Supporting Information

A General Strategy to Fabricate Porous Co-Based Bimetallic Metal Oxides Nanosheets for High Performance CO Sensing

Cong Qin¹, Bing Wang^{1,*}, Nan Wu², Cheng Han¹, Yingde Wang^{1,*}

¹Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, PR China

²Department of Material Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, PR China *Corresponding authors:

E-Mail: bingwang@nudt.edu.cn

E-Mail: wangyingde@nudt.edu.cn

Contents

Contents	
1. Photograph of the gas testing setup and Au electrodes (Figure S1)	S-6
2. TG-DSC curves of Co-MOF NS (Figure S2)	S-7
3. XPS survey spectra of Co-M-O NS (Figure S3)	S-8
4. Co 2p _{3/2} spectrum of Co-M-O NS (Figure S4)	S-9
5. Optical photographs of CoM-MOF NS (Figure S5)	S-10
6. ICP-AES analysis results of Co-M-O nanosheets (Table S1)	S-11
7. SEM images of the ZIF-CoCu, CoCu-MOF NS, and Co-Cu-O NS wi	th different
Co/Cu ratios (Figure S6)	S-12
8. SEM images of the ZIF-CoMn, CoMn-MOF NS, and Co-Mn-O NS with	th different
Co/Mn ratios (Figure S7)	S-13
9. SEM images of the ZIF-CoNi, CoNi-MOF NS, and Co-Ni-O NS with	th different
Co/Ni ratios (Figure S8)	S-14
10. SEM images of the ZIF-CoZn, CoZn-MOF NS, and Co-Zn-O NS wi	th different
Co/Zn ratios (Figure S9)	S-15
11. TEM images of the Co-Cu-O NS sample (Figure S10)	S-16
12. TEM images of the Co-Mn-O NS sample (Figure S11)	S-17
13. TEM images of the Co-Ni-O NS sample (Figure S12)	S-18
14. TEM images of the Co-Zn-O NS sample (Figure S13)	S-19
15. SAED patterns of Co-M-O NS samples (Figure S14)	S-20
16. Temperature-dependent sensing response of Co-M-O NS toward 100	ppm of CO
(Figure S15)	S-21
17. Dynamic sensing response of Co-Cu-O NS toward CO at 125 °C (Figure	e S16) S-22
18. Dynamic sensing response of Co-Mn-O NS toward CO at 175 °C (Figur	e S17)S-23
19. Dynamic sensing response of Co-Ni-O NS toward CO at 125 °C (Figure	e S18) S-24
20. Dynamic sensing response of Co-Zn-O NS toward CO at 175 °C (Figure	e S19) S-25
21. Dynamic gas-sensing transients of the Co-M-O NS toward 40 ppm of	f CO under
different humid conditions (Figure S20)	S-26
22. Long-term stability of the sensors toward 40 ppm CO (Figure S21)	S-27
23. TEM images of the Co-M-O materials after sensing tests. (Figure S22)	S-28
24. Response curves of the Co-M-O NS toward 200-2000 ppm CO (Figure	S23) S-29
25. Comparison of carbon monoxide sensing performances of Co ₃ O ₄ -base	d materials
reported in literature and in this work (Table S2)	S-30
26. Results of curve fitting of Co 2p and O 1s XPS spectra of the Co-M	-O samples
(Table S3)	S-31
27. References	S-32

Note S1 Reagents.

Cobalt nitrate hexahydrate (Co(NO₃)₂ · 6H₂O, 99.0%), zinc nitrate hexahydrate (Zn(NO₃)₂ · 6H₂O, 99.0%), copper nitrate trihydrate (Cu(NO₃)₂ · 3H₂O, 99.0%), manganese nitrate hexahydrate (Mn(NO₃)₂ · 6H₂O), nickel nitrate hexahydrate (Ni(NO₃)₂ · 6H₂O, 98.0%), anhydrous methanol (99.5%) and 2-methylimidazole (2-mIM, 99.0%) were purchased from Aladdin Industrial, Inc. (Shanghai, China). All chemicals were used without further purification.

Note S2 Characterization.

X-ray diffraction (XRD) pattern was obtained using a PANalytical Empyrean with a Cu Kα radiation (0.15406 nm). The morphology and microstructure of the products were observed by field emission scanning electron microscopy (FE-SEM, Hitachi S-4800, Chiyoda, Tokyo, Japan) and transmission electron microscope (TEM, Tecnai G2 F20 S-TWIN). The thermogravimetric analysis (TGA) of the product was measured using a TG209F1 (NETZSCH, Germany). Nitrogen (N₂) adsorption-desorption tests were achieved using a 3H-2000PM2 analyzer. Before measurements, the products were subjected to degassing in vacuum at 200 °C for 6 h. The chemical binding states of the samples were conducted by X-ray photoelectron spectroscopy (XPS, Thermo Scientific ESCALAB 250Xi). Note S3 Sensor fabrication and measurement.

