, 2H), 2.27 – 2.01 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 173.2, 141.7, 137.5, 136.6, 128.9, 128.6, 128.5, 128.4, 128.3, 127.6, 127.4, 126.4, 125.9, 49.9, 48.2, 35.2, 32.4, 26.9. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₆NO⁺ 344.2014; Found 344.2017.

N,N-dibutyl-4-phenylbutanamide (1am).

Using the General Procedure as well as using 20 mol % of WCl₆ and 40 mol % of L1,

the title compound was obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 52.0 mg, 38% yield. The spectra data are in agreements with that of the identical compound **A23**.

N,3-diphenylpropanamide (1an).


Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 99.1 mg, 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, J = 8.5, 3.0 Hz, 3H), 7.28

(td, J = 7.1, 4.0 Hz, 4H), 7.22 (t, J = 7.1 Hz, 3H), 7.09 (t, J = 7.4 Hz, 1H), 3.19 – 2.88 (m, 2H), 2.65 (t, J = 7.7 Hz, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 170.8, 140.7, 137.9, 129.0, 128.7, 128.5, 126.5, 124.4, 120.2, 39.4, 31.7. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₆NO⁺ 226.1232; Found 226.1227.

3-cyclopentyl-N-phenylpropanamide (1ao).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1,
$$R_f = 0.5$$
), 90.2 mg, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, $J = 15.5$ Hz, 1H), 7.55 (d, $J = 8.0$ Hz, 2H), 7.31 (t, $J = 7.8$ Hz, 2H), 7.10 (t, $J = 7.4$ Hz, 1H), 2.48 – 2.28 (m, 2H), 1.92 – 1.70 (m, 6H), 1.69 – 1.45 (m, 4H), 1.26 – 0.98 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 138.2, 129.0, 124.2, 120.1, 39.8, 37.2, 32.6, 32.0, 25.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₂₀NO⁺218.1545; Found 218.1545.

N,2-diphenylacetamide (1ap).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 94.0 mg, 89% yield. ¹H NMR (400 MHz,

CDCl₃) δ 7.46 – 7.22 (m, 10H), 7.14 – 7.02 (m, 1H), 3.71 (s, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 169.3, 137.8, 134.6, 129.6, 129.3, 129.0, 127.7, 124.6, 120.0, 44.9. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₄NO⁺ 212.1075; Found 212.1073.

N-phenylbutyramide (1aq).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 63.6 mg, 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.57 – 7.43 (m, 2H), 7.35 – 7.21 (m, 2H), 7.19 – 6.95 (m, 1H), 2.32 (t, J = 7.5 Hz, 2H), 1.75 (h, J = 7.4 Hz, 2H), 0.99 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 138.2, 129.0, 124.3, 120.1, 39.7, 19.2, 13.8. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₀H₁₄NO⁺ 164.1075; Found 164.1076.

N-phenyl-4-(p-tolyl)butanamide (1ar).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 95.0 mg, 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.9 Hz, 2H), 7.40 (s, 1H), 7.31 (t, J = 7.7 Hz, 2H), 7.10 (d, J = 3.8 Hz, 5H), 2.67 (t, J = 7.4 Hz, 2H), 2.33 (d, J = 5.5 Hz, 5H), 2.05 (p, J = 7.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 138.3, 138.1, 135.6, 129.2, 129.1, 128.5, 124.3, 120.0, 36.9, 34.7, 27.1, 21.1 HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₀NO⁺ 254.1545; Found 254.1544.

4-(4-methoxyphenyl)-N-phenylbutanamide (1as).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate =
$$3:1$$
, $R_f = 0.5$), 94.3 mg, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, $J =$

7.9 Hz, 2H), 7.30 (t, J = 7.9 Hz, 3H), 7.17 – 7.00 (m, 3H), 6.96 – 6.71 (m, 2H), 3.78 (s,

3H), 2.64 (t, J = 7.5 Hz, 2H), 2.33 (t, J = 7.5 Hz, 2H), 2.03 (q, J = 7.5 Hz, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 171.3, 158.1, 138.1, 133.5, 129.5, 129.1, 124.3, 120.0, 114.0, 55.4, 36.9, 34.3, 27.2. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₀NO₂⁺ 270.1494; Found 270.1497.

4-(4-chlorophenyl)-N-phenylbutanamide (1at).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 117.7 mg, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 7.9 Hz, 2H), 7.33 (t, J = 7.6 Hz, 3H), 7.29 – 7.20 (m, 2H), 7.12 (dd, J = 7.8, 5.2 Hz, 3H), 2.69 (t, J = 7.5 Hz, 2H), 2.34

(t, J = 7.4 Hz, 2H), 2.05 (p, J = 7.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 139.9, 138.0, 131.9, 130.0, 129.1, 128.7, 124.4, 120.0, 36.7, 34.5, 26.8. HRMS (ESI)

m/z: [M+H]⁺ Calcd for C₁₆H₁₇NOC1⁺ 274.0999; Found 274.0999.

4-(4-bromophenyl)-N-phenylbutanamide (1au).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 132.0 mg, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 7.9 Hz, 3H), 7.30 (td, J = 7.9, 3.0 Hz, 2H), 7.39 (dd, J = 8.2, 4.0 Hz, 2H), 7.15 – 6.95 (m, 3H), 2.75 – 2.50 (m, 2H), 2.31 (t, J = 7.2 Hz, 2H), 2.01 (q, J = 7.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 140.4, 138.0, 131.6, 130.3, 129.1, 124.4, 120.1, 119.9, 36.6, 34.5, 26.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₇NOBr⁺ 318.0494; Found 318.0500.

(Z)-1-phenyloctadec-9-en-1-one (1av).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum

ether/ethyl acetate = 3:1, R_f = 0.5), 125.1 mg, 70% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.56 – 7.39 (m, 3H), 7.29 (t, J = 7.8 Hz, 2H), 7.08 (t, J = 7.4 Hz, 1H), 5.46 – 5.24 (m, 2H), 2.33 (t, J = 7.6 Hz, 2H), 2.00 (q, J = 6.6 Hz, 2H), 1.71 (q, J = 7.5 Hz, 2H), 1.45 – 1.15 (m, 22H), 0.87 (t, J = 6.8 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 171.7, 138.1, 130.1, 129.8, 129.1, 124.3, 120.0, 37.9, 32.0, 29.9, 29.82, 29.77, 29.6, 29.44, 29.42, 29.37, 29.3, 27.33, 27.28, 25.8, 22.8, 14.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₄₀NO⁺ 358.3110; Found 358.3114.

ethyl 6-oxo-6-(phenylamino)hexanoate (1aw).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 72.3 mg, 58% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.08 (s, 1H), 7.51 (d, J = 8.1 Hz, 2H), 7.26 (t, J = 7.7 Hz, 2H), 7.05 (t, J = 7.4 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 2.32 (dt, J = 19.8, 7.0 Hz, 4H), 1.82 – 1.54 (m, 4H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 173.8, 171.4, 138.2, 128.9, 124.2 120.1, 60.5, 37.1, 34.0, 25.0, 24.4, 14.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₂₀NO₃⁺250.1443; Found 250.1449.

N-phenylcyclohexanecarboxamide (1ax).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 88.4 mg, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, J = 8.3, 2.9 Hz, 3H), 7.38 – 7.22 (m, 2H), 7.07 (t, J = 7.4 Hz, 1H), 2.33 – 2.13 (m, 1H), 2.04 – 1.87 (m, 2H), 1.86 – 1.73 (m, 2H), 1.69 (s, 1H), 1.62 – 1.45 (m, 2H), 1.38 – 1.11 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.8, 138.3, 129.0, 124.1, 120.0, 46.6, 29.8, 25.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₁₈NO⁺ 204.1388; Found 204.1386.

N-phenylcyclopentanecarboxamide (1ay).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 83.3 mg, 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.1 Hz, 3H), 7.39 – 7.19 (m, 2H), 7.06 (t, J = 7.4 Hz, 1H), 2.67 (p, J = 8.1 Hz, 1H), 1.88 (qt, J = 7.1, 4.8 Hz, 4H), 1.82 – 1.68 (m, 2H), 1.68 – 1.49 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 175.0, 138.4, 129.0, 124.1, 119.9, 46.9, 30.7, 26.1. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₆NO⁺ 190.1232; Found 190.1230.

N-phenylcyclobutanecarboxamide (1az).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 83.2 mg, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.62 - 7.39 (m, 3H), 7.35 - 7.17 (m, 2H), 7.06 (t, J= 7.4 Hz, 1H), 3.16 (p, J= 8.5 Hz, 1H), 2.52 - 2.28 (m, 2H), 2.27 - 2.08 (m, 2H), 2.05 - 1.80 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 138.2, 129.0, 124.1, 119.9, 40.9, 25.4, 18.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₁H₁₄NO⁺ 176.1075; Found 176.1079.

N-phenylcyclopropanecarboxamide (1ba).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 56.4 mg, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.50 (d, J = 7.9 Hz, 2H), 7.29 (t, J = 7.7 Hz, 2H), 7.08 (t, J = 7.3 Hz, 1H), 1.52 (tt, J = 8.2, 4.5 Hz, 1H), 1.07 (p, J = 4.2 Hz, 2H), 0.81 (dq, J = 7.1, 3.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 138.3, 129.0, 124.1, 120.0, 15.8, 8.0. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for C₁₀H₁₂NO⁺ 162.0919; Found 162.0925.

N-phenylpivalamide (1bb).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.5$), 69.1 mg, 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.50 (m, 2H), 7.40 (s, 1H), 7.35 – 7.27 (m, 2H), 7.14 – 7.03 (m, 1H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 176.7, 138.2, 129.0, 124.3, 120.1, 39.7, 27.7. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₁H₁₆NO⁺ 178.1232; Found 178.1237.

N-phenyladamantane-1-carboxamide (1bc).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 120.0 mg, 94% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 7.9 Hz, 2H), 7.40 – 7.27 (m, 3H), 7.08 (t, J =

7.4 Hz, 1H), 2.10 (s, 3H), 1.97 (d, J = 3.0 Hz, 6H), 1.90 – 1.65 (m, 7H). ¹³C **NMR** (100 MHz, CDCl₃) δ 176.2, 138.2, 129.0, 124.2, 120.1, 41.6, 39.4, 36.6, 28.3. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₂NO⁺ 256.1701; Found 256.1699.

2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-N-phenylacetamide (1bd).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 129.9 mg, 60% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.86 – 7.68 (m, 1H), 7.64 – 7.56 (m, 2H), 7.49 – 7.36 (m, 4H), 7.24 (d, J

= 7.1 Hz, 2H), 7.07 (d, J = 7.2 Hz, 1H), 6.97 (s, 1H), 6.87 (d, J = 8.7 Hz, 1H), 6.69 (d, J = 9.3 Hz, 1H), 3.98 – 3.52 (m, 5H), 2.40 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.5, 168.4, 156.4, 139.6, 137.5, 136.6, 133.6, 131.2, 131.0, 130.4, 129.2, 129.0, 124.7, 120.3, 115.2, 112.6, 112.3, 100.9, 55.8, 33.2, 13.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₂N₂O₃Cl⁺ 433.1319; Found 433.1320.

N-phenylcinnamamide (1be).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 56.9 mg, 51% yield. 1H NMR (400 MHz, CDCl₃) δ 7.97 – 7.57 (m, 4H), 7.48 (dq, J =

6.8, 4.2, 3.3 Hz, 2H), 7.40 – 7.30 (m, 5H), 7.13 (t, J = 7.4 Hz, 1H), 6.78 – 6.50 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 142.5, 138.2, 134.8, 130.1, 129.2, 129.0, 128.1, 124.6, 121.1, 120.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₄NO⁺ 224.1075; Found 224.1084.

N-phenylbenzamide (1bf).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.5), 88.8 mg, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.90 – 7.79 (m, 2H), 7.71 – 7.60 (m, 2H), 7.59 – 7.51 (m, 1H), 7.47 (ddt, J = 8.4, 6.6, 1.4 Hz, 2H), 7.41 – 7.31 (m, 2H), 7.20 – 7.10 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 138.1, 135.1, 132.0, 129.2, 128.9, 127.2, 124.7, 120.4. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₁₂NO⁺ 198.0919; Found 198.0923.

Direct transformation of piperine to potential drug molecules

(2E,4E)-5-(benzo[d][1,3]dioxol-5-yl)-N-(3,4-dihydroxyphenethyl)penta-2,4-dienamide (2a).

Using the General Procedure, the title compound was obtained as a yellow solid after column chromatography (petroleum ether/ethyl acetate = 1:1, $R_f = 0.2$), 106.0 mg, 60% yield. ¹H NMR

(600 MHz, CD₃OD) δ 7.33 – 7.13 (m, 1H), 7.03 – 6.93 (m, 1H), 6.93 – 6.80 (m, 1H), 6.76 – 6.69 (m, 3H), 6.69 – 6.58 (m, 2H), 6.49 (dt, J = 8.1, 2.4 Hz, 1H), 6.11 – 5.92 (m, 1H), 5.89 (d, J = 2.3 Hz, 2H), 3.44 – 3.33 (m, 2H), 2.72 – 2.49 (m, 2H). The proton signals of protic N-H and O-H groups were not observed due to the H/D exchange with CD₃OD. ¹³C **NMR** (150 MHz, CD₃OD) δ 169.0, 149.7, 146.3, 144.8, 142.2, 140.2, 132.3, 132.1, 125.9, 124.2, 123.8, 121.1, 116.9, 116.4, 109.4, 106.7, 102.7, 49.9, 42.5, 36.0. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₀NO₅⁺ 354.1341; Found 354.1349.

(2E,4E)-5-(benzo[d][1,3]dioxol-5-yl)-N-butyl-N-propylpenta-2,4-dienamide (2b).

Using the General Procedure as well as using 20 mol % of WCl₆ and 40 mol% of **L1**, the title compound was obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 1:1,

 R_f = 0.2), 72.3 mg, 48% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.48 – 7.36 (m, 1H), 6.96 (d, J = 1.7 Hz, 1H), 6.86 (dd, J = 8.0, 1.7 Hz, 1H), 6.80 – 6.68 (m, 3H), 6.33 (d, J = 14.6 Hz, 1H), 5.94 (s, 2H), 3.43 – 3.20 (m, 4H), 1.79 – 1.42 (m, 4H), 1.14 – 0.71 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 166.3, 148.2, 142.5, 138.4, 131.0, 125.4, 122.6, 120.3, 108.5, 105.7, 101.3, 49.9, 48.5, 23.0, 21.2, 11.5, 11.3. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₂₄NO₃⁺ 302.1756; Found 302.1760.

Synthesis of Citalopram analogues

3-(5-cyano-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-1-yl)-N-(4-fluorophenyl) propanamide (4a).

(i) Based on 0.5 mmol of 3: Using the General Procedure, the title compound was obtained as a yellow solid after column chromatography (petroleum ether/ethyl acetate = 1:1, R_f= 0.2), 171.8 mg, 85% yield. 1 H NMR (600 MHz, CDCl₃) δ 7.58 (dd, J = 7.9, 1.4 Hz, 1H), 7.49 (s, 1H), 7.47 – 7.40 (m, 3H), 7.40 – 7.32 (m, 3H), 7.07 – 6.91 (m, 4H), 5.18 (q, J = 12.9 Hz, 2H), 2.73 – 2.46 (m, 2H), 2.30 (ddd, J = 8.7, 6.4, 4.8 Hz, 2H). 19 F NMR (565 MHz, CDCl₃) δ -114.52, -117.79. 13 C NMR (150 MHz, CDCl₃) δ 170.6, 162.3 (d, J = 247.1 Hz), 159.4 (d, J = 243.6 Hz), 148.8, 140.2, 138.7, 133.9, 132.2, 126.9 (d, J = 8.2 Hz), 125.4, 123.0, 121.6 (d, J = 7.9 Hz), 118.6, 115.71 (dd, J = 22.0, 4.4 Hz), 115.71 (d, J = 17.6 Hz), 112.1, 90.8, 71.4, 36.3, 32.4. HRMS (ESI) m/z: [M+H] $^{+}$ Calcd for C₂₄H₁₉N₂O₂F₂ $^{+}$ 405.1415; Found 405.1413.

(ii) Based on 5 mmol of 3: Using the General Procedure, the title compound was obtained as a yellow solid after column chromatography (petroleum ether/ethyl acetate = 1:1, $R_f = 0.2$) using a 100 mL Schlenk flask, 1.61 g, 80% yield. The spectra data were in agreements with that of the identical compound above.

3-(5-cyano-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-1-yl)-N-(4-hydroxyphenyl)-N-methylpropanamide (4b).

Using the General Procedure as well as using 20 mol % of WCl₆ and 40 mol% of **L1**, the title compound was obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 1:1, $R_f = 0.2$), 135.3 mg, 65% yield. ¹H NMR (600 MHz,

CDCl₃) δ 7.52 (dd, J = 7.9, 1.4 Hz, 1H), 7.43 (d, J = 1.6 Hz, 1H), 7.33 – 7.28 (m, 2H), 7.27 (d, J = 4.0 Hz, 1H), 6.94 (t, J = 8.7 Hz, 2H), 6.92 – 6.86 (m, 2H), 6.87 – 6.77 (m, 2H), 5.18 – 4.86 (m, 2H), 3.81 (s, 3H), 3.13 (s, 3H), 2.67 – 2.30 (m, 2H), 2.23 – 1.76 (m, 2H). ¹⁹**F NMR** (565 MHz, CDCl₃) δ -115.07. ¹³**C NMR** (150 MHz, CDCl₃) δ 172.7, 162.1 (d, J = 246.3 Hz), 158.9, 149.0, 140.1, 138.9 (d, J = 3.1 Hz), 136.6, 131.8, 128.2, 126.8 (d, J = 8.0 Hz), 125.1, 123.0, 118.7, 115.3 (d, J = 21.4 Hz), 114.8, 111.7, 90.7, 71.2, 55.6, 37.5, 36.5, 28.9. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₄N₂O₃F⁺ 431.1771; Found 431.1773.

3-(5-cyano-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-1-yl)-N,N-dipropylpropanamide (4c).

