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1. Computational details

1.1 Model selection of the OEC: 

The computational model of the OEC of PSII was constructed from our previous QM/MM 

model of the S2 state1 based on the 1.9 Å resolution crystal structure (PDB: 3ARC).2 We 

included amino-acid residues as well as water molecules within 15 Å of the CaMn4O5 cluster and 

two chloride ions near the OEC. Neutral capping groups (ACE/NME) were used to cap the 

peptide chains at the boundary. All of the acidic residues (Asp and Glu) were modeled as anions. 

D1-His337, D1-Arg357, and D2-Lys317 were modeled as protonated. Sodium counter ions were 

added to neutralize the system.

The final protein selection includes the following residues (capping residues in parenthesis 

use only the backbone atoms):

D1 (chain A): (57)-58-67-(68), (81)-82-91-(92), (107)-108-112-(113), (155)-156-192-(193), 

(289)-290-298-(299), (323)-324-344:C-terminus

CP43 (chain C): (290)-291-(292), (305)-306-314-(315), (334)-335-337-(338), (341)-342-(343), 

(350)-351-358-(359), (398)-399-402-(403), (408)-409-413-(414)

D2 (chain D): (311)-312-321-(322), (347)-348-352:C-terminus D1 

1.2 QM/MM structural optimization: 

The QM/MM optimization for the S2 state structures was performed using a two-layer 

ONIOM method3-4 with H link-atoms as implemented in the Gaussian 16 software package (Rev. 

B.01).5 The QM region includes the OEC, all directly ligated side chains (D1-D170, D1-E189, 

D1-H332, D1-E333, D1-D342, and CP43-E354), the C-terminus of D1-A344, hydrogen-bonded 

residues D1-D61, D1-S169, D1-G171, D1-N181, D1-H337 and CP-R357, D2-K317,  13 water 
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molecules, and a Cl− cofactor (Figure S1). A much larger QM region was used in comparison to 

our previous study in order to include a complete hydrogen-bonding network around the OEC 

which is terminated by amino-acid residues and Cl− cofactor (See Section S2). The QM region 

was treated using the B3LYP functional6 with a mixed double zeta (MDZ) basis set, the 

Lanl2DZ pseudopotential and basis set for Ca and Mn,7 the 6-31G(d) basis for O and Cl,8-9 and 

the 6-31G basis set for H, C, and N.8-9 The AMBER 98 force field10 was used to model the MM 

region. The electronic embedding ONIOM approach was used during the geometry optimization 

to provide a better description of the electrostatic interaction between the QM and MM region by 

allowing the QM region to be polarized by the MM partial charges. All of the atoms were 

allowed to relax during QM/MM optimization with the exception of the chloride ions, neutral 

capping groups (ACE/NME), and oxygen atoms of water molecules in the MM region.

1.3 EXAFS simulation

The classical EXAFS equation is shown below
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where j goes over all scattering paths, k is the momentum vector,  is the phase shift. The  c2

structural parameters are the interatomic distances Rj, the coordination number (or number of 

equivalent scatterers) Nj, and the temperature-dependent root-mean-square (rms) fluctuation in 

bond length σ, which also includes effects due to structural disorder. Additionally, 
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Isotropic Mn K-edge EXAFS spectra of the structures considered were calculated using the ab 

initio real space Green function approach as implemented in the FEFF6 program11 and the 

IFEFFIT code.12 The experimental EXAFS data χ(E), that is the fractional change in absorption 

coefficient of Mn atoms induced by neighboring atoms, are converted into momentum (k) space 

using the transformation , where me is the mass of the electron, h is 
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the Planck’s constant, and E0 is the energy of the absorption edge (E0) of Mn element (6539.0 

eV) which may shift slightly according to its oxidation state and chemical environment. 