Firstly, 2 mg of the as-prepared sample was dispersed in 200 μ L of deionized water and sonicated for 0.5 h to form a homogeneous suspension. Then, a resistive sensor was formed by dropping 20 μ L of suspension onto an alumina ceramic substrate (10 mm in length, 5 mm and 0.25 mm in width and height, respectively) with Au interdigitated electrodes. The sensor was naturally dried in air and heated at 100 °C for 2h to ensure a close contact between Au electrodes and sensing materials. The gas-sensing measurement was performed on a CGS-1TPS instrument (Beijing Elite Tech Co., Ltd. Beijing, China). The relative humidity was fixed at 40% RH. For a p-type semiconductor, the response (S) is defined as (R_g-R_a)/R_a · 100%, where R_a and R_g represent the resistances of the sensors in ambient air and CO, respectively. The response/recovery time are defined as the time required for the sensor to reach 90% of the total resistance change in ambient air or CO.

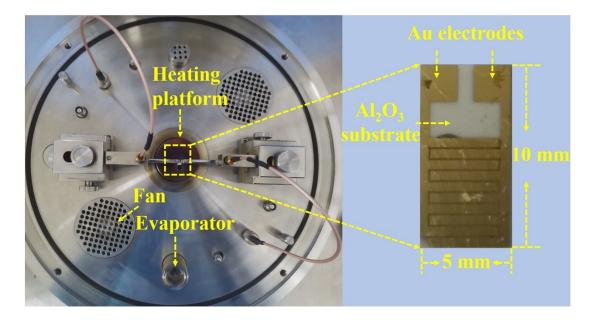


Figure S1. Photograph of the gas sensing measurement system and Au electrodes.

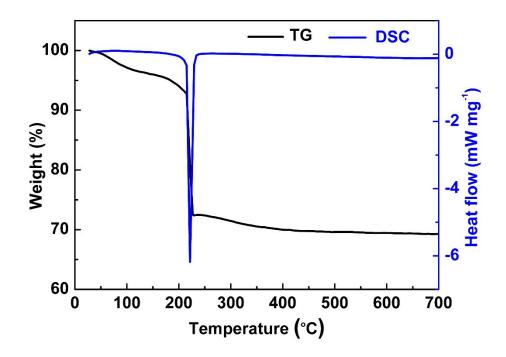
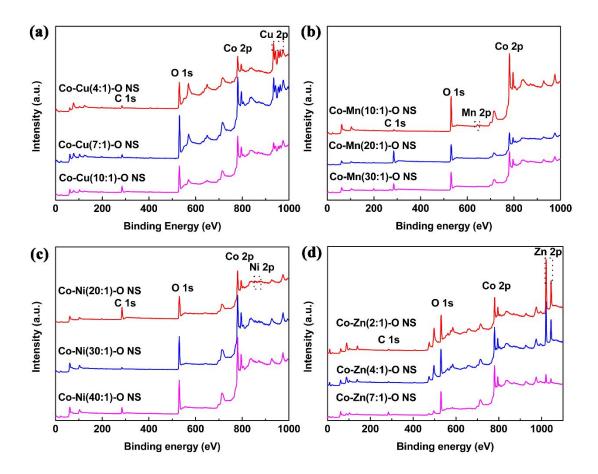
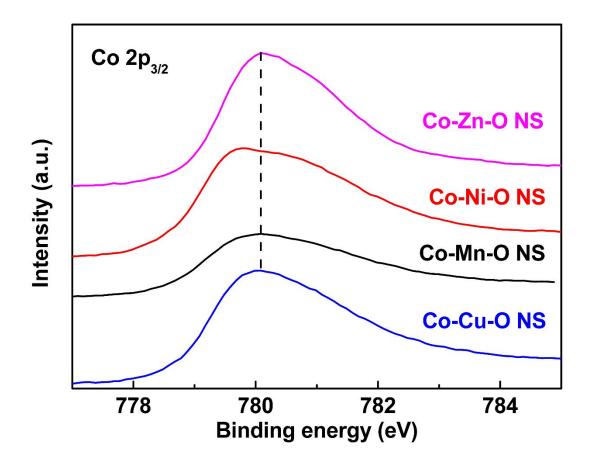
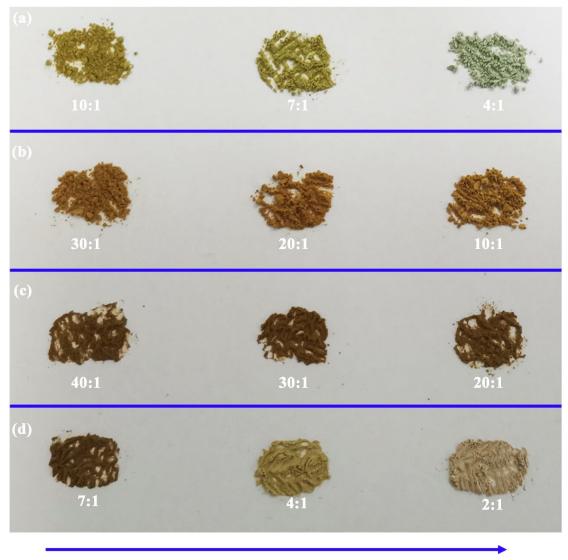


Figure S2. TG-DSC curves of Co-MOF NS.