Using the General Procedure as well as using 20 mol % of WCl₆ and 40 mol% of **L1**, the title compound was obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 1:1, R_f = 0.2), 63.1 mg, 32% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.53 (dd, J =

8.0, 3.0 Hz, 1H), 7.45 (d, J = 3.1 Hz, 1H), 7.41 (tdd, J = 9.4, 6.6, 3.2 Hz, 3H), 6.96 (td,

J = 8.7, 3.2 Hz, 2H), 5.26 – 5.02 (m, 2H), 3.24 – 3.10 (m, 2H), 3.08 – 2.89 (m, 2H), 2.69 – 2.35 (m, 2H), 2.22 (td, J = 7.9, 3.1 Hz, 2H), 1.65 – 1.31 (m, 4H), 0.95 – 0.64 (m, 6H). ¹⁹**F NMR** (565 MHz, CDCl₃) δ -115.03. ¹³**C NMR** (150 MHz, CDCl₃) δ 171.8, 162.1(d, J = 246.5 Hz), 149.2, 140.0, 138.9, 131.9, 126.8 (d, J = 8.0 Hz), 125.2, 123.0, 118.6, 115.4 (d, J = 21.5 Hz), 111.8, 90.7, 71.2, 49.5, 47.7, 36.4, 27.7, 22.1, 20.9, 11.3, 11.1. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₈N₂O₂F⁺ 395.2135; Found 395.2133.

N-(4-fluorophenyl)-2-(6-methyl-2-(p-tolyl)imidazo[1,2-a]pyridin-3-yl)acetamide (5)

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 1:2, R_f = 0.5), 87.8 mg, 47% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.80 (s, 1H), 7.53 (d, J = 7.8 Hz, 2H), 7.49 (dd, J = 9.0, 4.7 Hz, 2H),

7.33 (d, J = 9.1 Hz, 1H), 7.16 (d, J = 7.8 Hz, 2H), 7.01 (d, J = 10.7 Hz, 1H), 6.95 (t, J = 8.7 Hz, 2H), 4.09 (s, 2H), 2.35 (s, 3H), 2.32 (s, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -117.10. ¹³**C NMR** (100 MHz, CDCl₃) δ 167.0, 159.5 (d, J = 244.1 Hz), 144.3, 143.9, 138.1, 133.6 (d, J = 2.7 Hz), 130.3, 129.5, 128.4, 127.9, 123.0, 122.1 (d, J = 7.9 Hz), 121.0, 116.2, 115.5 (d, J = 22.4 Hz), 112.6, 33.2, 21.2, 18.4. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₁N₃OF 374.1669; Found 374.1669.

Upcycling of less potent drugs to new amides for study

2-(4-allyl-2-methoxyphenoxy)-N-(4-methoxyphenyl)-N-methylacetamide (8a).

Using the General Procedure as well as using 20 mol % of WCl₆ and 40 mol% of **L1**, the title compound was obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 1:1,

R_f = 0.2), 78.5 mg, 46% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.12 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 6.64 (td, J = 7.4, 3.7 Hz, 3H), 6.04 – 5.73 (m, 1H), 5.17 – 4.90 (m, 2H), 4.41 (s, 2H), 3.80 (s, 3H), 3.79 (s, 3H), 3.28 (d, J = 6.8 Hz, 2H), 3.25 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.0, 159.3, 149.5, 145.9, 137.6, 134.9, 133.9, 128.2, 120.3, 115.6, 115.1, 114.4, 112.5, 67.3, 55.8, 55.5, 39.8, 37.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₄NO₄⁺ 342.1705; Found 342.1709.

2-(4-allyl-2-methoxyphenoxy)-N-(4-(N-(pyridin-2-yl)sulfamoyl)phenyl)acetamide (8b).

Using the General Procedure, the title compound was obtained as a yellow solid after column chromatography (petroleum ether/ethyl acetate = 1:1, $R_f = 0.2$), 136.0 mg, 60% yield. ¹H NMR (400

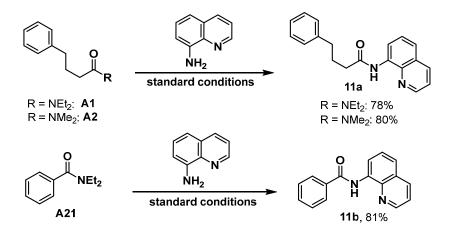
MHz, CDCl₃) δ 9.24 (s, 1H), 8.36 (dd, J = 6.0, 1.9 Hz, 1H), 7.88 (d, J = 8.5 Hz, 2H),

7.75 – 7.59 (m, 4H), 7.42 (d, J = 8.8 Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 6.85 – 6.71 (m, 3H), 6.11 – 5.73 (m, 1H), 5.20 – 5.01 (m, 2H), 4.60 (s, 2H), 3.91 (s, 3H), 3.34 (d, J = 6.7 Hz, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 167.8, 155.2, 149.9, 145.8, 142.3, 140.9, 137.2, 136.4, 129.0, 128.3, 121.4, 119.7, 117.4, 116.3, 115.2, 114.6, 114.2, 112.9, 71.2, 56.2, 40.0. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₄N₃O₅S⁺ 454.1437; Found 454.1439.

2-(4-allyl-2-methoxyphenoxy)-N-(4-(3-ethyl-2,6-dioxopiperidin-3-yl)phenyl) acetamide (8c).

Using the General Procedure, the title compound was obtained as a yellow solid after column chromatography (petroleum ether/ethyl acetate = 1:1, $R_f = 0.2$), 133.1 mg, 61% yield. 1H NMR (400

MHz, CDCl₃) δ 9.06 (s, 1H), 8.23 (d, J = 9.3 Hz, 1H), 7.62 (d, J = 8.6 Hz, 2H), 7.28 (d, J = 8.6 Hz, 2H), 6.94 (d, J = 8.0 Hz, 1H), 6.85 – 6.74 (m, 2H), 6.13 – 5.83 (m, 1H), 5.26 – 4.99 (m, 2H), 4.65 (s, 2H), 3.94 (s, 3H), 3.37 (d, J = 6.6 Hz, 2H), 2.70 – 2.56 (m, 1H), 2.51 – 2.33 (m, 2H), 2.30 – 2.19 (m, 1H), 2.16 – 2.02 (m, 1H), 1.97 – 1.84 (m, 1H), 0.89 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 175.3, 172.4, 167.4, 149.9, 145.8, 137.2, 136.8, 136.1, 134.8, 127.1, 121.3, 120.4, 117.1, 116.2, 112.8, 71.1, 56.1, 50.8, 40.0, 33.0, 29.4, 27.2, 9.1. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₉N₂O₅⁺ 437.2076; Found 437.2078.


Direct transformation of tertiary amide intermediate to amide agrochemical

N-(benzo[d]thiazol-6-yl)-2-(2-fluoro-3-methoxyphenyl)acetamide (10).

Using the General Procedure, the title compound was obtained as a white solid after column chromatography (petroleum ether/ethyl acetate = 1:1, R_f = 0.2), 87.0 mg, 55% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.88 (s, 1H),

8.48 (d, J = 2.1 Hz, 1H), 7.97 (d, J = 8.7 Hz, 1H), 7.72 (d, J = 6.6 Hz, 1H), 7.25 (ddd, J = 7.2, 3.4, 1.7 Hz, 1H), 7.07 (t, J = 8.0 Hz, 1H), 6.92 (q, J = 8.2, 7.3 Hz, 2H), 3.87 (s, 3H), 3.77 (s, 2H). ¹⁹**F NMR** (565 MHz, CDCl₃) δ -139.43. ¹³**C NMR** (150 MHz, CDCl₃) 168.3, 153.7, 150.8 (d, J = 244.7 Hz), 150.1, 148.1 (d, J = 10.8 Hz), 135.6, 134.8, 124.7 (d, J = 4.7 Hz), 123.6, 122.7 (d, J = 2.0 Hz), 122.5 (d, J = 13.0 Hz), 119.2, 112.9, 112.8, 56.3, 38.0 . **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₄N₂O₂SF⁺ 317.0760; Found 317.0761.

Installation of 8-aminoquinolyl directing group to tertiary amides for direct functionalization

4-phenyl-N-(quinolin-8-yl)butanamide (11a).

- (i) From A1: Using the General Procedure, the title compound was obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.6$), 113.2 mg, 78% yield. ¹H NMR (600 MHz, CDCl₃) δ 9.79 (s, 1H), 8.96 8.68 (m, 2H), 8.14 (dd, J = 8.2, 1.7 Hz, 1H), 7.57 7.51 (m, 1H), 7.49 (dd, J = 8.3, 1.5 Hz, 1H), 7.44 (dd, J = 8.2, 4.2 Hz, 1H), 7.33 7.27 (m, 2H), 7.24 (dt, J = 7.9, 1.1 Hz, 2H), 7.22 7.15 (m, 1H), 2.82 2.72 (m, 2H), 2.57 (dd, J = 8.0, 7.0 Hz, 2H), 2.26 2.09 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 171.6, 148.2, 141.6, 138.5, 136.5, 134.6, 128.7, 128.5, 128.1, 127.6, 126.1, 121.7, 121.5, 116.6, 37.4, 35.3, 27.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₉N₂O⁺ 291.1497; Found 291.1504.
- (ii) From A2: Using the General Procedure, the title compound was obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 3:1, $R_f = 0.6$), 116.1 mg, 80% yield. Spectra data are in agreements with that of the identical compound from (i).

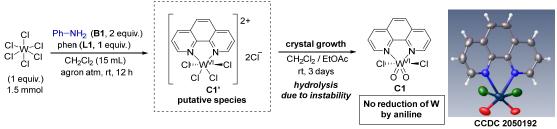
N-(quinolin-8-yl)benzamide (11b).

O N H N N 11b

Using the General Procedure, the title compound was obtained as a yellow liquid after column chromatography (petroleum ether/ethyl acetate = 3:1, R_f = 0.6), 100.5 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 10.74 (s, 1H), 8.95 (dd, J = 7.5, 1.4 Hz, 1H),

8.84 (dt, J = 5.1, 2.5 Hz, 1H), 8.23 – 8.13 (m, 1H), 8.09 (dd, J = 7.7, 1.9 Hz, 2H), 7.70 – 7.49 (m, 5H), 7.46 (dt, J = 8.6, 4.3 Hz, 1H). ¹³C **NMR** (100 MHz, CDCl₃) δ 165.5, 148.4, 138.9, 136.5, 135.3, 134.7, 131.9, 128.9, 128.1, 127.6, 127.4, 121.8, 116.7. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₃N₂O⁺ 249.1028; Found 249.1036.

4-chloro-N-(4-hydroxyphenethyl)benzamide (12)

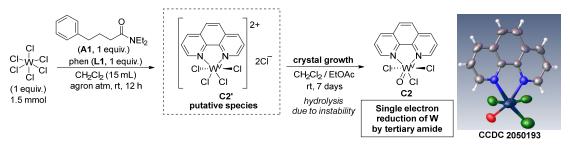

Using the General Procedure, the title compound was obtained as a white solid after column chromatography
$$\text{(petroleum ether/ethyl acetate} = 3:1, R_f = 0.5), 89.6 \text{ mg},$$

65% yield. ¹H NMR (400 MHz, CD₃OD) δ 7.75 (d, J = 9.8 Hz, 2H), 7.45 (d, J = 8.6 Hz, 2H), 7.06 (d, J = 8.6 Hz, 2H), 6.71 (d, J = 7.4 Hz, 2H), 3.55-3.49 (m, 2H), 2.80 (t, J=7.5 Hz, 2H) (The proton signal of NH and OH groups could not be observed owing to the rapid exchange with methanol- d_4). ¹³C NMR (100 MHz, CD₃OD) δ 169.0, 157.0, 138.7, 134.5, 131.3, 130.8, 130.0, 129.7, 116.3, 43.1, 35.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₄ClNO₂⁺ 276.0791; Found 276.0789.

Mechanistic study of transamidation of tertiary amides

(i) Study of the tungsten complex formation in the stoichiometric reactions of WCl₆ with L1 and substrates (Figures S1 and S2).

Figure S1. Formation of WVI(phen)(O)₂Cl₂ (C1).



	CCDC 2050192			
Empirical formula	C ₁₃ H ₁₀ Cl ₄ N ₂ O ₂ W (C1)			
CCDC number	2050192			
Formula weight	551.88			
Temperature	293 (2) K			
Crystal system, space group	monoclinic, P2 ₁ / c			
Unit cell dimensions	a = 9.0393 (5) Å alpha = 90 deg.			
	b = 13.5853 (9) Å beta = 95.465 (5)			
	deg.			
	c = 13.4735 (8) Å gamma = 90 deg.			
Volume	1647.1 (17) Å ³			
Z, Calculated density	$4, 2.226 \text{ g/m}^3$			
Absorption coefficient	7.668 mm ⁻¹			
F (000)	1040.0			
Crystal size	0.26 x 0.19 x 0.15 mm			
Radiation	$MoK^a (\lambda = 0.71073)$			
Theta range for data collection	4.268 to 50.052 deg.			
Limiting indices	-10<=h<=10, -12<=k<=16, -15<=l<=16			
Reflections collected / unique	10185 / 2091 [R(int) = 0.0384]			
Data / restraints / parameters	2901 / 0 / 199			
Goodness-of-fit on F ²	1.145			
Final R indices [I>2sigma(I)]	$R_1 = 0.0433$, $wR_2 = 0.0782$			
R indices (all data)	$R_1 = 0.0567, wR_2 = 0.0816$			
Largest diff. peak and hole	2.88 and -1.28 e.Å ⁻³			

An oven-dried 25 mL round bottom flask equipped with a stir bar and capped with a rubber septum was charged with aniline (2 equiv., 3 mmol), phenanthroline (L1, 1 equiv., 1.5 mmol), and WCl₆ (1 equiv., 1.5 mmol). The flask was evacuated in vacuo and then backfilled with argon for three times. Pre-dried CH₂Cl₂ (12 mL) was transferred into the flask via a syringe under a positive argon pressure. The resulting mixture was stirred under an argon atmosphere at room temperature for 12 h. After filtration, pre-dried EtOAc (5 mL) was added into the flask, and the reaction mixture was left at room temperature for slow evaporation. A deep purple crystal was formed after 3 days. W^{VI}(phen)(O)₂Cl₂ (C1) was formed according to the X-ray crystallographic analysis, with ORTEP representation with 50% probability thermal ellipsoids. The dichloromethane (CH₂Cl₂) molecule in the original crystallographic data was omitted for clarity.

Presumably, WCl₆ reacts with **L1** to form W^{VI}(phen)Cl₆ (**C1'**), which is not stable and undergoes hydrolysis with residual water to form **C1**. The result also suggested that aniline does not reduce the complex to lower-valent W species.

Figure S2. Formation of W^V(phen)(O)Cl₃ (C2).

Empirical formula	C ₁₂ H ₈ Cl ₃ N ₂ OW C(C2)			
CCDC number	2050193			
Formula weight	486.40			
Temperature	293 (2) K			
Crystal system, space group	monoclinic, P2 ₁ / c			
Unit cell dimensions	a = 7.8945 (5) Å alpha = 90 deg.			
	b = 17.8773 (9) Å beta = 106.957 (6)			
	deg.			
	c = 10.1868 (5) Å gamma = 90 deg.			

Volume $1375.18 (14) Å^3$

Z, Calculated density 4, 2.349 g/m³

Absorption coefficient 8.973 mm⁻¹

F (000) 908.0

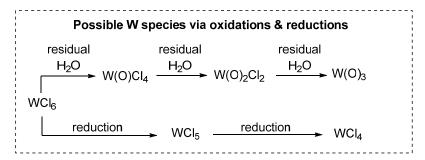
Crystal size $0.28 \times 0.19 \times 0.15 \text{ mm}$ Radiation $MoK^a (\lambda = 0.71073)$ Theta range for data collection 4.556 to 58.722 deg.

Limiting indices -10 <= h <= 9, -23 <= k <= 19, -13 <= l <= 12

Reflections collected / unique 12431 / 3229 [R(int) = 0.0729]

Data / restraints / parameters 3229 /66 / 182

Goodness-of-fit on F^2 1.003


Final R indices [I>2sigma(I)] $R_1 = 0.0542$, $wR_2 = 0.1228$ R indices (all data) $R_1 = 0.0978$, $wR_2 = 0.1312$

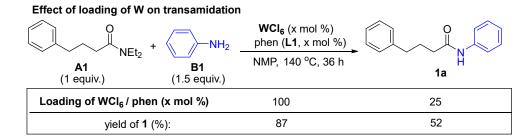
Largest diff. peak and hole 1.60 and -1.58 e.Å-3

An oven-dried 25 mL round bottom flask equipped with a stir bar and capped with a rubber septum was charged with WCl₆ (1 equiv., 1.5 mmol), phenanthroline (**L1**, 1 equiv., 1.5 mmol), and tertiary alkyl amide **A1** (1 equiv., 1 mmol). The flask was evacuated in vacuo and then backfilled with argon for three times. Pre-dried CH₂Cl₂ (15 mL) was transferred into the flask via a syringe under a positive argon pressure. The resulting mixture was stirred under an argon atmosphere at room temperature for 12 h. After filtration, pre-dried EtOAc (5 mL) was added into the flask, and the reaction mixture was left at room temperature for slow evaporation. A deep purple crystal was formed after 7 days. W^V(phen)(O)Cl₃ (C2) was formed according to the X-ray crystallographic analysis, with ORTEP representation with 50% probability thermal ellipsoids.

Presumably, WCl₆ reacts with **L1** to form $W^{VI}(phen)Cl_6$ (**C1'**) and is futher reduced by tertiary alkyl amide **A1** to form $W^{V}(phen)Cl_5$ (**C2'**), which is not stable and undergoes hydrolysis with residual water to form $W^{V}(phen)(O)Cl_3$ (**C2**).

(ii) Probing the reactivity of viable W species (Scheme 5(b)).