The coordinates of atoms in the QM region of the QM/MM optimized structures of various S2 

models were used to calculate the scattering amplitude, phase shift, EXAFS mean free path in 

Eq. (S1). All of the calculations using Feff6 were performed using the following parameters: 

“NLEG 8”, and “CRITERIA 4.0 2.5” and “RMAX 5.5”. The Debye-Waller factors (DWF) σ2 

were set to be 0.001Å2 for first coordination paths (Mn–O or Mn–N path) and 0.002 Å2 for other 

scattering paths. A fractional cosine-square (Hanning) window with Δk = 1 was applied to the 

experimental and calculated EXAFS data. A grid of k points equally spaced at 0.05 Å-1 was used 

for the Fourier transformation (FT) of in the k range of 4.0-10.5 Å-1. The overall amplitude factor 

S0
2 is adjusted to match the calculated FT magnitude and EXAFS χk3 values with the 

experimental data, while the edge shift ΔE0 is varied to minimize the deviation between the 

calculated and experimental χ(k). The simulated EXAFS spectra of models A, B, and C, along 

with the experimental EXAFS spectra, are shown in Figure S2.
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1.4 Solving the proton Schrodinger equation:

We approximate the proton shared between W1 and D1-D61 as a particle in a 1D potential 

well. The potential energy curve of the proton is obtained by translocating the proton between 

the O atom of W1 and O atom in D1-D61. The bond lengths of O–H are frozen during the partial 

optimization.

 The Schrodinger equation of the proton is: 

(S-2)𝐻𝜓(𝑥) = ( ―
ℏ21
2𝑚

𝑑2

𝑑𝑥2 + 𝑉(𝑥))𝜓(𝑥) = 𝐸𝜓(𝑥),

where x is the distance between the proton and the O atom in D1-D61 and V(x) is obtained from 

by the cubic spline interpolation of the energies from our scan calculations, the mass of the 

particle is chosen to be the mass of proton (1836 in atomic units). The Schrodinger equation was 

solved using the Fourier grid Hamiltonian method.13 

To investigate the effects of basis sets and dispersion interactions on the calculated double-

well potentials and the vibrational states of the shared proton, we performed single point 

calculation along the O–H coordinate using the B3LYP functional6 with a larger basis set to 

investigate the effect of diffuse and polarization basis functions (Figures S3 and S4). More 

specifically, the QM regions were treated using the B3LYP functional with the Lanl2DZ 

pseudopotential and basis set for Ca and Mn,7 the 6-31+G(d) basis for O and Cl,8-9, 14-15 and the 

6-31G(d) basis set for H, C, and N.8-9 The effect of dispersion interactions was considered by 

using Grimme’s third version of empirical dispersion correction (GD3)16 and the results are 

shown in Figures S5 and S6. The shared proton is always described by a double-well potential 

along the O–H coordinate regardless the methods we used to calculate the potential energy curve 

and the vibrational state wave functions are delocalized along the O–H coordinate.
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We also considered the harmonic vibrational frequencies of the proton at the bottoms of each 

single-well (Figure S7). The harmonic frequencies of the proton at the carboxyl group in D1-

D61 and W1 are 2816 and 2641 cm−1, corresponding to ZPEs of 4.0 and 3.8 kcal/mol, 

respectively. The harmonic frequencies of O–H stretching are already much smaller than the 

typical O–H stretching frequency in H2O or a carboxyl group of ~ 3000 cm−1 due to the strong 

hydrogen-bond interaction between W1 and the carboxyl group in D1-D61. The vibrational 

frequencies are further reduced by considering the quantum delocalization along the O–H 

coordinate (Figure 3). 

2. Hydrogen-bonding network around OEC

We considered different hydrogen-bonding patterns of water molecules that are present 

around the OEC in the X-ray crystal structure. Water molecules can serve as both hydrogen-bond 

donors and acceptors. Therefore, there is some ambiguity on the hydrogen-bonding pattern 

around the OEC. The protein backbone, amino-acid side chains and cofactors, on the contrary, 

play relatively simple roles in hydrogen-bond formation. For example, the carbonyl O atoms in 

the backbone only serve as hydrogen-bond acceptors while the amide groups in the backbone 

serve as hydrogen-bond acceptors. We extended the QM region from our previous QM/MM 

model of the S2 state. More specifically, we include the water molecules in the X-ray crystal 

structure that are near the OEC and extend the hydrogen-bonding network until the hydrogen 

bonds were terminated by amino-acid residues or cofactors.  It is important to note that the 

terminal amino-acid residues such as N181, F182, Y161, K317, D61, S169, D170, E189, R357 

and the Cl− cofactor are all highly conserved. Therefore, it is reasonable to assume that they act 

as a scaffold to maintain a well-defined hydrogen-bonding network for efficient functioning of 

the OEC. 
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Two additional water molecules in the X-ray crystal structure that have not been considered 

quantum mechanically in most previous theoretical modeling are also included in our QM region 

to form a complete hydrogen-bonding network. These are named W10 and W11, where W10 forms 

a hydrogen bond with the backbone carbonyl group of S169 and G171 and W11 forms a 

hydrogen bond with W10 and N181. 