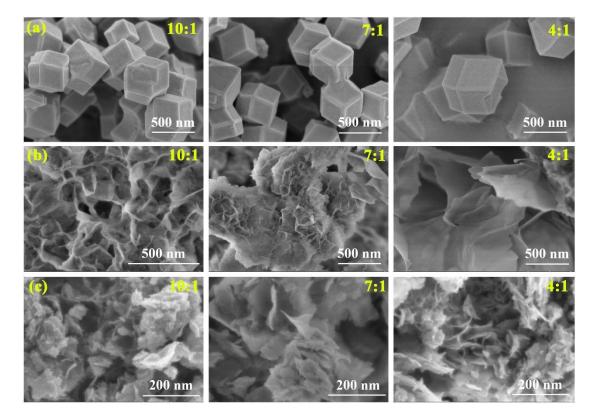




Figure S3. XPS survey spectra of (a) Co-Cu-O NS, (b) Co-Mn-O NS, (c) Co-Ni-O

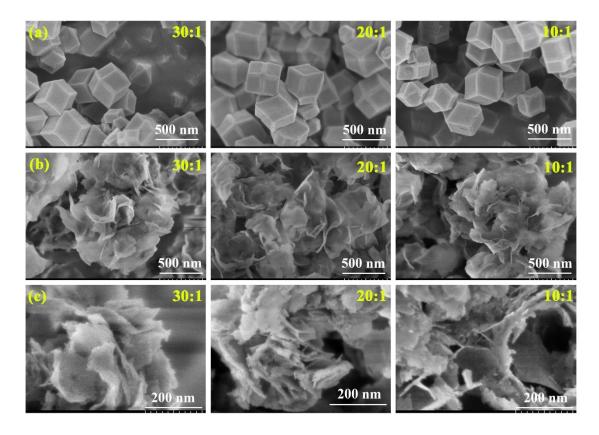
NS, and (d) Co-Zn-O NS.

Figure S4. Co 2p_{3/2} spectrum of Co-Cu(7:1)-O NS, Co-Mn(20:1)-O NS, Co-Ni(30:1)-

O NS and Co-Zn(4:1)-O NS.



Increase of M content in CoM-MOF NS


Figure S5. Optical photographs of (a) CoCu-MOF NS, (b) CoMn-MOF NS, (c) CoNi-MOF NS, and (d) CoZn-MOF NS with different Co/M ratios in the initial precursors. Note: In fact, we synthesized a series of samples with different Co/M (M = Cu, Mn, Ni, Zn) ratios for every group. For the sake of discussion, we only picked out three samples from each group according to the sensing-performances for the further statement.

Sample	Element	Content (wt.%)
Co-Cu(10:1)-O	Cu	1.16%
Co-Cu(7:1)-O	Cu	2.17%
Co-Cu(4:1)-O	Cu	4.20%
Co-Mn(30:1)-O	Mn	0.08%
Co-Mn(20:1)-O	Mn	0.14%
Co-Mn(10:1)-O	Mn	0.26%
Co-Ni(40:1)-O	Ni	0.20%
Co-Ni(30:1)-O	Ni	0.26%
Co-Ni(20:1)-O	Ni	0.37%
Co-Zn(7:1)-O	Zn	2.28%
Co-Zn(4:1)-O	Zn	11.88%
Co-Zn(2:1)-O	Zn	22.62%

Table S1. ICP-AES analysis results of Co-M-O nanosheets.

Figure S6. SEM images of the (a) ZIF-CoCu, (b) CoCu-MOF NS, and (c) Co-Cu-O NS with different Co/Cu ratios.

Figure S7. SEM images of the (a) ZIF-CoMn, (b) CoMn-MOF NS, and (c) Co-Mn-O NS with different Co/Mn ratios.