W-mediated transamidation

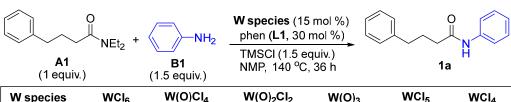

W species	WCI ₆	W(O)CI ₄	W(O) ₂ Cl ₂	W(O) ₃	WCI ₅	WCI ₄
yield of 1 (%)	87	58	30	trace	84	65

An oven-dried 25 mL Schlenk tube equipped with a stir bar was charged with tertiary alkyl amide A1 (1 equiv., 0.5 mmol), aniline B1 (1.5 equiv., 0.75 mmol), phenanthroline L1 (1 equiv., 0.5 mmol), and W species (1 equiv., 0.5 mmol). The tube was evacuated in vacuo and then backfilled with argon for three times. NMP (5 mL) was transferred into the flask via a syringe under a positive argon pressure. The resulting mixture was stirred under an argon atmosphere at 140 °C in a preheated heat block for 36 h. At this point, the reaction mixture was cooled down to room temperature. The reaction mixture was diluted with ethyl acetate and then washed with dilute aqueous HCl solution (2x) and saturated brine, dried with anhydrous Na₂SO₄, and finally concentrated in vacuo with the aid of rotary evaporator. The residue was purified by flash chromatography on silica gel using petroleum ether and ethyl acetate as eluent to give the transamidated product 1a.

Experimental results suggested that the reactivity of transamidation is generally consistent with the Lewis acidity of W species: $WCl_6 > W(O)Cl_4 > W(O)_2Cl_2 > W(O)_3$; $WCl_6 > WCl_5 > WCl_4$.

(iii) Probing the reactivity of viable W species using catalytic loadings of W (Figure S3).

Figure S3. Probing the reactivity of viable W species using catalytic loadings of W.


An oven-dried 25 mL Schlenk tube equipped with a stir bar was charged with tertiary alkyl amide A1 (0.5 mmol, 1 equiv), aniline B1 (0.75 mmol, 1.5 equiv), phenanthroline L1 (0.125 mmol, 25 mol %), and W salt (0.125 mmol, 25 mol%). The tube was evacuated in vacuo and then backfilled with argon for three times. NMP (5 mL) was transferred into the flask via a syringe under a positive argon pressure. The resulting mixture was stirred under an argon atmosphere at 140 °C in a preheated heat block for 36 h. At this point, the reaction mixture was cooled down to room temperature. The reaction mixture was diluted with ethyl acetate and then washed with dilute aqueous HCl solution (2x) and saturated brine, dried with anhydrous Na₂SO₄, and finally concentrated in vacuo with the aid of rotary evaporator. The residue was purified by flash chromatography on silica gel using petroleum ether and ethyl acetate as eluent to

give the transamidated product 1a.

Experimental results suggested that the reactivity of transamidation is consistent with the Lewis acidity of W species: $WCl_6 > W(O)Cl_4 > W(O)_2Cl_2$ even when catalytic amounts of W salts are employed.

(iv) Probing the catalytic reactivity of viable W species under otherwise identical conditions (Scheme 5(c)).

W-catalyzed transamidation

 W species
 WCI₆
 W(O)CI₄
 W(O)₂CI₂
 W(O)₃
 WCI₅
 WCI₄

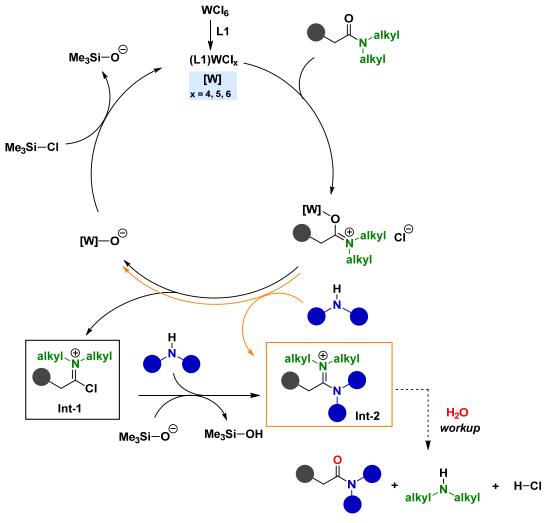
 yield of 1 (%)
 90
 57
 56
 52
 74
 65

An oven-dried 25 mL Schlenk tube equipped with a stir bar was charged with tertiary alkyl amide A1 (0.5 mmol, 1 equiv.), aniline B1 (0.75 mmol, 1.5 equiv.), phenanthroline L1 (0.15 mmol, 30 mol %), and W salt (0.075 mmol, 15 mol %). The tube was evacuated in vacuo and then backfilled with argon for three times. NMP (5 mL) was transferred into the flask via a syringe under a positive argon pressure. The resulting mixture was stirred under an argon atmosphere at 140 °C in a preheated heat block for 36 h. At this point, the reaction mixture was cooled down to room temperature. The reaction mixture was diluted with ethyl acetate and then washed with dilute aqueous HCl solution (2x) and saturated brine, dried with anhydrous Na₂SO₄, and finally concentrated in vacuo with the aid of rotary evaporator. The residue was purified by flash chromatography on silica gel using petroleum ether and ethyl acetate as eluent to give the transamidated product 1a.

Experimental results suggested that: (1) W-oxo speices are likely converted to the most reactive WCl₆ or other polychlorinated W species to maintain the high catalytic reactivity; (2) the catalytic activity is consistent with the Lewis activity of W: WCl₆ > WCl₅ and WCl₄.

(v) Probing the proposed mechanism (1): transamidation with N-trimethylsilylated amine (Figure S4).

Figure S4. Transamidation via the intermediacy of N-trimethylsilylated amine. Proposed mechanism 1:


An oven-dried 25 mL Schlenk tube equipped with a stir bar was charged with tertiary alkyl amide A1 (0. 5 mmol, 1 equiv.), N,N-bis(trimethylsilyl)aniline 13²¹ (0.75 mmol, 1.5 equiv.), phenanthroline (L1, 0.075 mmol, 15 mol %), and WCl₆ (0.075 mmol, 15 mol %). The tube was evacuated in vacuo and then backfilled with argon for three times. NMP (5 mL) was transferred into the flask via a syringe under a positive argon pressure. The resulting mixture was stirred under an argon atmosphere at 140 °C in a preheated heat block for 36 h. At this point, the reaction mixture was cooled down to room temperature. The reaction mixture was diluted with ethyl acetate and then washed with dilute aqueous HCl solution (2x) and saturated brine, dried with anhydrous Na₂SO₄, and finally concentrated in vacuo with the aid of rotary evaporator. A trace of transamidated product 1a was formed while most of A1 remained unreacted.

Therefore, the mechanism of transamidation via the intermediacy of N-trimethylsilylated amine is precluded.

(vi) Probing the proposed mechanism (2): transamidation via W-catalyzed amide C=O bond cleavage (Figure S5).

Figure S5. Transamidation via W-catalyzed amide C=O bond cleavage.

Independent experiment:

O

NEt₂

A1

(1) pre-dried standard conditions

(2) $H_2^{18}O$ (30 equiv.), 60 °C, 1 h $\begin{bmatrix}
M
\end{bmatrix}^+ = 239, \text{ detected by GCMS}$ 18

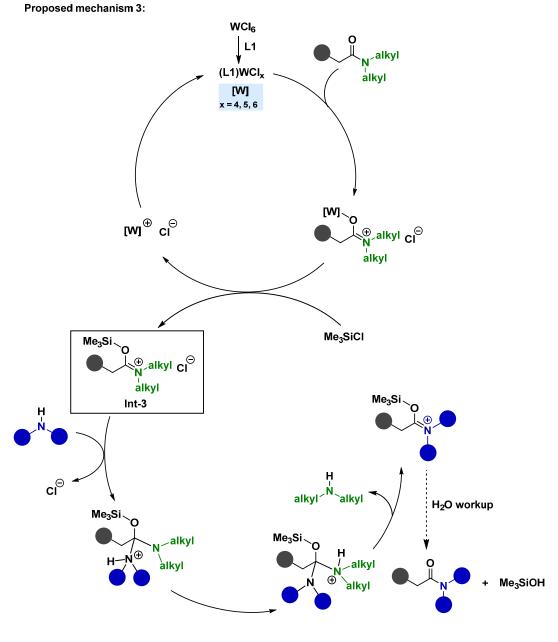
18

18

[M]⁺ = 241, not detected by GCMS

An oven-dried 25 mL Schlenk tube equipped with a stir bar was charged with tertiary alkyl amide A1 (0.5 mmol, 1 equiv.), aniline B1 (0.75 mmol, 1.5 equiv.), phenanthroline L1 (0.15 mmol, 30 mol %), and WCl₆ (0.075 mmol, 15 mol %). The tube was evacuated in vacuo and then backfilled with argon for three times. NMP (5 mL) and TMSCl (0.75 mmol, 1.5 equiv.) were transferred into the flask via a syringe under a positive argon pressure. The resulting mixture was stirred under an argon atmosphere at 140 °C in a preheated heat block for 36 h. At this point, the reaction mixture was cooled down to room temperature. ¹⁸O-water (30 equiv., 15 mmol) was then added into the reaction under the positive argon pressure, and the resulting mixture was further heated at 60 °C for 1 h to conduct the hydrolysis with ¹⁸O-water. The reaction mixture was diluted with ethyl acetate and then washed with dilute aqueous HCl solution (2x) and saturated brine, dried with anhydrous Na₂SO₄, and finally concentrated in vacuo with the aid of rotary evaporator. The crude product was analyzed by GC-MS analysis. Only unlabeled 1a was detected ($[M]^+ = 239$) without the formation of ¹⁸O-labelled **1a** ($[M]^+ = 241$). Therefore, the mechanism involving the W-mediated amide C=O bond cleavage is precluded.

(a) Synthesis of Vilsmeier salt 14. Vilsmeier salt 14 was prepared according to the typical literature procedure.²² An oven-dried 10 mL Schlenk tube equipped with a stir bar was charged with tertiary alkyl amide A1 (1 equiv., 2 mmol) and P(O)Cl₃ (2 equiv., 4 mmol). The tube was evacuated in vacuo and then backfilled with argon for three times. Pre-dried CH₂Cl₂ (10 mL) was transferred into the tube via a syringe under a positive argon pressure. The resulting mixture was stirred under an argon atmosphere at room temperature for 2 d. At this point, TLC analysis indicated that an exceedingly


polar product was formed while a small amount of **A1** remained unreacted. The reaction mixture was concentrated in vacuo with the aid of rotary evaporator. Diethyl ether was added to precipitate the product. The residue was filtered and washed with diethyl ether to obtain **14** as a white crystalline solid. 1 H NMR spectroscopy indicated that **14** was in ~85% purity in association with ~15% unreacted **A1**. 1 H NMR (600 MHz, CDCl₃) δ 7.36 – 7.27 (m, 2H), 7.24 – 7.17 (m, 3H), 4.33 – 3.90 (m, 2H), 3.48 – 3.05 (m, 3H), 2.89 – 2.72 (m, 2H), 2.71 – 2.59 (m, 1H), 2.20 (p, J = 7.6 Hz, 1H), 2.13 – 1.95 (m, 1H), 1.54 – 1.35 (m, 3H), 1.18 (td, J = 7.2, 4.9 Hz, 3H). 31 P NMR (243 MHz, CDCl₃) δ - 2.66. 13 C NMR was not performed due to the impurity of **14** and the multiplicity of signals brought by the splitting effect of P.

(b) Transamidation with Vilsmeier salt 14. An oven-dried 10 mL Schlenk tube equipped with a stir bar was charged with Vilsmeier salt 14 (~85% purity, ~0.2 mmol, ~1 equiv.) and aniline B1 (0.3 mmol, 1.5 equiv.). The tube was evacuated in vacuo and then backfilled with argon for three times. NMP (2 mL) was transferred into the flask via a syringe under a positive argon pressure. The resulting mixture was stirred under an argon atmosphere at 140 °C in a preheated heat block for 36 h. At this point, the reaction mixture was cooled down to room temperature. ¹⁸O-water (30 equiv., 6 mmol) was then added into the reaction under the positive argon pressure, and the resulting mixture was further heated at 60 °C for 1 h. The reaction mixture was diluted with ethyl acetate and then washed with dilute aqueous HCl solution (2x). The crude product in the organic layer was analyzed by TLC analysis, indicating that no transamidated product (1a or ¹⁸O-1a) was formed.

Therefore, transamidation via the intermediacy of Vilsmeier salt **Int-1** derived from tertiary alkyl amides is precluded.

(vii) Probing the proposed mechanism (3): transamidation with trimethylsilyoxy-substituted imine intermediate (Figure S6).

Figure S6. Transamidation via the intermediacy of trimethylsilyoxy imine species.

Independent experiments:

- (a) Preparation of trimethylsilyoxy imine 15. Trimethylsilyoxy imine 15 was prepared according to the typical literature procedure. An oven-dried 10 mL Schlenk tube equipped with a stir bar was charged with tertiary alkyl amide A1 (1 equiv., 0.5 mmol). The tube was evacuated in vacuo and then backfilled with argon for three times. CH₂Cl₂ (0.2 mL) and TMSOTf (1 equiv., 0.5 mmol) were sequentially transferred into the tube via a syringe under a positive argon pressure. The resulting mixture was stirred under an argon atmosphere at room temperature for 3 h. At this point, A1 was consumed and trimethylsilyoxy imine 15 was formed in situ as an exceedingly polar compound as determined by TLC analysis. 15 decomposed to complex species after the crystallization as identified by ¹H NMR spectroscopy. Therefore, 15 was prepared in situ for subsequent study.
- (b) Transamidation of trimethylsilyoxy imine 15 without WCl₆. Based on the in situ formed trimethylsilyoxy imine 15 from the procedure (a), aniline B1 (1.5 equiv, 0.75 mmol) and NMP (5 mL) were added into the tube under the positive argon pressure. The resulting mixture was stirred under an argon atmosphere at 140 °C in a preheated heat block for 36 h. The reaction mixture was cooled down to room temperature. The reaction mixture was diluted with ethyl acetate and then washed with dilute aqueous HCl solution (2x). The crude product in the organic layer was analyzed by TLC analysis, indicating that a trace of transamidated product 1a was formed.
- (c) Transamidation of trimethylsilyoxy imine 15 with WCl₆. Based on the in situ formed trimethylsilyoxy imine 15 from the procedure (a), aniline B1 (1.5 equiv, 0.5 mmol), phenanthroline (L1, 27.1 mg, 0.15 mmol), WCl₆ (29.8 mg, 0.075 mmol), phen L1 (27.0 mg, 0.15 mmol) and NMP (5 mL) were sequentially added into the tube under the positive argon pressure. The resulting mixture was stirred under an argon atmosphere at 140 °C in a preheated heat block for 36 h. The reaction mixture was cooled down to room temperature. The reaction mixture was diluted with ethyl acetate and then washed with dilute aqueous HCl solution (2x) and saturated brine, dried with anhydrous Na₂SO₄, and finally concentrated in vacuo with the aid of rotary evaporator. The residue was purified by column chromatography to give the transamidated product

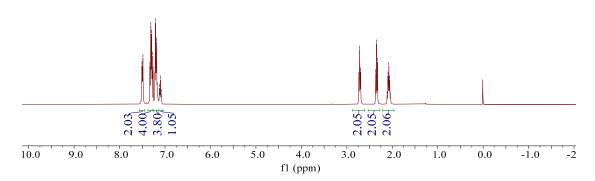
1a in 10% yield.

Owing to the low productivity of transamidation with trimethylsilyoxy imine 15, transamidation via the intermediacy of Vilsmeier salt can be ruled out.

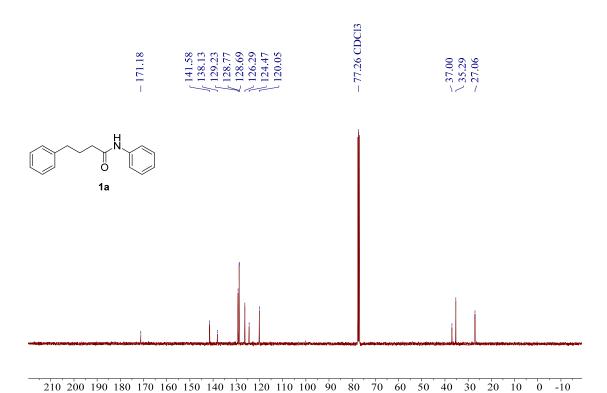
(viii) Competition experiments among tertiary, secondary and primary Amides (Scheme 7(b)).

An oven-dried 25 mL Schlenk tube equipped with a stir bar was charged with tertiary alkyl amide A1 (1 equiv., 0.5 mmol), secondary alkyl amide A30 (or primary alkyl amide A31, 1 equiv., 0.5 mmol), 4-chloroaniline (1.2 equiv, 0.6 mmol), phenanthroline L1 (0.15 mmol), and WCl6 (0.075 mmol). The tube was evacuated in vacuo and then backfilled with argon for three times. NMP (5 mL) and TMSCl (1.5 equiv., 0.75 mmol) were transferred into the flask via a syringe under a positive argon pressure. The resulting mixture was stirred under an argon atmosphere at 140 °C in a preheated heat block for 36 h. At this point, the reaction mixture was cooled down to room temperature. The reaction mixture was diluted with ethyl acetate and then washed with dilute aqueous HCl solution (2x) and saturated brine, dried with anhydrous Na₂SO₄, and finally concentrated in vacuo with the aid of rotary evaporator. The residue was purified by flash chromatography on silica gel using petroleum ether and ethyl acetate as eluent to give the mixture of transamidated products. The ratios of the isolated amides 11 and 16 derived from the equimolar mixture of amide substrates were identified by ¹H NMR spectroscopy.