While studying the hydrogen-bonding network around the OEC, we noticed that there is a 

tetrameric water motif between W2 and W3 that is comprised of W3, W5, W6, and W7. The 

tetrameric water motif connects W2 and D1-Y161 which may play an important role in the 

photo-induced proton release upon oxidation of D1-Y161 during the S-state transitions through 

hydrogen-bond rearrangement. 
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Figure S1. The hydrogen-bonding network formed by water molecules and key amino-acid 

residues and Cl− cofactor around the OEC.
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Figure S2. Simulated EXAFS spectrum of each of the S2 state structures with different 
protonation states that are shown in Figure 2A-C.
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Figure S3. Potential energy curves calculated without and with diffuse and polarization 
functions along the O–H coordinate.
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Figure S4. A quantum-delocalized proton between W1 and D1-D61 in the S2 state of the OEC on 
potential energy curve calculated using a larger basis set included both polarization and diffuse 
basis functions. A. The structure of D1-D61 and water molecules in the OEC with rOH and r′OH 
denoting distances between the quantum proton and O atoms in D1-D61 and W1, respectively; B. 
The potential energy curve along rOH. The energy eigenvalues of the four lowest vibrational 
states and excitation energies between different vibrational states are in cm-1; Probability density 
|ψ(r)|2 of the ground (C) and first excited (D) vibrational states. The expectation values of rOH are 
in Å. The inset structures in C and D correspond to the classical structures under the Born-
Oppenheimer approximation with the proton located at D1-D61 and W1, respectively. The 
expectation values of rOH, evaluated from quantum mechanical vibrational wave functions 
deviate significantly from the rOH in the classical structures, indicating the strong quantum 
delocalized nature of the proton that is shared between W1 and D1-D61.
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Figure S5. Potential energy curves calculated without and with Grimme’s empirical dispersion 
(GD3) along the O–H coordinate.

Figure S6. A quantum-delocalized proton between W1 and D1-D61 in the S2 state of the OEC on 
the potential energy curve calculated using B3LYP with Grimme’s empirical dispersion 
correction (GD3). A. The structure of D1-D61 and water molecules in the OEC with rOH and r′OH 
denoting distances between the quantum proton and O atoms in D1-D61 and W1, respectively; B. 
The potential energy curve along rOH. The energy eigenvalues of the four lowest vibrational 
states and excitation energies between different vibrational states are in cm-1; Probability density 
|ψ(r)|2 of the ground (C) and first excited (D) vibrational states. The expectation values of rOH are 
in Å. The inset structures in C and D correspond to the classical structures under the Born-
Oppenheimer approximation with the proton located at D1-D61 and W1, respectively. The 
expectation values of rOH, evaluated from quantum mechanical vibrational wave functions 
deviate significantly from the rOH in the classical structures, indicating the strong quantum 
delocalized nature of the proton that is shared between W1 and D1-D61.
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Figure S7. Harmonic vibrational frequencies of O–H stretching for classical proton states with 
the proton located at A) the carboxyl group of D1-D61 and B) W1. The black arrows indicate the 
directions of the proton motion in O–H stretching modes.
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3. Magnetic structure and determination of proton hyperfine coupling 

constants from broken symmetry solutions

We studied the magnetic structures and proton hyperfine coupling constants of the 

dimanganese(III,IV) di--oxo di-terpyridine di-aqua (Mn-terpy) model complex and various 

models of the S2 state using the broken-symmetry approach with the software program, ORCA 

(Version 4.0.1).17 Initial broken symmetry guesses were constructed using the “flipspin” feature 

of the ORCA program from converged high-spin solutions. 