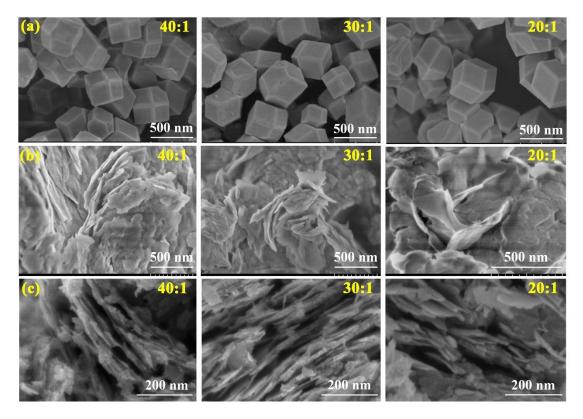
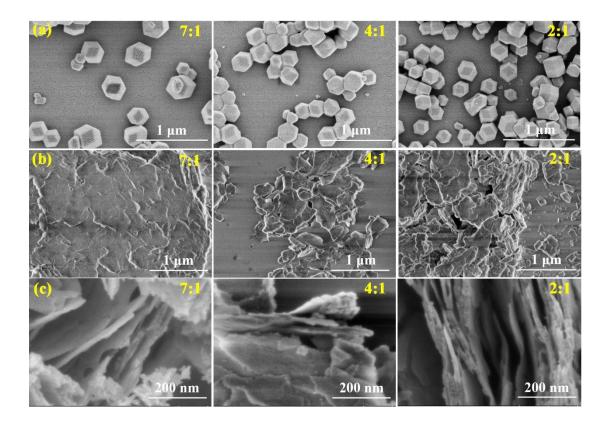



Figure S8. SEM images of the (a) ZIF-CoNi, (b) CoNi-MOF NS, and (c) Co-Ni-O NS

with different Co/Ni ratios.

Figure S9. SEM images of the (a) ZIF-CoZn, (b) CoZn-MOF NS, and (c) Co-Zn-O NS with different Co/Zn ratios.

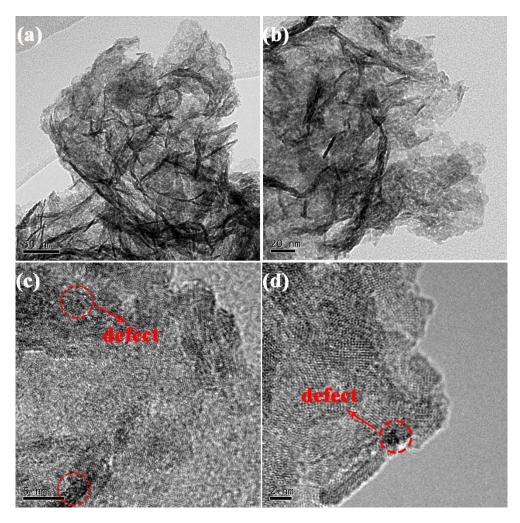


Figure S10. TEM images of the Co-Cu-O NS sample.

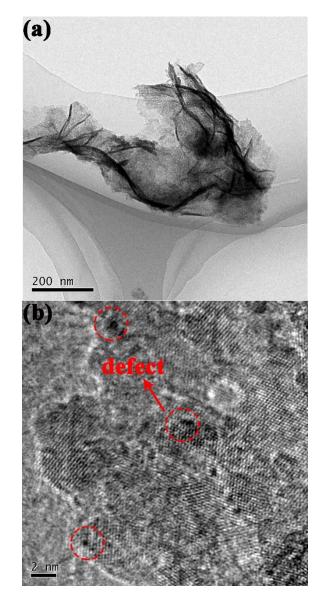


Figure S11. TEM images of the Co-Mn-O NS sample.

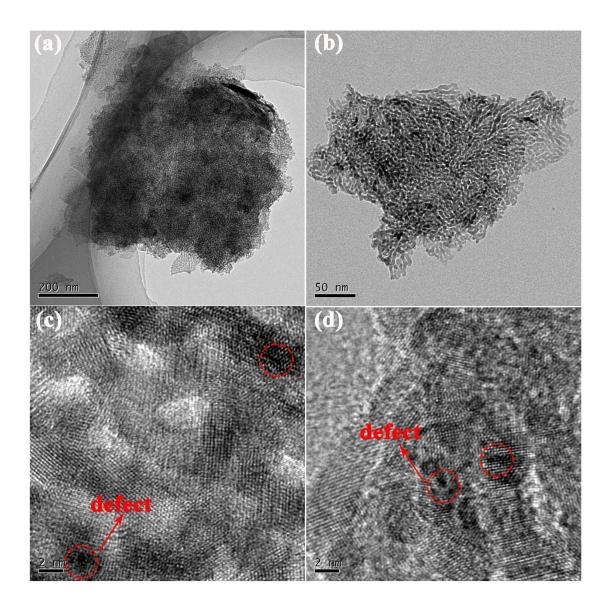


Figure S12. TEM images of the Co-Ni-O NS sample.