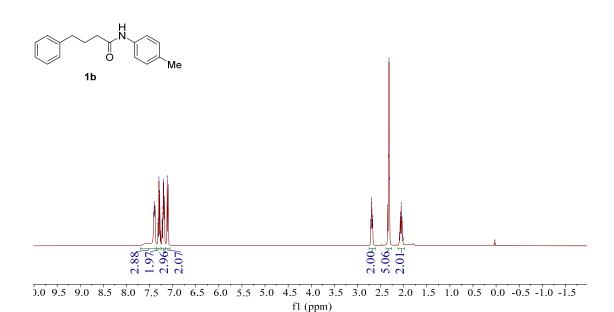
References

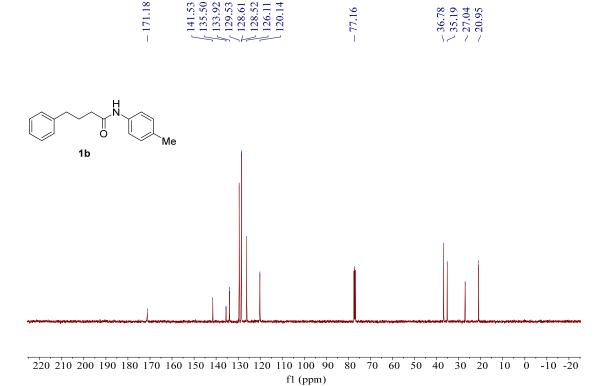

- Sundermeyer, J.; Hamel, L.; Mueller, R. R.; Rivas-Nass, A.; Doppiu, A.; Woerner, E.; Karch, R. Method for the reductions of metal halides. US Patent US/2020/0031684 (2020).
- 2 Li, Z. H.; Liu, L.; Xu, K. Q.; Huang, T. Z.; Li, X. Y.; Song, B.; Chen, T. Q. Palladium-Catalyzed *N*-Acylation of Tertiary Amines by Carboxylic Acids: A Method for the Synthesis of Amides. *Org. Lett.* 2020, 22, 5517-5521.
- 3 Yamada, K.; Kota, M.; Takahashi, K.; Fujita, H.; Kitamura, M; Kunishima, M. Development of Triazinone-Based Condensing Reagents for Amide Formation. *J. Org. Chem.* **2019**, *84*, 15042-15051.
- 4 Zhang, H. Q.; Riomet, M.; Roller, A.; Maulide, N. Synthesis of Novel Heterocycles by Amide Activation and Umpolung Cyclization. *Org. Lett.* **2020**, *22*, 2376-2380.
- 5 Tona, V.; Torre, A. D. L.; Padmanaban, M.; Ruider, S.; Gonzalez, L; Maulide, N. Chemo- and Stereoselective Transition-Metal-Free Amination of Amides with Azides. *J. Am. Chem. Soc.* **2016**, *138*, 8348-8351.
- 6 Wang, S. M.; Zhao, C.; Zhang, X; Qin, H. L. Clickable coupling of carboxylic acids and amines at room temperature mediated by SO₂F₂: a significant breakthrough for the construction of amides and peptide linkages. *Org. Biomol. Chem.* **2019**, *17*, 4087-4101.
- 7 Jeong, K. S.; Cho, Y. L.; Chang, S. Y.; Park, T. Y; Song, J. U. Assembly and Binding Properties of Osmate Ester-Bridged Binuclear Macrocycles. *J. Org. Chem.* 1999, 64, 9459-9466.
- 8 Muhammad, A. I.; Lee, S. Transamidation via C–N bond cleavage of amides and tertiary amines. *Org. Chem. Front.* **2020**, *7*, 2737-2743.
- 9 Akhrem, I. S.; Avetisyan, D. V.; Lyudmila, A. E.; Sergei, V. V.; Pavel, V. P.; Alexander, O. The first one-pot amidation of alkanes and cycloalkanes. *Tetrahedron Lett.* **2008**, *49*, 1399-1404.
- 10 Liu, Q. S.; Wang, D. Y.; Yang, Z. J.; Luan, Y. X.; Yang, J. F.; Li, J. F.; Pu, Y. G.; Ye, M. C. Ni–Al Bimetallic Catalyzed Enantioselective Cycloaddition of Cyclopropyl Carboxamide with Alkyne. *J. Am. Chem. Soc.* 2017, *139*, 18150-18153.
- 11 Kalgutkar, A. S.; Marnett, A. B.; Crews, B. C.; Remmel, R. P.; Marnett, L. J. Ester

- and Amide Derivatives of the Nonsteroidal Antiinflammatory Drug, Indomethacin, as Selective Cyclooxygenase-2 Inhibitors. *J. Med. Chem.* **2000**, *43*, 2860-2870.
- 12 Hlkmat, N. A. J.; Hussain, A. A.; Mansoor, H. B.; Sameh, A. A.; Slnan, K. A. S. Synthesis and Properties off Some *N*, *N* Dialkylamides as New Extractants. *J. Chem. Eng. Date.* **1984**, *29*, 479-481.
- 13 Maki, T.; Ishihara, K.; Yamamoto, H. New boron(III)-catalyzed amide and ester condensation Reactions. *Tetrahedron*. **2007**, *63*, 8645-8657.
- 14 Li, X. W.; Lin, F. G.; Huang, K. M.; Wei, J. L.; Li, X. Y.; Wang, X. Y.; Geng, X. Y.; Jiao, N. Selective a-Oxyamination and Hydroxylation of Aliphatic Amides. *Angew. Chem. Int. Ed.* **2017**, *56*, 12307-12311.
- 15 Goncalves, C. R.; Lemmerer, M.; Teskey, C. J.; Adler, P.; Kaiser, D.; Maryasin B.; Gonzalez, L.; Maulide, N. Unified Approach to the Chemoselective α-Functionalization of Amides with Heteroatom Nucleophiles. *J. Am. Chem. Soc.* **2019**, *141*, 18437-18443.
- 16 Li, J.-S.; Da, Y.-D.; Chen, G.-Q.; Yang, Q.; Li, Z.-W.; Yang, F.; Huang, P.-M. Solvent-, and Catalyst–free Acylation of Anilines with Meldrum's Acids: A Neat Access to Anilides. *ChemistrySelect.* **2017**, *2*, 1770-1733.
- 17 Adler, P.; Teskey, C. J.; Kaiser, D.; Holy, M.; Harald, S.; Maulide, N. α-Fluorination of carbonyls with nucleophilic Fluorine. *Nat. Chem.* **2019**, *11*, 329-334.
- 18 Hernández, D.; Bernal, P.; Cruz, A.; Garciafigueroa, Y.; Garduño, L.; Salazar, M.; Díaz, F.; Chamorro, G.; Tamariz, J. Potent Hypolipidemic Activity of Mimetic Amides of Fibrates Based on the 2-Methoxy-4-(2-propenyl) phenoxyacetic Scaffold. *Drug Develop. Res.* **2004**, *61*, 19-36.
- 19 Sakaguchi, H. Preparation of N-benzothiazolyl amides for controlling a plant disease. WO Patent WO/2010/024365 (2010).
- 20 Pintori, D. G.; Greaney, M. F. Oxidative C-H Homodimerization of Phenylacetamides. *Org. Lett.* **2011**, *13*, 5713-5715.
- 21 Keck, C.; Maichle-Mossmerb, C.; Bettinger, H. F. Photo electron transfer induced desilylation of N,N-bis(trimethylsilyl)aminodibenzoborole to aminodibenzoborole. *Chem. Commun.* **2019**, *55*, 7470-7473.
- 22 Qiu, Z. G. Synthetic method of 1-ethyl-2-nitromethylenepyrrolidine. CN Patent CN 106854171 (2017).
- 23 Stevan, W. D. A Mild and Convenient Procedure for the N-Formylation of

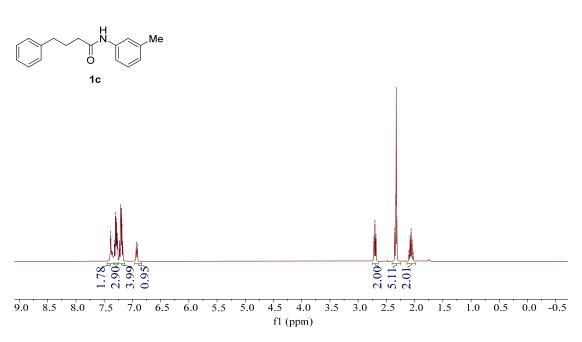

- Secondary Amines Using Organosilicon Chemistry. *J. Org. Chem.* **1984**, *49*, 1311-1312.
- 24 Kobayashi, S.; Kiyohara, H.; Yamaguchi, M. Catalytic Silicon-Mediated Carbon-Carbon Bond-Forming Reactions of Unactivated Amides. *J. Am. Chem. Soc.* **2011**, *133*, 708-711.

NMR spectra

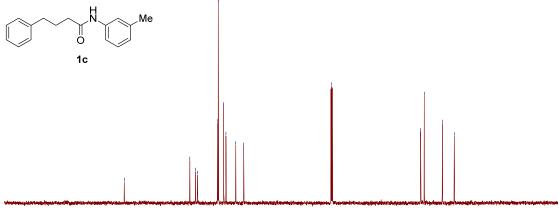

¹H NMR spectrum of **1a**

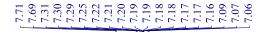

¹³C NMR spectrum of **1a**

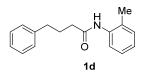
fl (ppm)

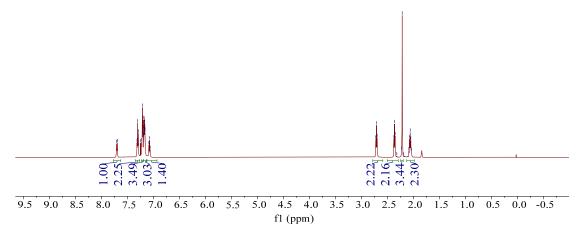


¹H NMR spectrum of **1b**


¹³C NMR spectrum of **1b**

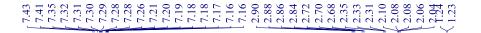

¹H NMR spectrum of 1c

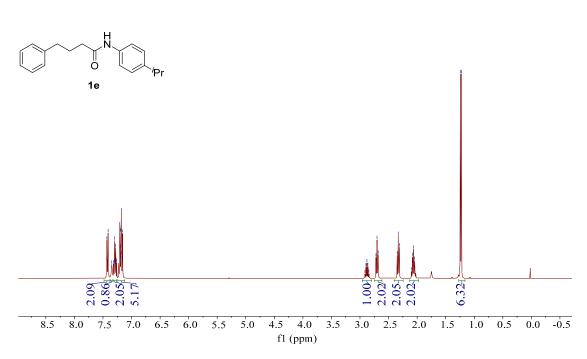



220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

¹³C NMR spectrum of **1c**

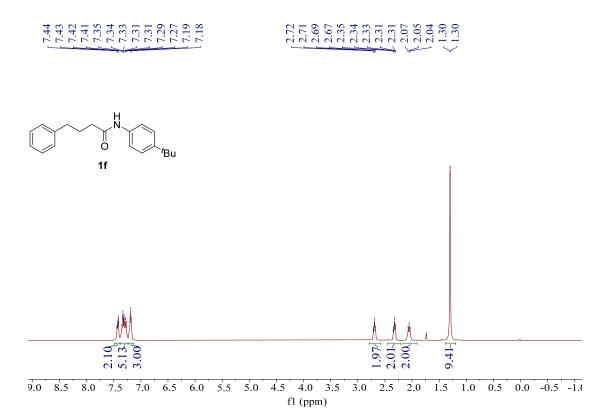


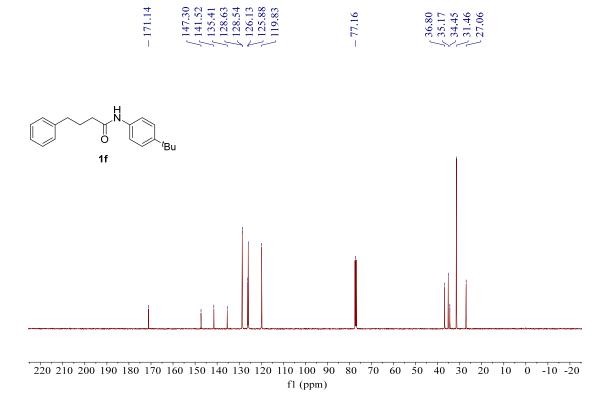

¹H NMR spectrum of **1d**



220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

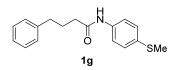
¹³C NMR spectrum of **1d**

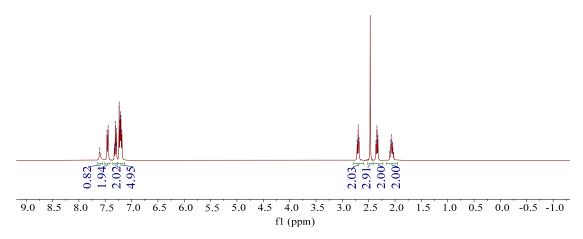



¹H NMR spectrum of **1e**

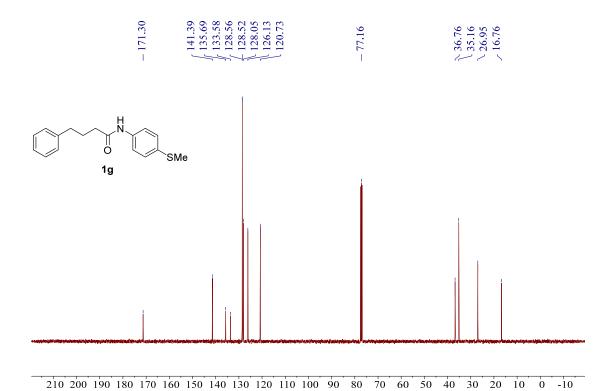
220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

¹³C NMR spectrum of **1e**

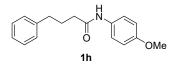

¹H NMR spectrum of **1f**

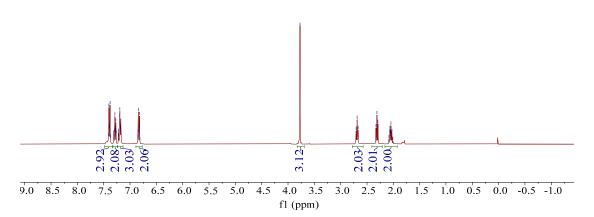


¹³C NMR spectrum of **1f**

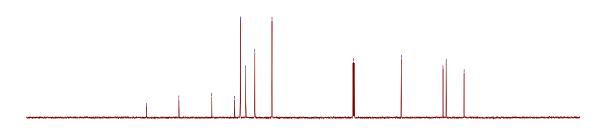


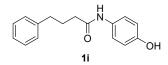
2.72 2.68 2.68 2.34 2.34 2.34 2.34 2.34 2.30 2.30 2.00 2.00 2.00

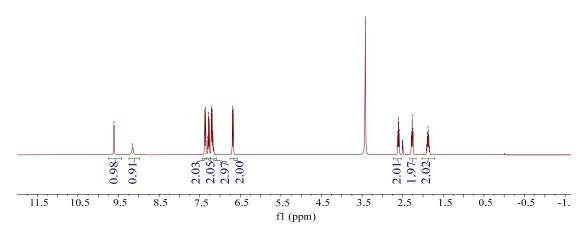

¹H NMR spectrum of **1g**



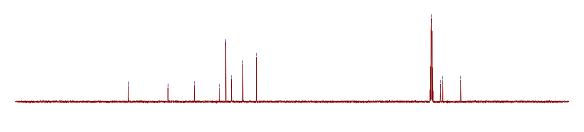
¹³C NMR spectrum of **1g**


fl (ppm)

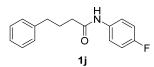

¹H NMR spectrum of **1h**

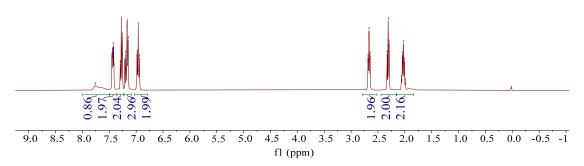


220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)


¹³C NMR spectrum of **1h**

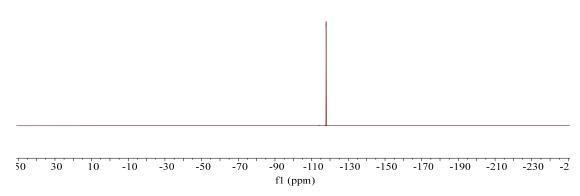
9.61 9.13 7.33 7.34 7.35 7.36 7.36 7.36 7.36 7.36 7.36 7.36 7.36 7.36 7.36 7.37 7.36 7.36 7.37 7.36 7.36 7.37 7.36 7.37 7.36 7.37 7.36 7.37 7.36 7.37

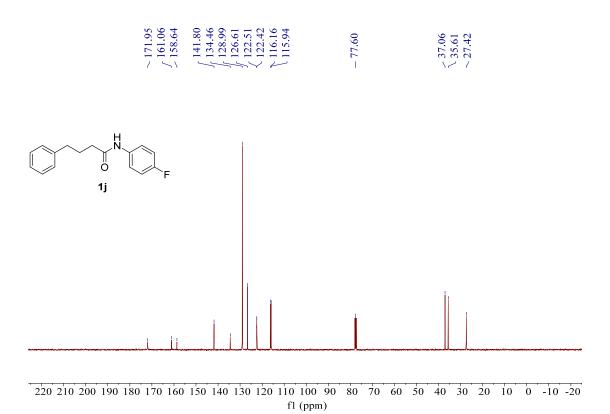

¹H NMR spectrum of **1i**



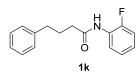
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