The geometries of the Mn-terpy model complex (with and without explicit water molecules) 

were optimized using the B3LYP functional6 with the scalar relativistic effects considered by the 

zeroth-order regular approximation (ZORA) Hamiltonian.18-19 ZORA-adapted segmented all-

electron relativistically contracted (SARC) basis sets ZORA-def2-SVP were employed for all 

atoms. The resolution of identity (RI) approximation, along with de-contracted auxiliary def2-

SVP/J coulomb-fitting basis sets, was invoked to reduce the computational time.20-22 Dispersion 

interactions were considered by Grimme’s third-generation (D3) semiempirical van der Waals 

corrections.16, 23 Increased integration grids (Grid4 and GridX5 in ORCA convention) and tight 

SCF convergence criteria were used throughout the calculations. The COSMO solvation model 

with a dielectric constant of 80.5 is used to account for the aqueous environment of the Mn-terpy 

dimer. The B3LYP-D3 optimized geometries of Mn-terpy were used to study the magnetic 

structure and served as a benchmark for the calculated proton hyperfine coupling constants of 

water-derived ligands at the Mn(III) and Mn(IV) centers. 

The QM/MM optimized structures of the various models of the OEC in the S2 state were 

used to study their magnetic structures and proton hyperfine coupling constants. Only the atoms 

in the QM region were used in the magnetic structures and hyperfine coupling constants. The 
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dangling C and N atoms were capped with H atoms with dC–H (1.09 Å) and dN–H (1.02 Å). The 

COSMO solvation model with a dielectric constant of 8.0 was used to account for the protein 

environment around the OEC.24-25

Calculations of magnetic structures and  proton hyperfine coupling constants were performed 

using the B3LYP functional and the basis sets developed by Neese et al. based on the SARC 

def2-TZVP for the Mn, N, and O atoms and def2-TZVP(-f) for all other atoms.26 The integration 

grids were increased to finer grids (Finalgrid6  and GridX5 in ORCA convention). Exchange 

coupling constants were calculated from the energies of high-spin and broken-symmetry (BS) 

solutions. The exchange coupling constants were used to calculate spin projector factor to extract 

isotropic hyperfine coupling constants from “raw” calculated BS-DFT hyperfine coupling 

constants.27

For a magnetic system with several local magnetic centers, the magnetic structure can be 

described by the Heisenberg-Dirac-van Vleck (HDvV) Hamiltonian:

. (S2)𝐻HDvV = ―2∑
𝑖 < 𝑗𝐽𝑖𝑗𝑆𝑖 ∙ 𝑆𝑗 

Following the methodology proposed by Pantazis et al.,27 the isotropic hyperfine coupling 

constants can be extracted from the “raw” calculated BS-DFT hyperfine coupling constants: 

 𝐴(𝑖)
iso = ± 𝐴(𝑖)

iso,BS(⟨𝑆𝑍⟩BS

𝑆A ) 𝑐A,            (S3)

where  refers to the total MS of the BS-DFT solution with  denoting the formal spin at ⟨𝑆𝑍⟩BS 𝑠A

site , is the spin projection coefficient at site A, and nucleus i belongs to site A.  is A 𝑐A 𝑐A

calculated using the equation:

,                         (S4)𝑐A =
⟨𝑆𝑍,A⟩GS

𝑆tot
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where  refers to the expectation value of  for site A in the ground state obtaining by ⟨𝑆𝑍,A⟩GS 𝑆𝑍 

diagonalizing the Heisenberg-Dirac-van Vleck (HDvV) Hamiltonian. 

, (S5)⟨𝑆𝑍,A⟩GS = ∑
𝑘|𝑐𝑘

0|2𝑀𝑘
𝑆,A

3.1 Mn-terpy model complex

For the Mn-terpy model complex with a mixed-valent Mn(III) and Mn(IV) core (Figure S8), 

there is one high-spin (HS) solution (4α3α (ΜS = 7/2)) and one broken (BS-DFT) solution (4α3β 

(ΜS =1/2)). The energy of the HS and BS-DFT solution can be used to extract the exchange 

coupling constant between the two Mn centers and deduce the spin project factors (   = (⟨𝑆𝑍⟩BS

𝑆A ) 𝑐A

1/2 for the Mn(III) center and 1/3 for the Mn(IV) center).