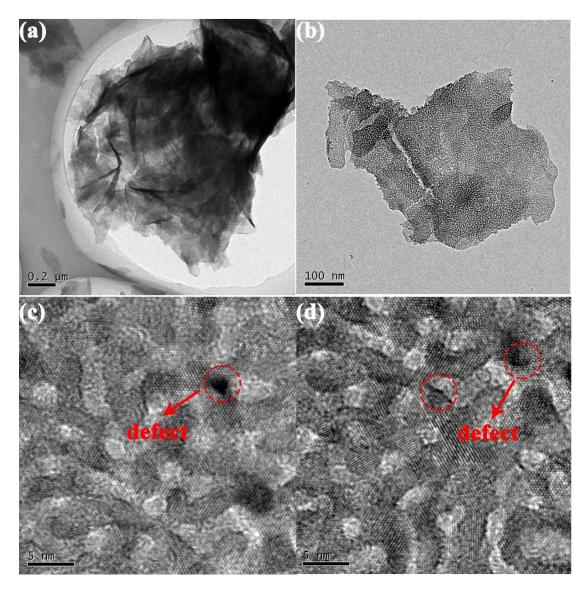


Figure S13. TEM images of the Co-Zn-O NS sample.

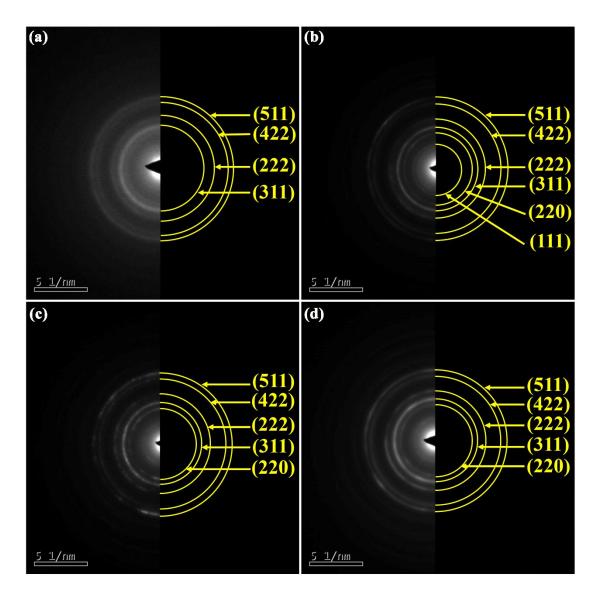


Figure S14. SAED patterns of (a) Co-Cu-O NS, (b) Co-Mn-O NS, (c) Co-Ni-O NS,

and (d) Co-Zn-O NS samples.