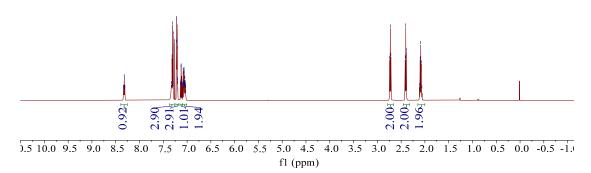
¹³C NMR spectrum of **1i**



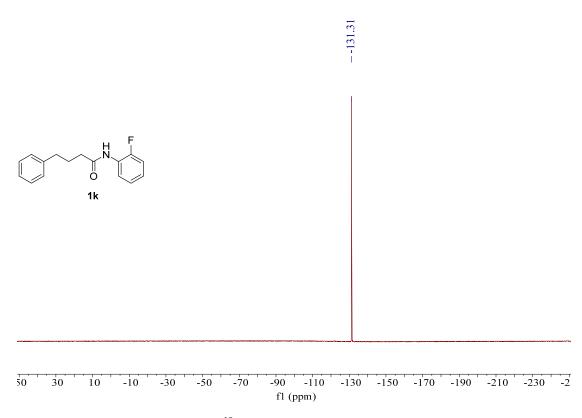


¹H NMR spectrum of 1j


--117.85

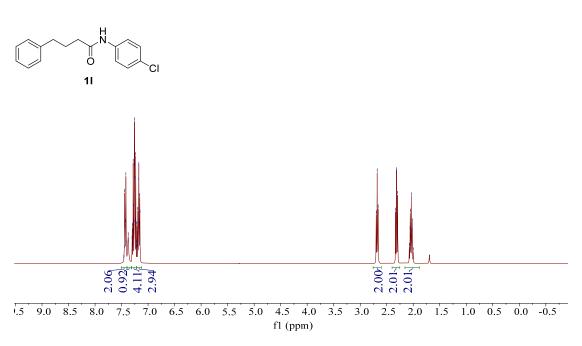


¹⁹F NMR spectrum of **1j**



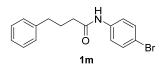
¹³C NMR spectrum of **1j**

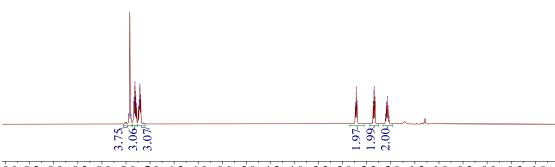



¹H NMR spectrum of **1k**

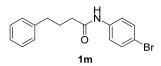
¹⁹F NMR spectrum of **1k**

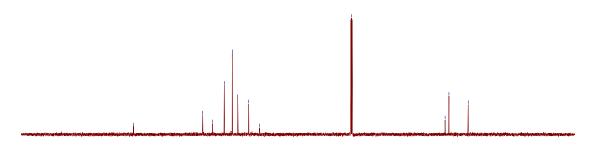
¹³C NMR spectrum of **1k**



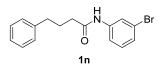

¹H NMR spectrum of 11

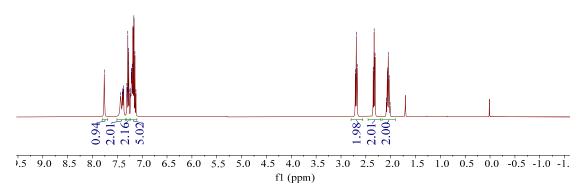
¹³C NMR spectrum of **11**

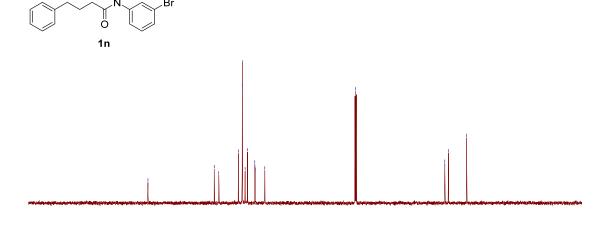

2.74 2.70 2.35 2.35 2.33 2.33 2.00 2.00 2.00 2.00



0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 fl (ppm)

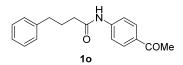

¹H NMR spectrum of **1m**

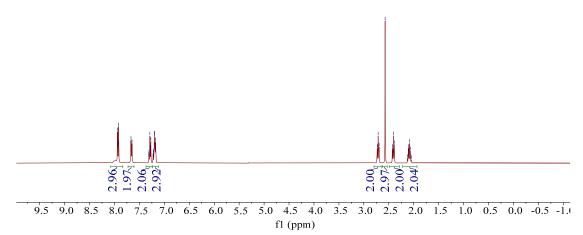



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

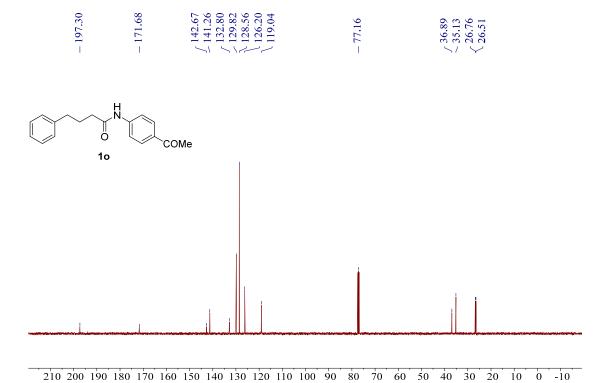
¹³C NMR spectrum of **1m**

¹H NMR spectrum of **1n**

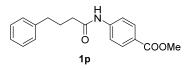


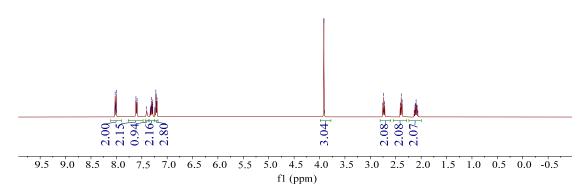

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

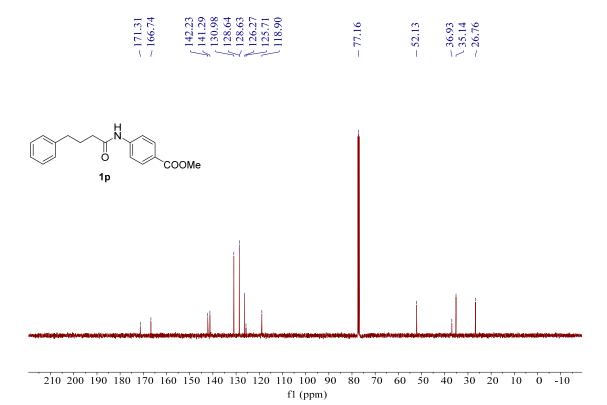
¹³C NMR spectrum of **1n**



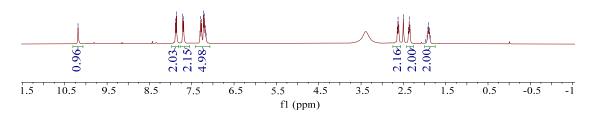
2.73 2.69 2.69 2.57 2.43 2.39 2.39 2.11 2.11 2.11 2.10 2.09 2.09



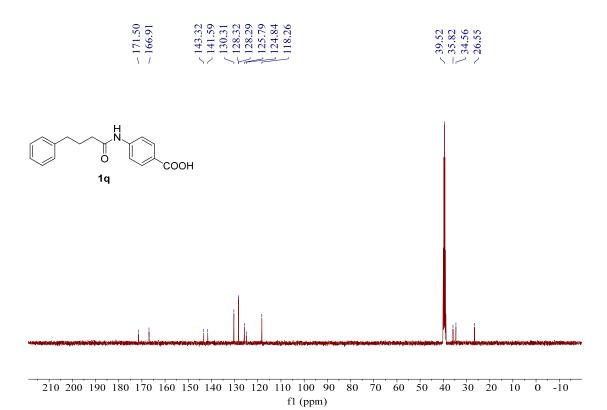

¹H NMR spectrum of **10**


¹³C NMR spectrum of **10**

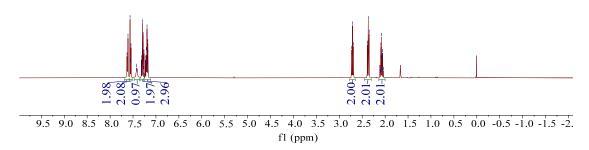
8.03 8.02 8.02 8.02 8.02 8.02 7.59 7.59 7.33

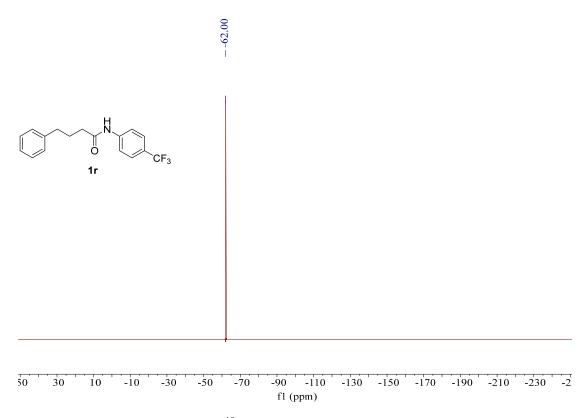


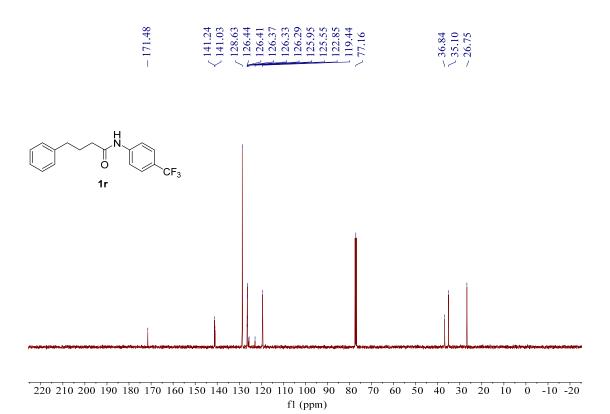
¹H NMR spectrum of **1p**

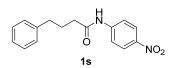


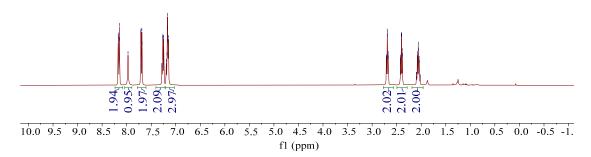
¹³C NMR spectrum of **1p**


$$\bigcap_{0} \bigcap_{\text{COOH}}$$

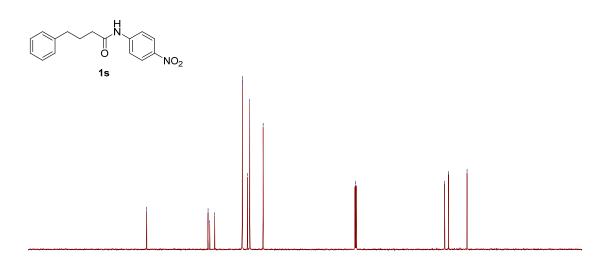

¹H NMR spectrum of **1q**


¹³C NMR spectrum of **1q**

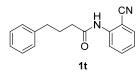

¹H NMR spectrum of **1r**

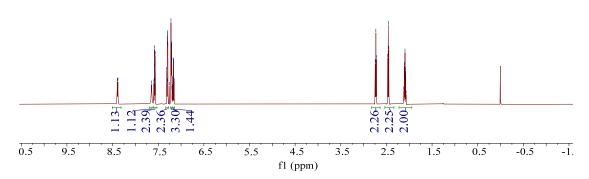


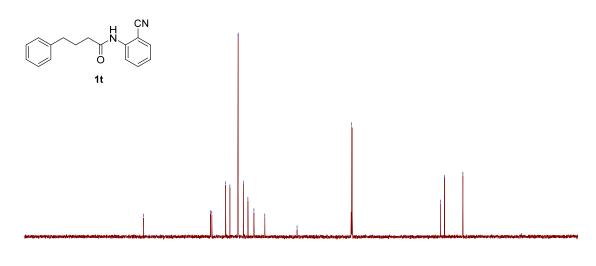
¹⁹F NMR spectrum of **1r**



 13 C NMR spectrum of 1r

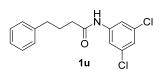


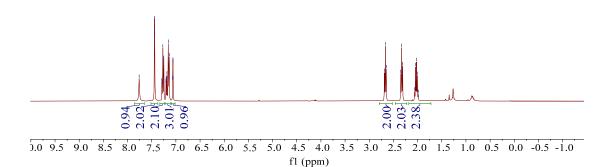

¹H NMR spectrum of **1s**


220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

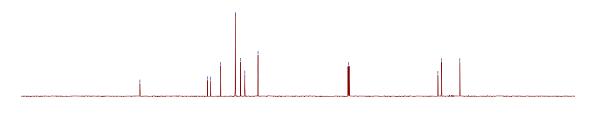
¹³C NMR spectrum of **1s**

¹H NMR spectrum of **1t**



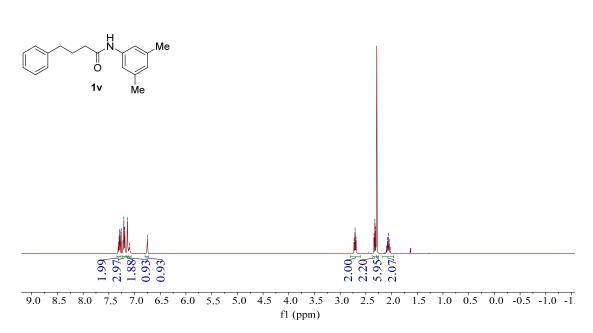

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

¹³C NMR spectrum of **1t**

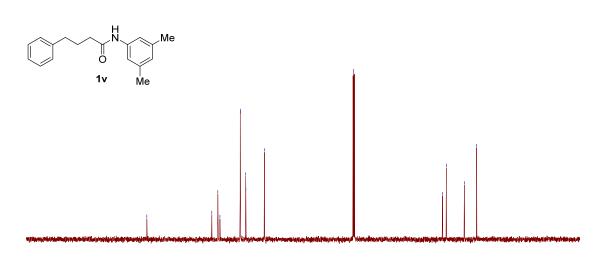


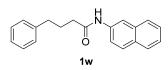
2.69 2.65 2.35 2.33 2.33 2.04 2.00 2.00 2.00 2.00

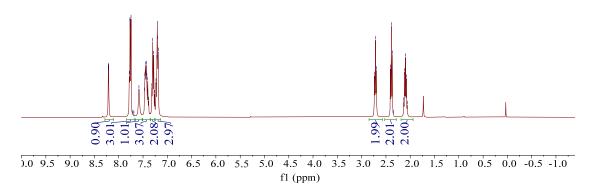


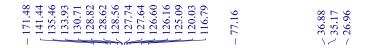

¹H NMR spectrum of **1u**

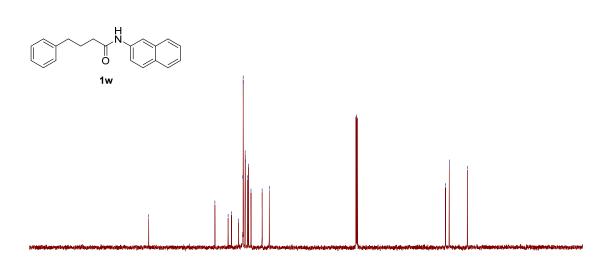
220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

