Supporting Information for:

Flower-like Hydroxyfluoride Sensing Platform towards NO₂ Detection

Xingyu Yao^a, Jinbo Zhao^b, Zhidong Jin^a, Zhen Jiang^a, Dongmei Xu^a, Fenglong Wang^a, Xiaomei Zhang^c, Haixiang Song^d, Duo Pan^e, Renbo Wei^f, Yunxia Chen^g, Zhanhu Guo^e, Jiurong Liu^a, Nithesh Naik^h, Rutao Wang^a, Lili Wu^{a,*}

^a Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China

^b School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China

^c School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China

^d Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China.

^e Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37966, USA.

^f School of Chemical Engineering, Northwest University, Xi'an 710069, China

```
<sup>g</sup> School of Mechanical Engineering, Shanghai Dianji University, Shanghai, 201306 China
```

^h Department of Mechanical & Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India

*Email: wulili@sdu.edu.cn (L. Wu)

Figure S1. (a)The TG curve of ZnOHF, (b)XRD pattern of sample calcined by ZnOHF.

Figure S2. Low resolution SEM image of ZF20.

Figure S3. SEM image of the samples: (a) ZF10, (b) ZF15, (c) ZF20, (d) ZF25.

Figure S4. N₂ adsorption-desorption isotherms and surface areas of (a) ZF10, (b) ZF15,

(c) ZF20, (d) ZF25.

Figure S5. (a) XPS wide spectrum, (b) Zn 2p region, (c) O 1s region of raw material ZnO.

Figure S6. (a) The UV-vis diffuse reflectance spectra and(b) the VB-XPS spectrum of ZnOHF.

Figure S7. The response curves of samples (a) ZF20, (b) ZnO at 200°C to 10 ppm SO₂, CH₄, H₂, CO and CO₂.

Table S1. The gas sensing data of ZF20 to 10 ppm gases at 200°C.

Gas species	S (R _a /R _g)	T _{res} /T _{rec} (s/s)
SO ₂	1.09	58/10
CH_4	1.43	46/8
H ₂	1.34	100/7
СО	1.30	5/11
CO ₂	1.09	24/10

Gas species	S (R _a /R _g)	T _{res} /T _{rec} (s/s)
SO ₂	10.66	36/100
CH₄	1.37	52/24
H ₂	3.97	30/63
СО	3.44	128/21
CO ₂	1.35	23/32

Table S2. The gas sensing data of ZnO to 10 ppm gases at 200°C.

Figure S8. The resistance curves of samples in the process of gas sensitivity to 10ppm NO_2 at 200 °C.

Figure S9. The response of ZF20 to 10 ppm NO2 at 200 °C in different relative humidity