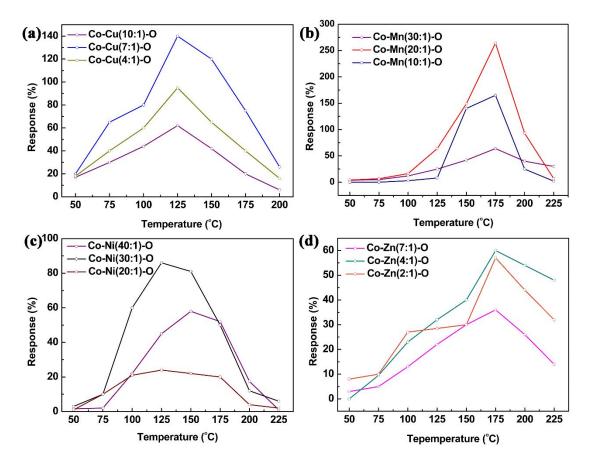
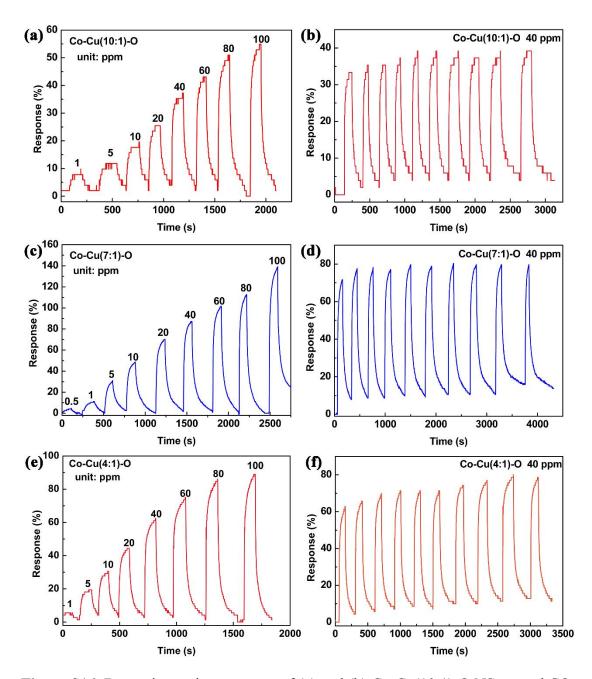
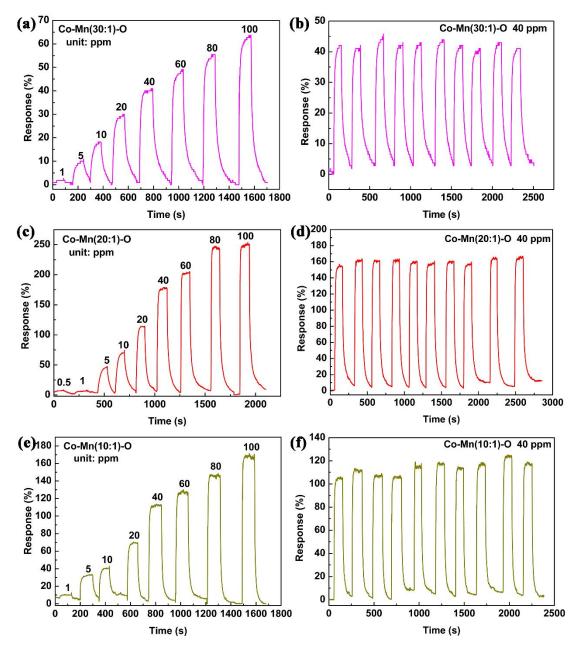
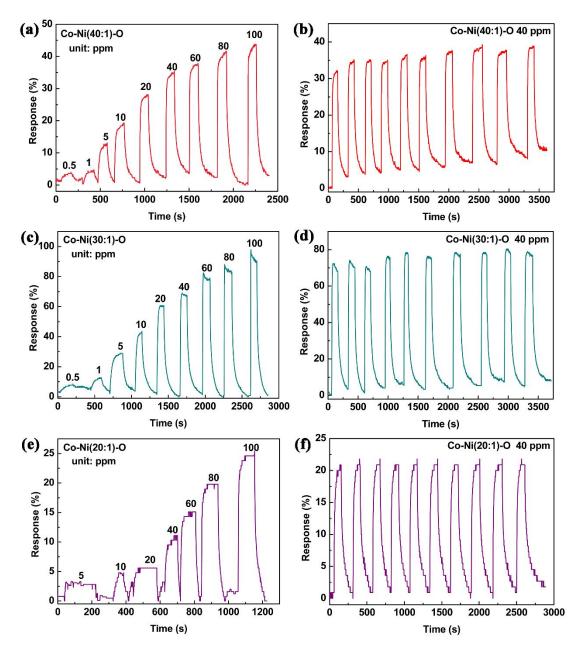
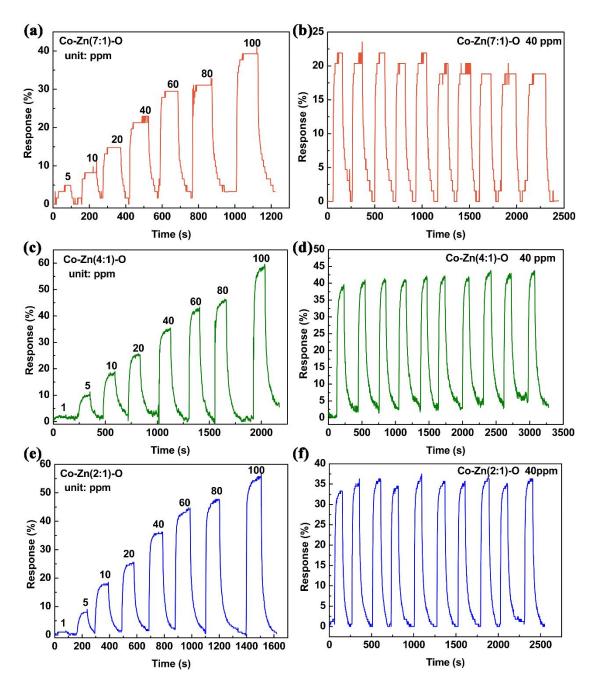
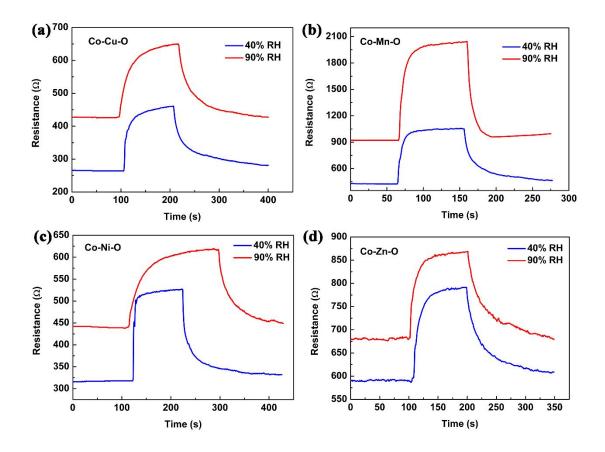
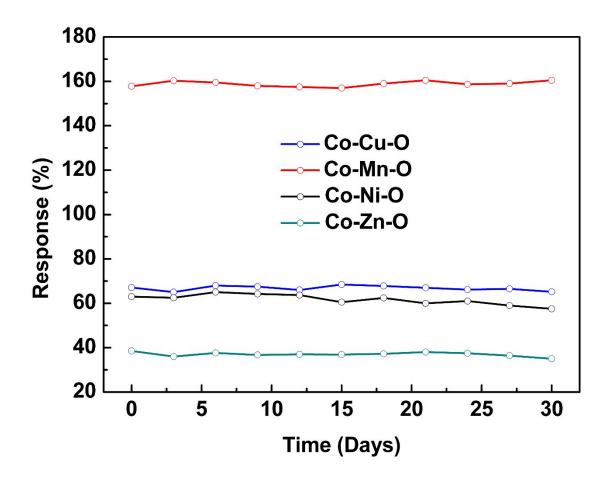