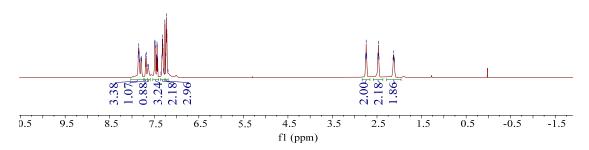

¹³C NMR spectrum of **1u**

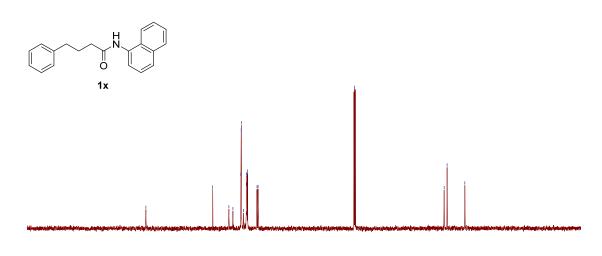

 1 H NMR spectrum of 1v




220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

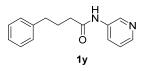

¹³C NMR spectrum of **1v**

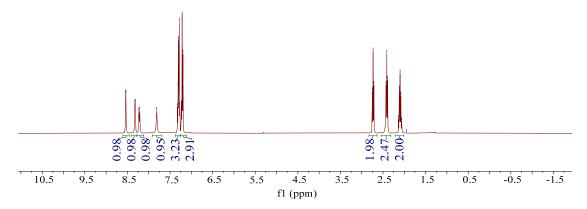

¹H NMR spectrum of **1w**

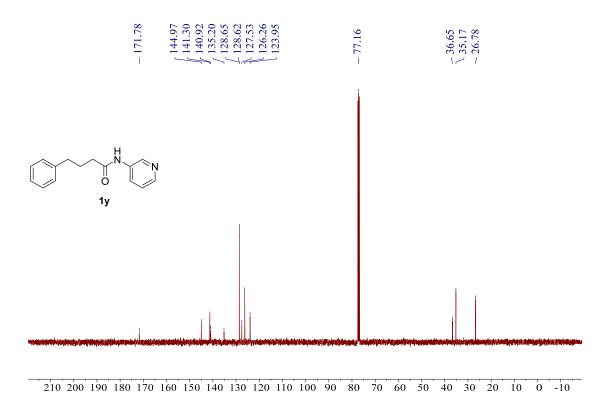


220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

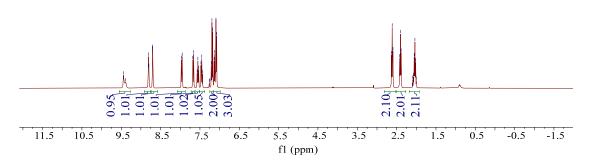
¹³C NMR spectrum of **1w**

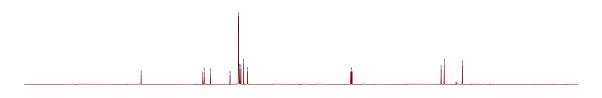



¹H NMR spectrum of 1x

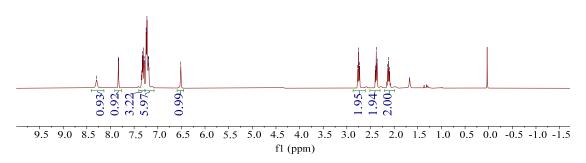

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

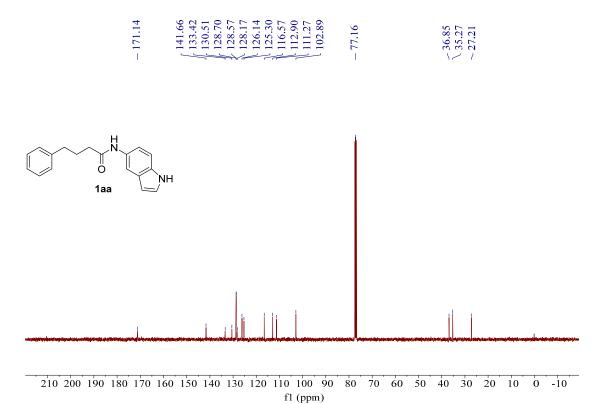
¹³C NMR spectrum of **1x**

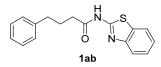


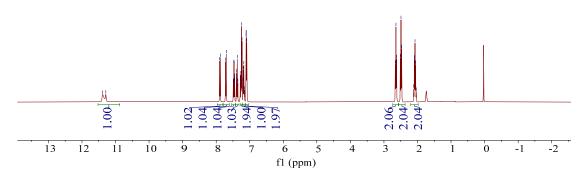

¹H NMR spectrum of **1y**


¹³C NMR spectrum of **1y**

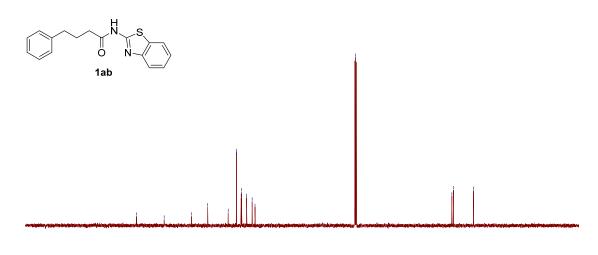

¹H NMR spectrum of **1z**


¹³C NMR spectrum of **1z**

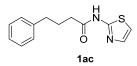


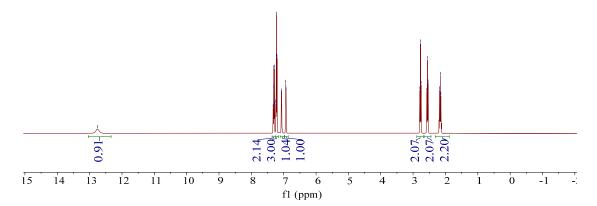


¹H NMR spectrum of **1aa**

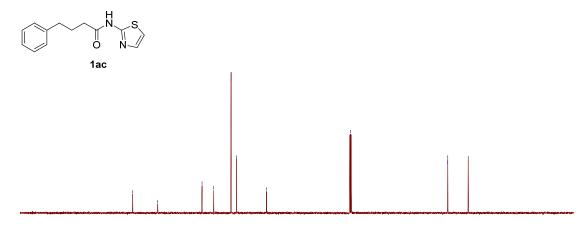


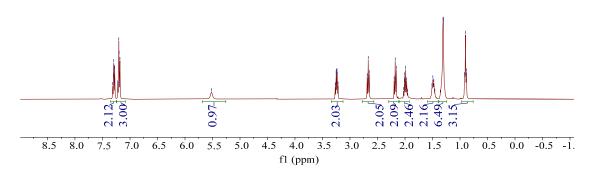
¹³C NMR spectrum of **1aa**

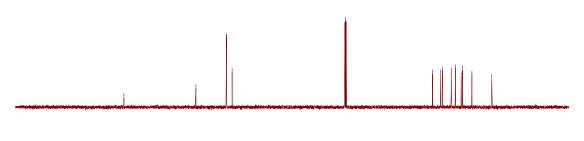

¹H NMR spectrum of **1ab**



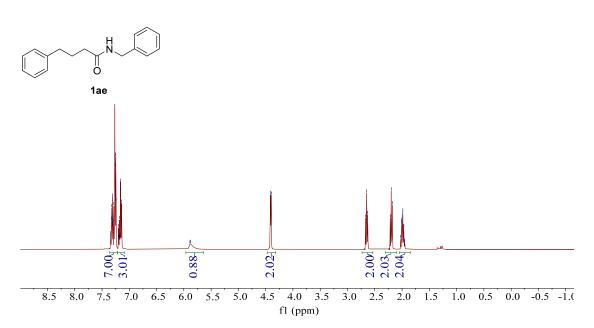
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)


¹³C NMR spectrum of **1ab**

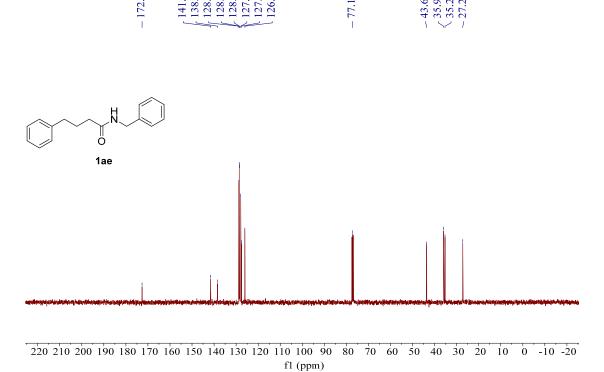

¹H NMR spectrum of **1ac**


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

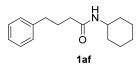
¹³C NMR spectrum of **1ac**

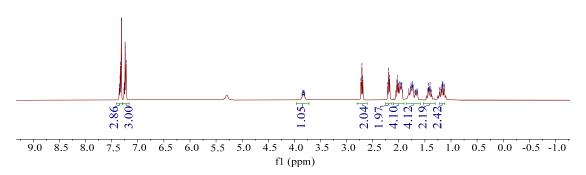


¹H NMR spectrum of **1ad**

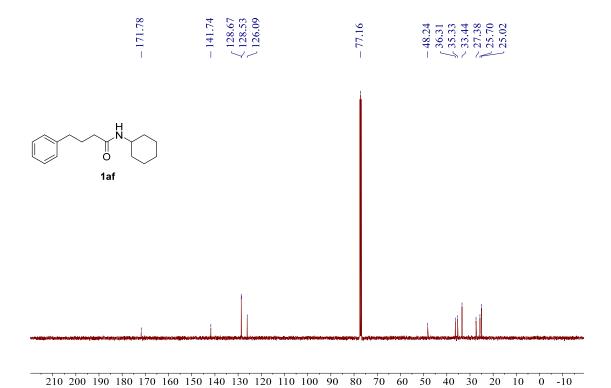


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

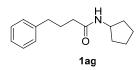

¹³C NMR spectrum of **1ad**

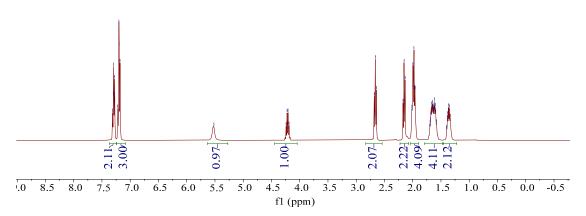


¹H NMR spectrum of **1ae**



¹³C NMR spectrum of **1ae**





¹H NMR spectrum of **1af**

¹³C NMR spectrum of **1af**

¹H NMR spectrum of **1ag**

$$-172.30$$

$$-141.67$$

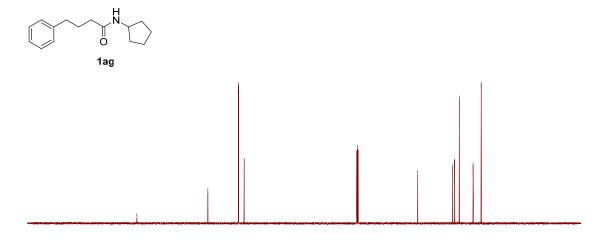
$$128.58$$

$$\langle 128.46$$

$$126.02$$

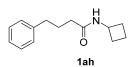
$$126.02$$

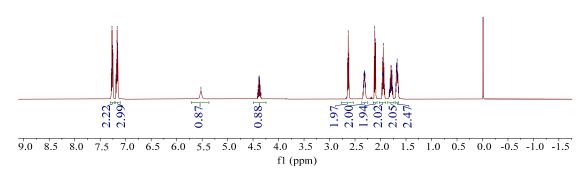
$$-77.16$$

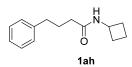

$$-51.17$$

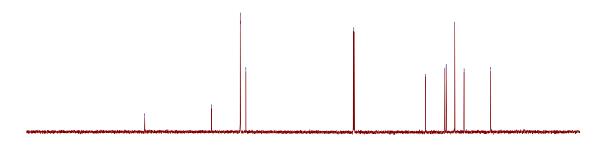
$$36.10$$

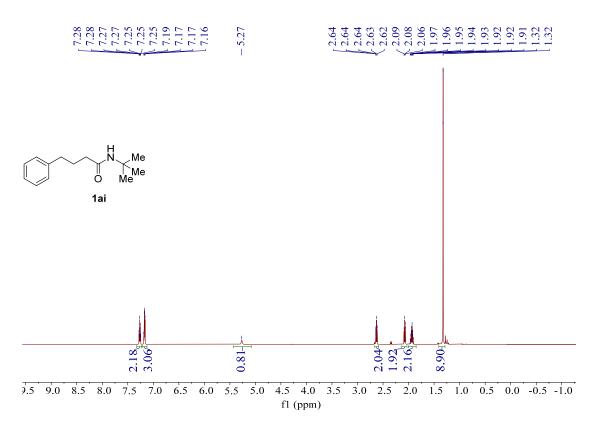
$$33.29$$


$$33.23$$

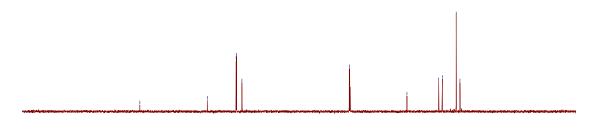

$$53.80$$


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

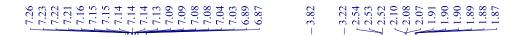

¹³C NMR spectrum of **1ag**

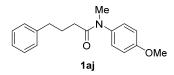


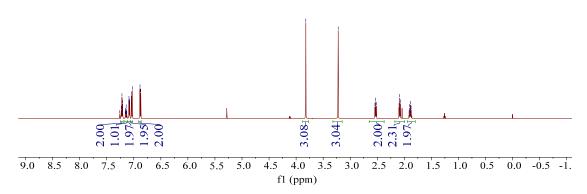
¹H NMR spectrum of **1ah**



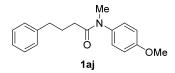
¹³C NMR spectrum of **1ah**

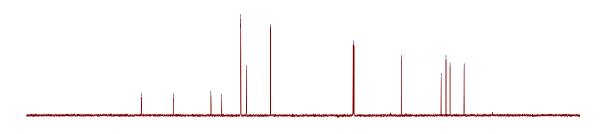


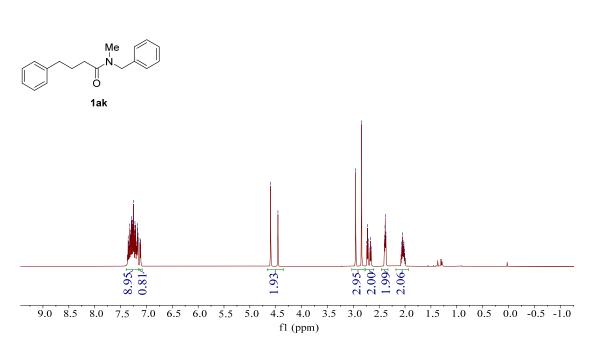

¹H NMR spectrum of **1ai**



220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

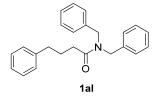

¹³C NMR spectrum of **1ai**

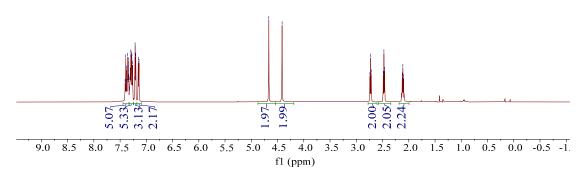




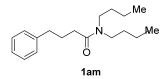
¹H NMR spectrum of **1aj**

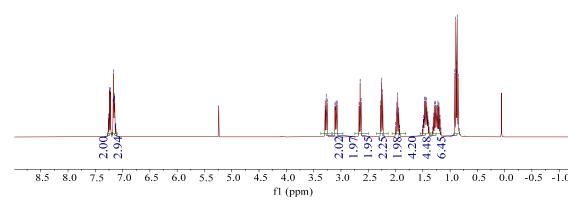
¹³C NMR spectrum of **1aj**




¹H NMR spectrum of **1ak**

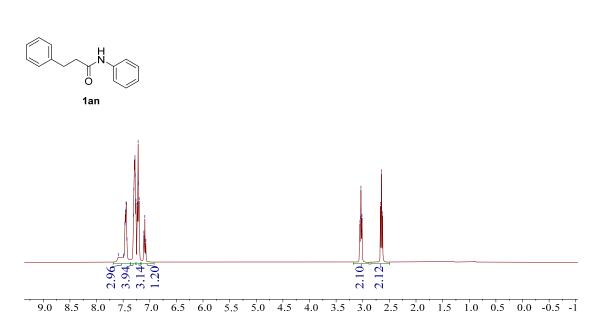
¹³C NMR spectrum of **1ak**



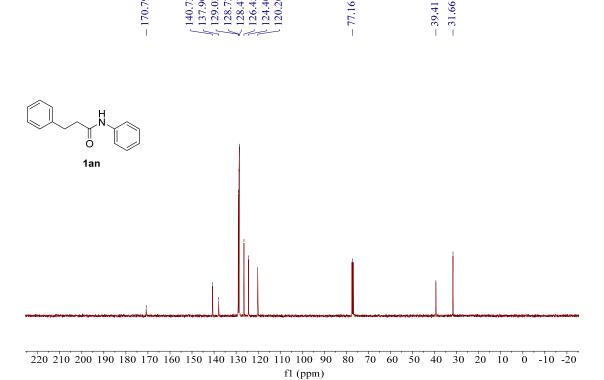

¹H NMR spectrum of 1al

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

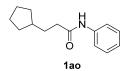
¹³C NMR spectrum of **1al**

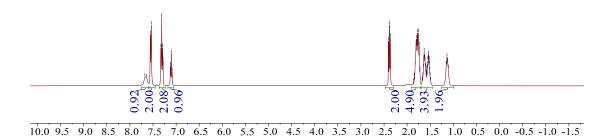

¹H NMR spectrum of **1am**

$$\begin{array}{c}
-172.12 \\
-141.83 \\
128.26 \\
125.78 \\
125.78 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\
47.62 \\$$

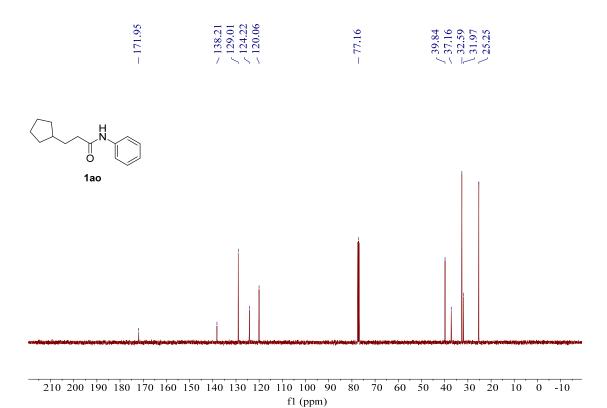


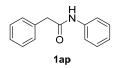
¹³C NMR spectrum of **1am**

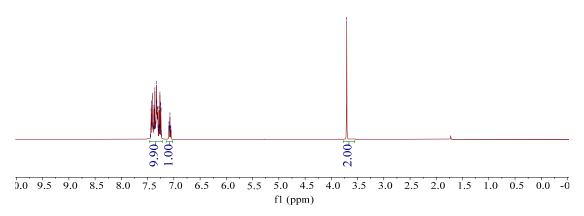



¹H NMR spectrum of **1an**

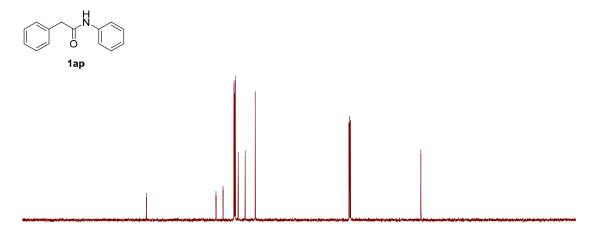
¹³C NMR spectrum of **1an**



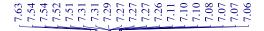


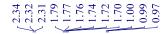

f1 (ppm)