Figure S15. Temperature-dependent sensing response of (a) Co-Cu-O NS, (b) Co-Mn-


O NS, (c) Co-Ni-O NS, and (d) Co-Zn-O NS toward 100 ppm of CO.


Figure S16. Dynamic sensing response of (a) and (b) Co-Cu(10:1)-O NS toward CO, (c) and (d) Co-Cu(7:1)-O NS toward CO, (e) and (f) Co-Cu(4:1)-O NS toward CO at 125 °C.


Figure S17. Dynamic sensing response of (a) and (b) Co-Mn(30:1)-O NS toward CO, (c) and (d) Co-Mn(20:1)-O NS toward CO, (e) and (f) Co-Mn(10:1)-O NS toward CO at 175 °C.


Figure S18. Dynamic sensing response of (a) and (b) Co-Ni(40:1)-O NS toward CO, (c) and (d) Co-Ni(30:1)-O NS toward CO, (e) and (f) Co-Ni(20:1)-O NS toward CO at 125 °C.

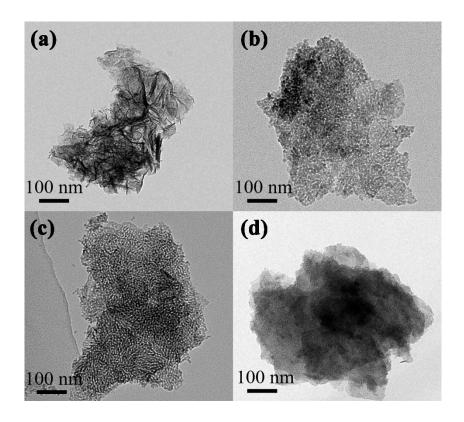

Figure S19. Dynamic sensing response of (a) and (b) Co-Zn(7:1)-O NS toward CO, (c) and (d) Co-Zn(4:1)-O NS toward CO, (e) and (f) Co-Zn(2:1)-O NS toward CO at 175 °C.

Figure S20. Dynamic gas-sensing transients of the (a) Co-Cu-O toward 40 ppm of CO at 125 °C, (b) Co-Mn-O toward 40 ppm of CO at 175 °C, (c) Co-Ni-O toward 40 ppm of CO at 125 °C, and (d) Co-Zn-O toward 40 ppm of CO at 175 °C, respectively, under different humid (40% RH and 90% RH) conditions.

Figure S21. Long-term stability of the sensors toward 40 ppm CO of Co-Cu-O and Co-Ni-O at 125 °C, Co-Mn-O and Co-Zn-O at 175 °C.

Figure S22. TEM images of the Co-M-O NS samples: (a) Co-Cu-O; (b) Co-Mn-O; (c) Co-Ni-O; (d) Co-Zn-O after humidity and stability tests to CO.

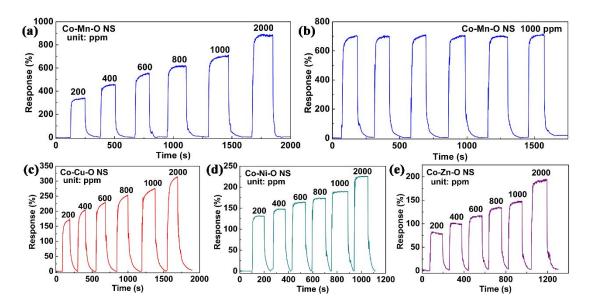


Figure S23. Dynamic sensing response of (a) and (b) Co-Mn-O NS at 175 °C, (c) Co-

Cu-O NS at 125 °C, (d) Co-Ni-O NS at 125 °C, (e) Co-Zn-O NS at 175 °C.

Sensing Materials	Con. (ppm)	Res.	Tem. (°C)	t _{res} /t _{rec} (s)	Ref.
Co ₃ O ₄ nanofibers	40	3.6ª	100	N/A	(1)
Co ₃ O ₄ /TiO ₂ nanofibers	80	15.5 ^a	220	0.5 s/1 s	(2)
Co ₃ O ₄ nano-combs	100	11.6ª	180	0.5 s/2.3 s	(3)
Co ₃ O ₄ nanospheres	25	< 2.2 ^a	200	N/A	(4)
Co ₃ O ₄ /Al-ZnO nanoparticles	1000	0.8% ^b	160	N/A	(5)
Ag/Co ₃ O ₄ nanoparticles	800	85% ^b	130	N/A	(6)
PANI/Co ₃ O ₄ nanoparticles	75	81% ^b	RT	40 s/N/A	(7)
Co ₃ O ₄ nanorods	50	6.55ª	250	4 s/6 s	(8)
NiO/Co ₃ O ₄ nanoparticles	300	150% ^b	150	N/A	(9)
Co ₃ O ₄ nanpspheres	300	1.57ª	170	N/A	(10)
Co ₃ O ₄ nanowires	50	12 ^a	100	N/A	(11)
Co-Cu-O NS	100	140% ^b	125	21 s/80 s	This work
Co-Mn-O NS	100	264% ^b	175	10 s/53 s	This work
Co-Ni-O NS	100	90% ^b	125	4 s/68 s	This work
Co-Zn-O NS	100	60% ^b	175	27 s/80 s	This work

Table S2. Comparison of carbon monoxide sensing performances of Co₃O₄-based materials reported in literature and in this work.

Note: a: (R_g/R_a) , b: $(R_g-R_a)/R_a*100\%$, Con: Concentration, Res: Response, Tem:

Temperature

Sensing Materials	Co ³⁺ /Co ²⁺	O _L (%)	O_V (%)	O _C (%)
Co-Cu-O NS	2.35	44.5	25.9	29.6
Co-Mn-O NS	2.60	42.3	22.6	35.1
Co-Ni-O NS	2.21	45.1	27.9	27.0
Co-Zn-O NS	1.30	60.1	15.2	24.7

Table S3. Results of curve fitting of Co 2p and O 1s XPS spectra of the Co-M-O samples

References

 Busacca, C.; Donato, A.; Faro, M. L.; Malara, A.; Neri, G.; Trocino, S. CO gas sensing performance of electrospun Co₃O₄ nanostructures at low operating temperature.
 Sens. Actuators B: Chem. 2020, 303, 127193.

(2) Wang, L. L.; Deng, J. N.; Lou, Z.; Zhang, T. Cross-linked p-type Co₃O₄ octahedral nanoparticles in 1D n-type TiO₂ nanofibers for high-performance sensing devices. J. Mater. Chem. A 2014, 2, 10022-10028.

(3) Deng, J. N.; Wang, L. L.; Lou, Z.; Zhang, T. Fast response/recovery performance of comb-like Co₃O₄ nanostructure. RSC Adv. 2014, 4, 21115-21120.

(4) Vetter, S.; Haffer, S.; Wagner, T.; Tiemann, M. Nanostructured Co₃O₄ as a CO gas sensor: Temperature-dependent behavior. Sens. Actuators B: Chem. 2015, 206, 133-138.

(5) Fort, A.; Panzardi, E.; Vegnoli, V.; Hjiri, M.; Aida, M. S.; Mugnaini, M.; Addabbo,

T. Co₃O₄/Al-ZnO Nano-composites: Gas Sensing Properties. Sens. 2019, 19, 760.

(6) Molavi, R.; Sheikhi, M. H.; Low temperature carbon monoxide gas sensor based on Ag-Co₃O₄ thick film nanocomposite. Mater. Lett. 2018, 233, 74-77.

(7) Sen, T.; Shimpi, N. G.; Mishra, S. Room temperature CO sensing by polyaniline/Co₃O₄ nanocomposite. J. Appl. Polym. Sci. 2016, 133, 44115.

(8) Patil, D.; Patil, P.; Subramanian, V.; Joy, P. A.; Potdar, H. S. Highly sensitive and fast responding CO sensor based on Co₃O₄ nanorods. Talanta 2010, 81, 37-43.

(9) Chen, K. W.; Tsai, J. H.; Chen, C. H. NiO functionalized Co₃O₄ heteronanocomposites with a novel apple-like architecture for CO gas sensing applications. Mater. Lett. 2019, 255, 126508. (10) Chen, K. W.; Tsai, J. H.; Chen, C. H. Controlled synthesis and CO sensing potentials of size-tunable highly-uniform mesoporous Co_3O_4 nanospheres. J. Alloys Compd. 2020, 816, 152524.

(11) Dou, Z. F.; Cao, C. Y.; Chen, Y.; Song, W. G. Fabrication of porous Co_3O_4 nanowires with high CO sensing performance at a low operating temperature. Chem. Commun. 2014, 50, 14889-14891.