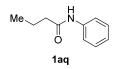
¹H NMR spectrum of **1ao**

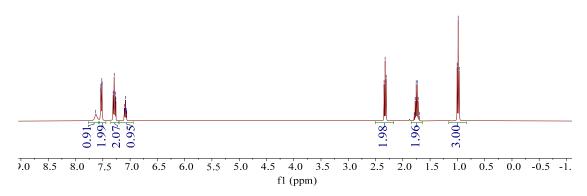


¹³C NMR spectrum of **1ao**

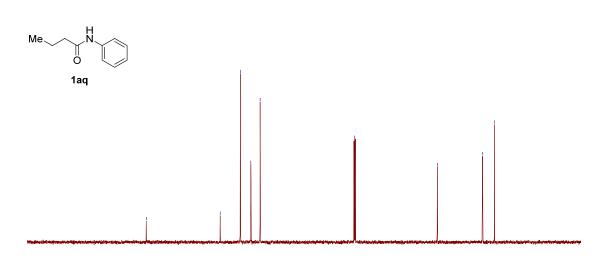


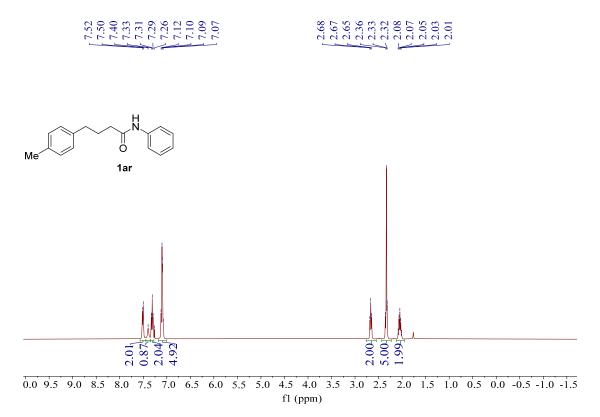

¹H NMR spectrum of **1ap**



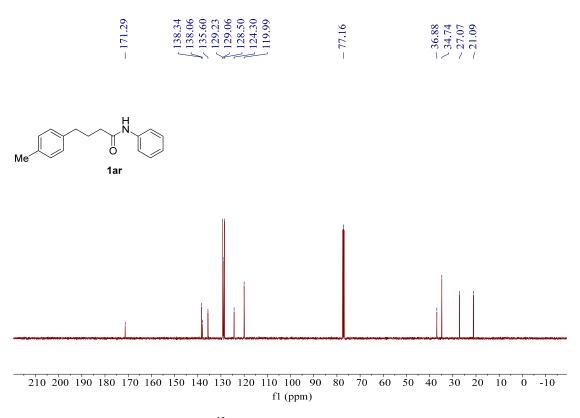

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

¹³C NMR spectrum of **1ap**



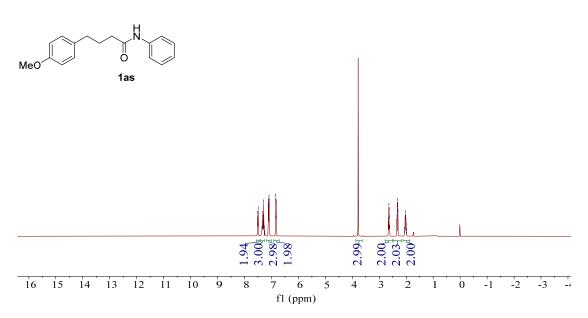


¹H NMR spectrum of **1aq**

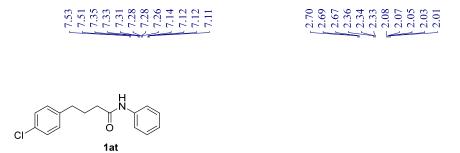


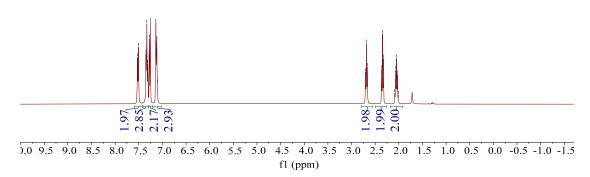
220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

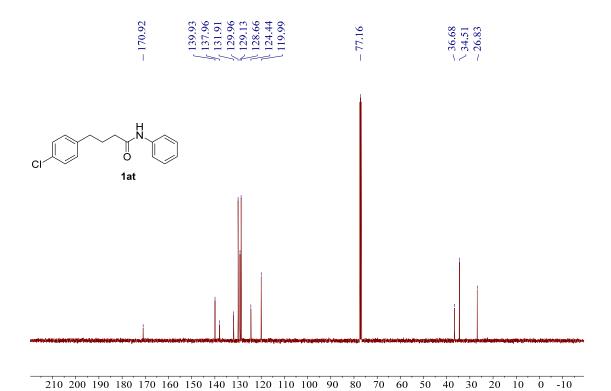
¹³C NMR spectrum of **1aq**



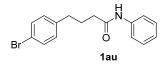
¹H NMR spectrum of **1ar**

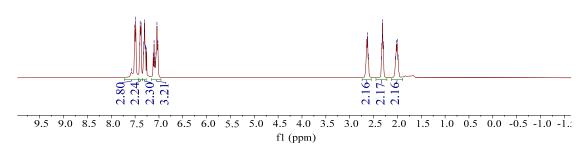

¹³C NMR spectrum of **1ar**

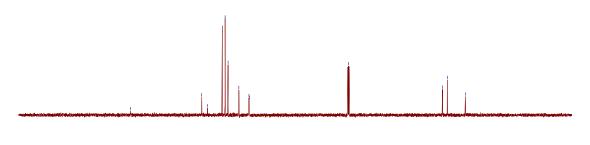



¹H NMR spectrum of **1as**

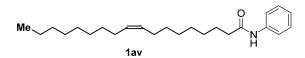
¹³C NMR spectrum of **1as**

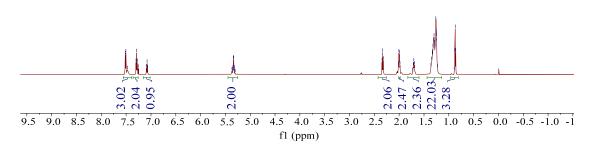



¹H NMR spectrum of **1at**


¹³C NMR spectrum of **1at**

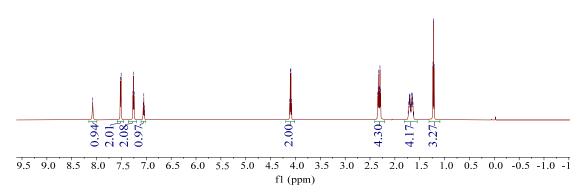
fl (ppm)



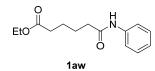

¹H NMR spectrum of **1au**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

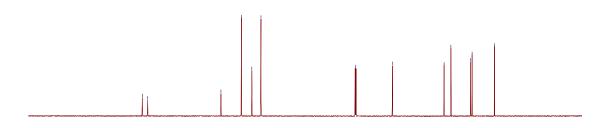
¹³C NMR spectrum of **1au**



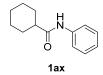
¹H NMR spectrum of **1av**

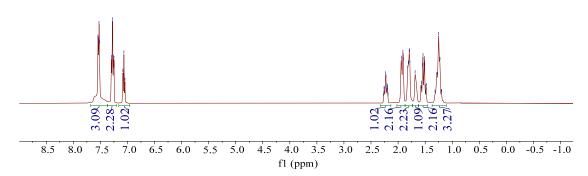


¹³C NMR spectrum of **1av**

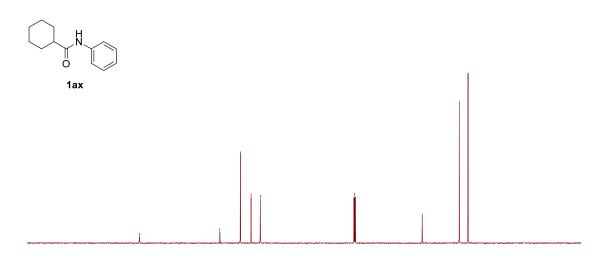


¹H NMR spectrum of **1aw**


1aw

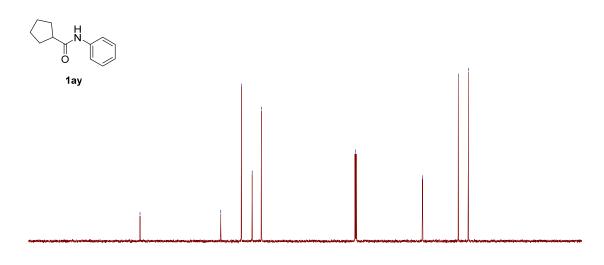


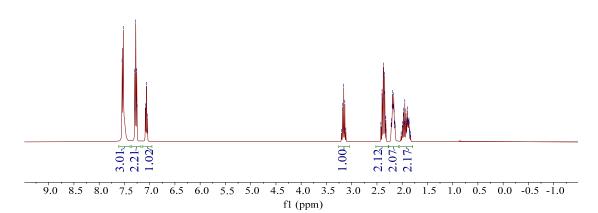
220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

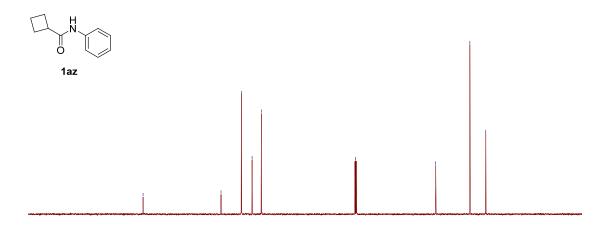

¹³C NMR spectrum of **1aw**



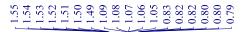
¹H NMR spectrum of **1ax**


¹³C NMR spectrum of **1ax**

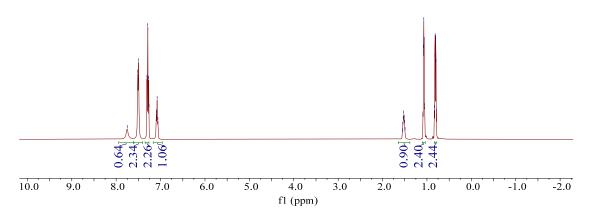

¹H NMR spectrum of **1ay**



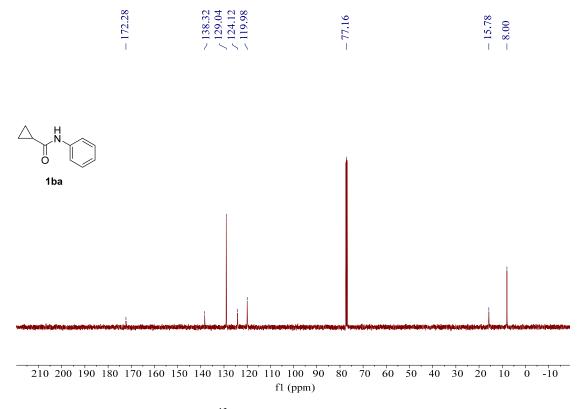
¹³C NMR spectrum of **1ay**

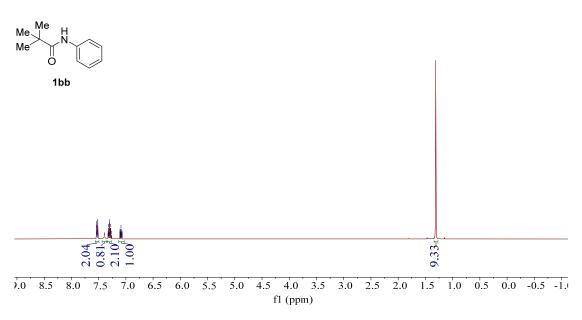


¹H NMR spectrum of **1az**

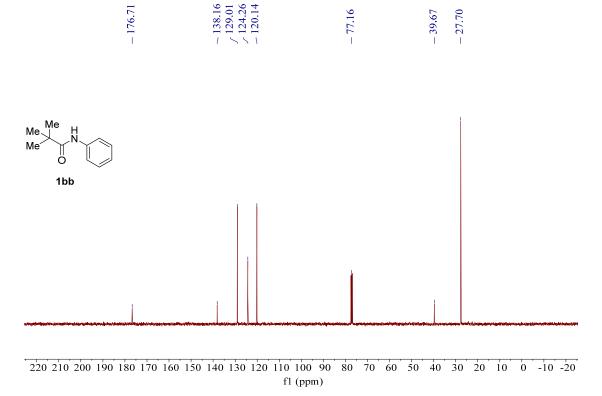


¹³C NMR spectrum of **1az**

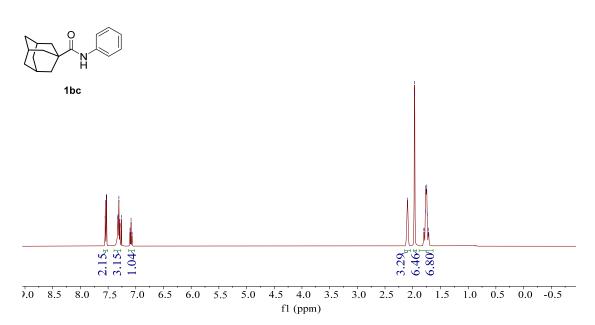




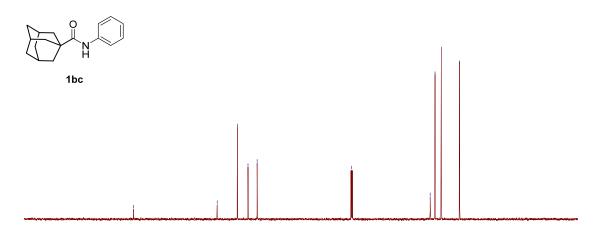
¹H NMR spectrum of **1ba**



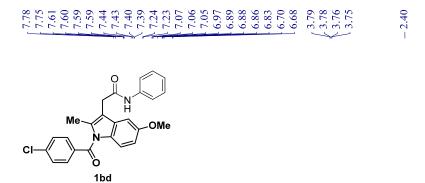
¹³C NMR spectrum of **1ba**

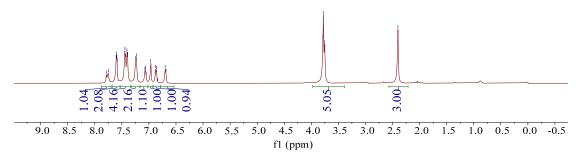

¹H NMR spectrum of **1bb**

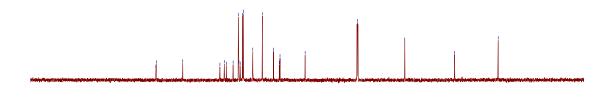
¹³C NMR spectrum of **1bb**



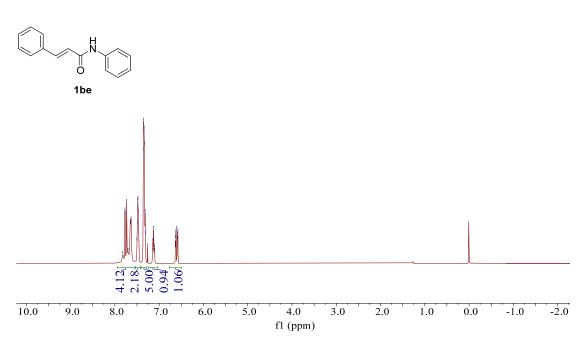
2.10 1.96 1.80 1.80 1.77 1.77 1.76 1.75 1.75 1.75


¹H NMR spectrum of **1bc**

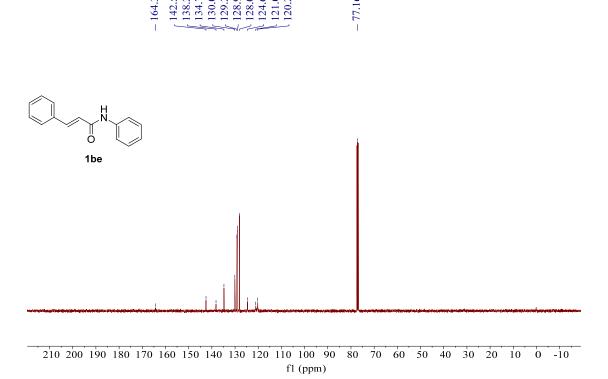


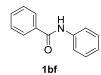

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

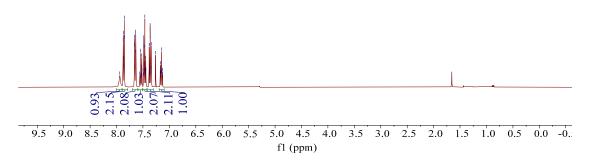
¹³C NMR spectrum of **1bc**

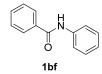


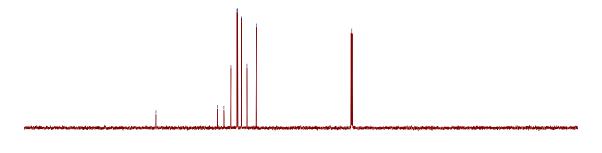
¹H NMR spectrum of **1bd**

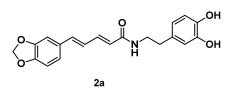


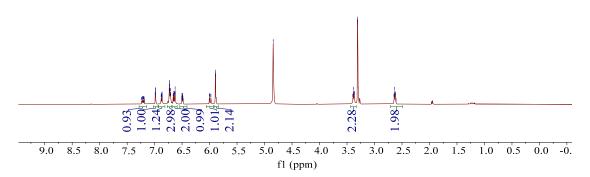

¹³C NMR spectrum of **1bd**

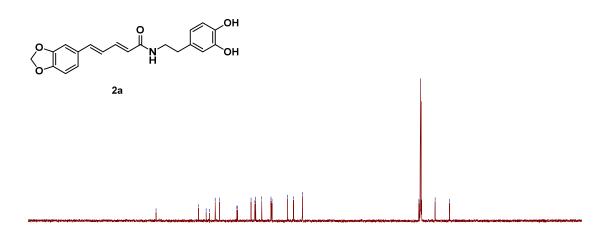


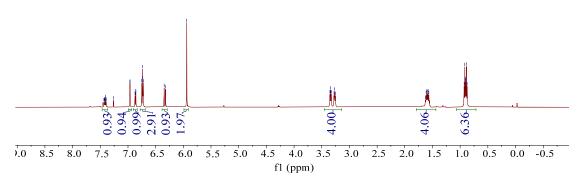

¹H NMR spectrum of **1be**

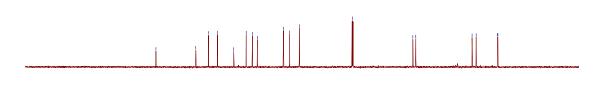



¹H NMR spectrum of **1bf**

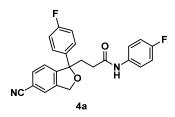


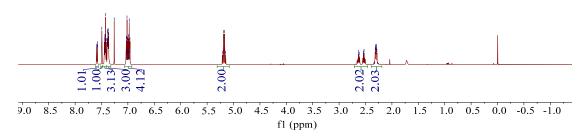

¹³C NMR spectrum of **1bf**


¹H NMR spectrum of 2a

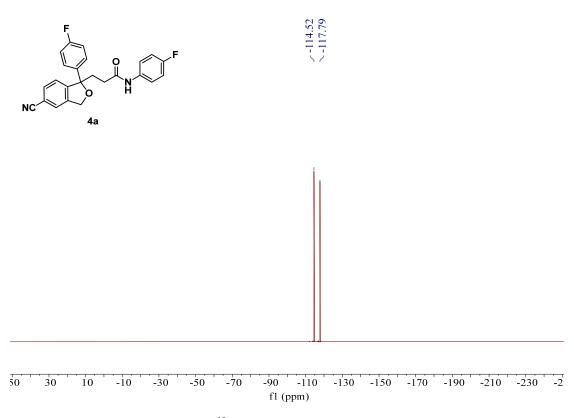

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

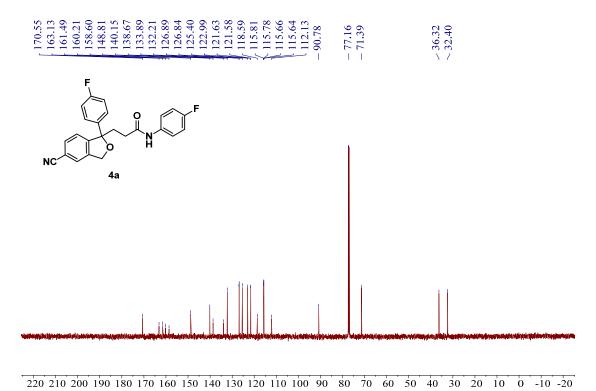
¹³C NMR spectrum of 2a


¹H NMR spectrum of **2b**

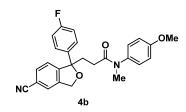


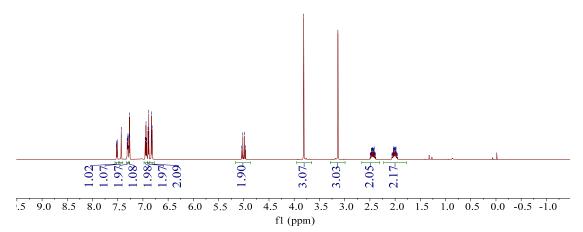
220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)


¹³C NMR spectrum of **2b**

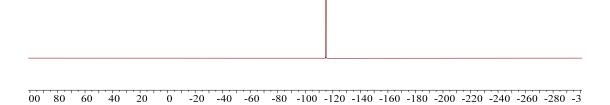


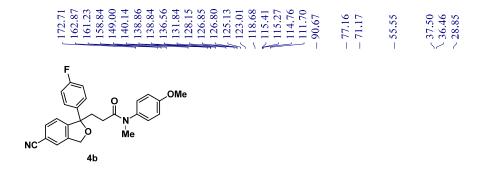
¹H NMR spectrum of **4a**

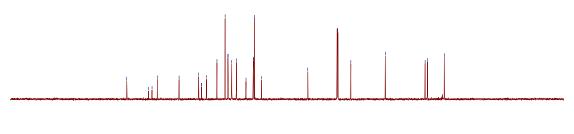

¹⁹F NMR spectrum of **4a**

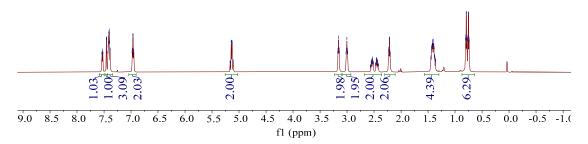


fl (ppm)

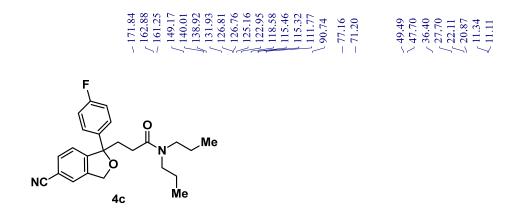

¹³C NMR spectrum of **4a**

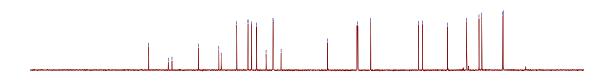



¹H NMR spectrum of **4b**

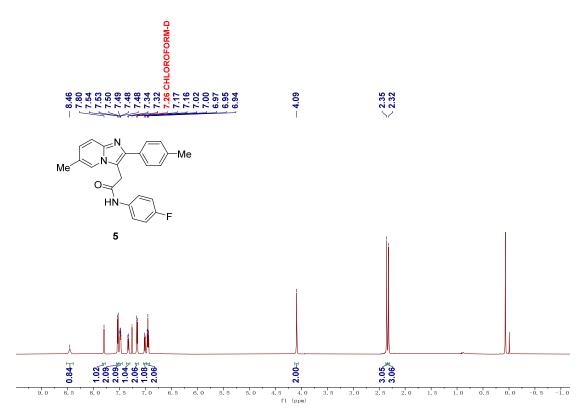

¹⁹F NMR spectrum of **4b**

fl (ppm)

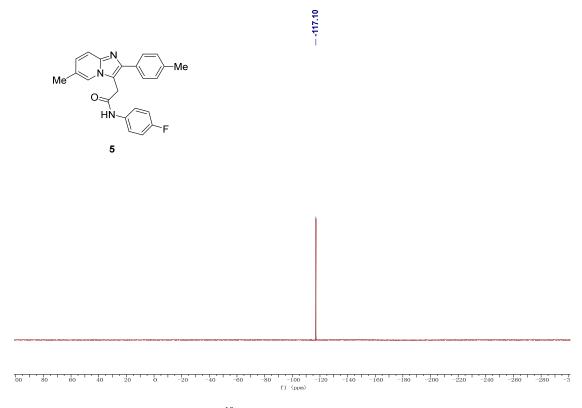

¹³C NMR spectrum of **4b**

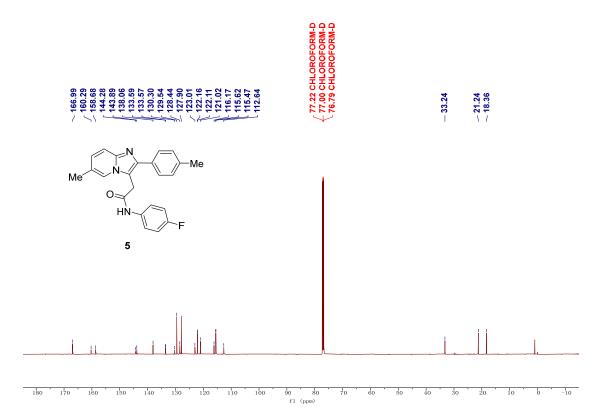


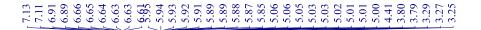
¹H NMR spectrum of **4c**

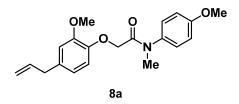

00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3 f1 (ppm)

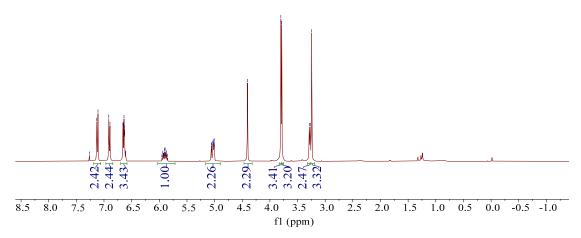
¹⁹F NMR spectrum of **4c**

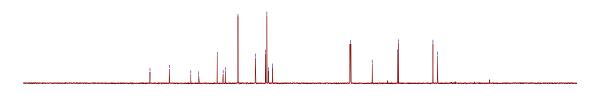


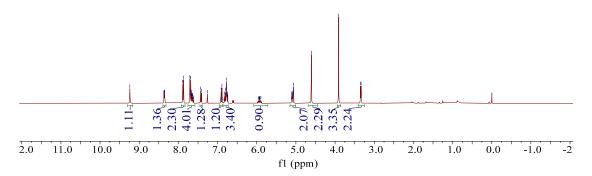

¹³C NMR spectrum of **4c**

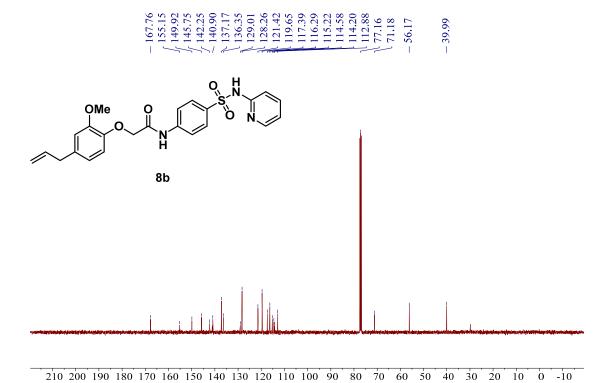

¹H NMR spectrum of **5**



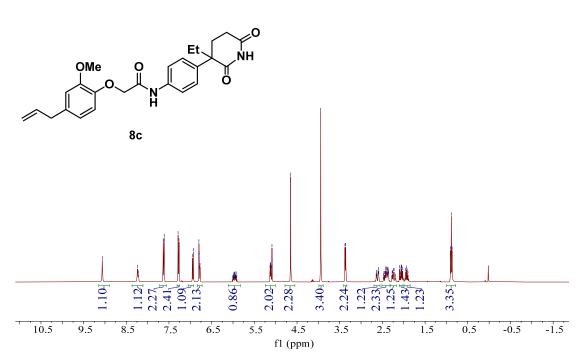

¹⁹F NMR spectrum of **5**


¹³C NMR spectrum of **5**

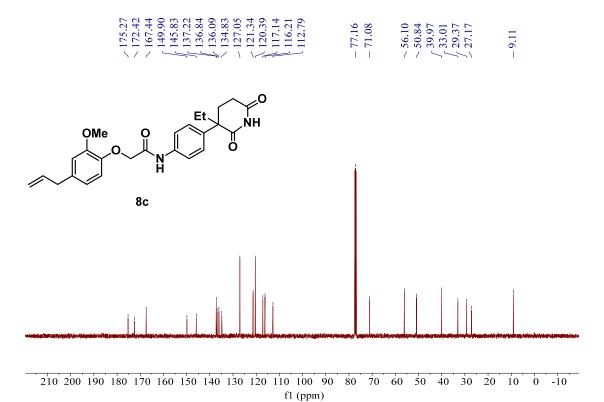



¹H NMR spectrum of 8a

¹³C NMR spectrum of 8a

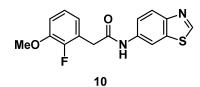


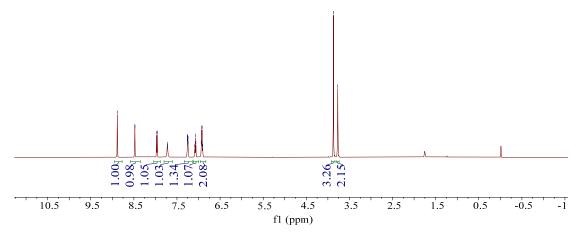
¹H NMR spectrum of **8b**



¹³C NMR spectrum of **8b**

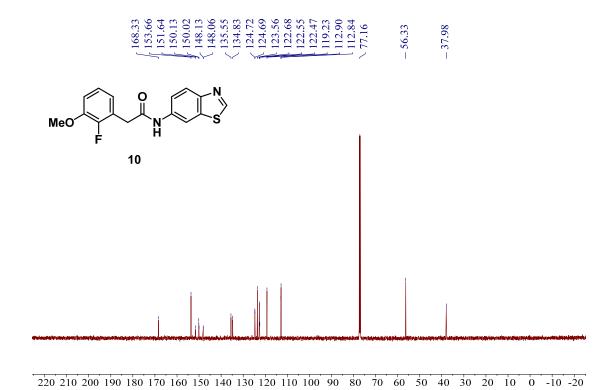
fl (ppm)



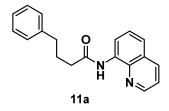

¹H NMR spectrum of **8c**

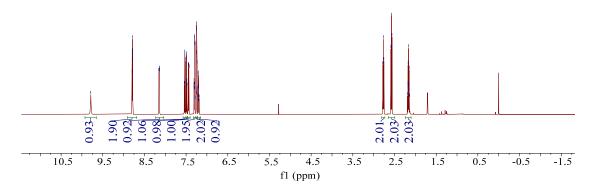
¹³C NMR spectrum of **8c**

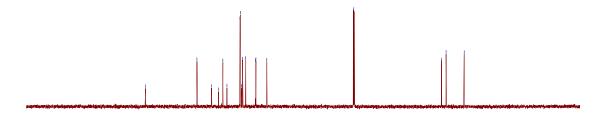
8.88 8.48 8.47 7.97 7.73 7.72 7.72 7.26 7.26 7.26 7.27 7.26 7.27



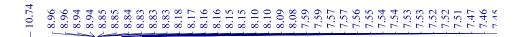
¹H NMR spectrum of **10**

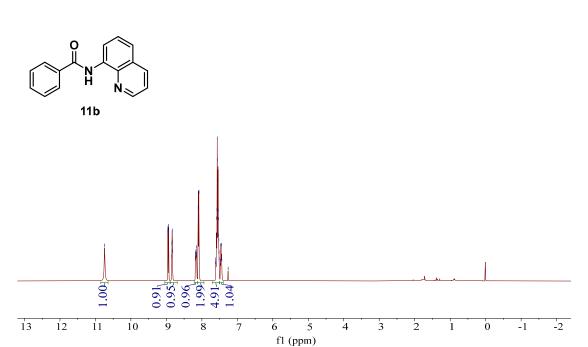

00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3 f1 (ppm)


¹⁹F NMR spectrum of **10**

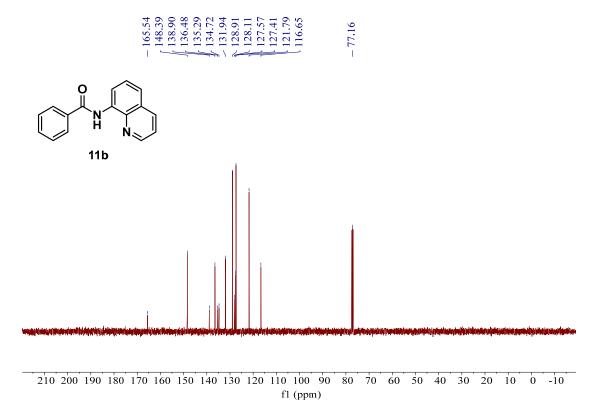

¹³C NMR spectrum of **10**

fl (ppm)

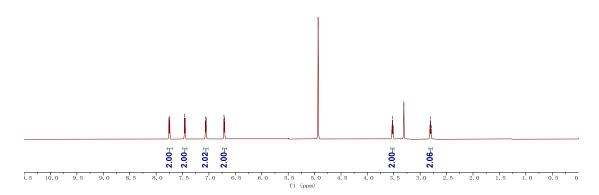


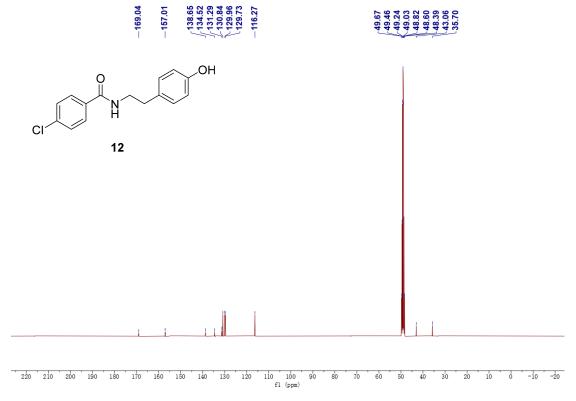


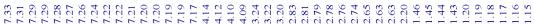
¹H NMR spectrum of **11a**

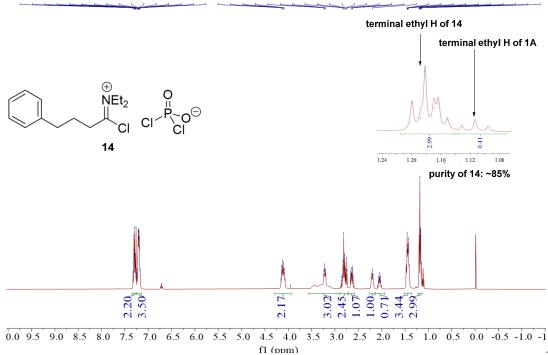


¹³C NMR spectrum of **11a**

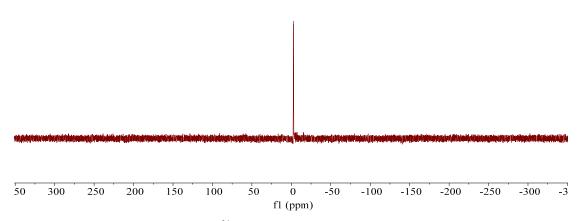



¹H NMR spectrum of **11b**

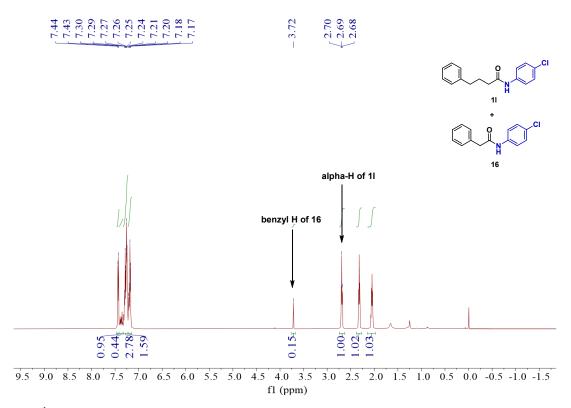

¹³C NMR spectrum of **11b**

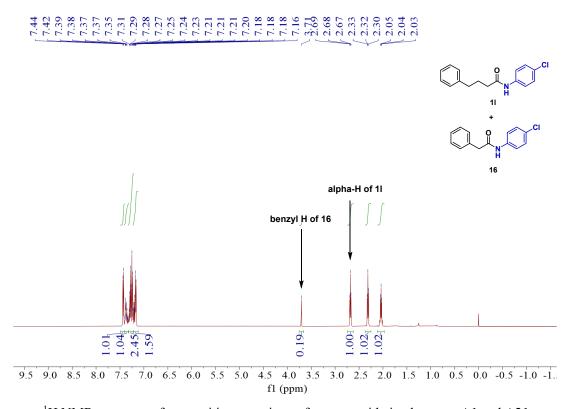


¹H NMR spectrum of **12**



¹³C NMR spectrum of **12**




¹H NMR spectrum of **14**

³¹P NMR spectrum of **14**

¹H NMR spectrum of competition experiment for transamidation between A1 and A30.

¹H NMR spectrum of competition experiment for transamidation between A1 and A31