The calculated isotropic proton hyperfine coupling constants of Mn-terpy without and with 

two explicit water molecules are shown in Table S1. The protons in the water ligand coordinated 

to Mn(III) have larger isotropic hyperfine coupling constants than those in the water ligated to 

Mn(IV). However, in the absence of the two explicit water molecules hydrogen-bonding to the 

more acidic Mn(IV)–OH2, the agreement of calculated proton HFCs of water coordinated to 

Mn(IV) is not good, suggesting proton HFCs are sensitive to hydrogen-bonding interactions.
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Figure S8. Optimized structures of Mn-terpy model complex without and with two explicit 

hydrogen-bond acceptors to the acidic Mn(IV)-OH2.

Table S1. Calculated and experimental isotropic proton hyperfine coupling constants (in MHz) 

of the Mn-terpy model complex.

Hydrogen 

Atoms 0 H2O 2 H2O Expt.

Ha 2.5 2.5 2.5 ± 0.4

Hb 3.0 3.2 2.5 ± 0.4

Hc -1.6 -2.3 -2.1 ± 0.2

Hd -0.5 1.1 -1.9 ± 0.2

He 1.5 1.5 1.1 ± 0.3

Hf 1.6 1.6 1.1 ± 0.3
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3.1 OEC in the S2 state

There are four Mn centers in OEC, namely Mn1, Mn2, Mn3, and Mn4. The couplings 

between the four Mn centers are shown in Figure S9. In the S2 state, Mn1, Mn2, Mn3, and Mn4 

are in oxidation state III, IV, IV, and IV, respectively. Therefore, the possible high-spin and 

broken symmetry solutions (2n−1) are:

4α3α3α3α (ΜS=13/2)

4α3α3α3β (ΜS=7/2)

4α3α3β3α (ΜS=7/2)

4α3β3α3α (ΜS=7/2)

4β3α3α3α (ΜS=5/2)

4α3α3β3β (ΜS=1/2)

4α3β3α3β (ΜS=1/2)

4α3β3β3α (ΜS=1/2)

The respective energy of the 1 HS and 7 BS solution can be calculated with ORCA. The 6 

exchange coupling constants and the 7 relative energies of the eight states can be related by the 

HDvV Hamiltonian (Eq. S2). The exchange coupling constants were extracted using single-value 

decomposition (SVD) implemented in Matlab for the three protonation state models, A, B, and 

C, (Table S2). The exchange coupling constants can be used to diagonalize the Heisenberg-

Dirac-van Vleck (HDvV) Hamiltonian and obtain the spin-projectors of the different models 

(Tables S3-S5) to enable the extraction of the proton HFCs from raw broken symmetry 

calculated proton HFCs (Table S6).
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Figure S9. Exchange coupling scheme of the four Mn centers in the OEC.

Table S2. Exchange coupling constants (in cm−1) between Mn centers of the S2 state in the 
different protonation-state models.

Exchange
Coupling 
constants

Model A:
W1OH
W2OH2
D61COOH

Model B:
W1OH2
W2OH2
D61COO

Model C:
W1OH2
W2OH
D61COOH

J12 -17.4 -16.8 -18.7

J13 6.2 3.3 2.4

J14 2.2 2.4 2.9

J23 20.2 18.3 14.3

J24 1.8 2.3 2.3

J34 -22.6 -23.5 -22.7
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Table S3. Spin projection factors of model A.

 ⟨𝑺𝒁,𝐀⟩𝐆𝐒 𝑺𝐀 ⟨𝑺𝒁⟩𝐁𝐒 𝑺𝐭𝐨𝐭 𝒄𝐀
 𝒌 = (⟨𝑺𝒁⟩𝐁𝐒

𝑺𝐀 ) k(dimer)
1 0.978 2.0 0.5 0.5 1.956 0.489 0.500
2 -0.497 1.5 0.5 0.5 -0.994 0.331 0.333
3 -0.364 1.5 0.5 0.5 -0.728 0.243 0.333
4 0.383 1.5 0.5 0.5 0.766 0.255 0.333

Table S4. Spin projection factors of model B.

 ⟨𝑺𝒁,𝐀⟩𝐆𝐒 𝑺𝐀 ⟨𝑺𝒁⟩𝐁𝐒 𝑺𝐭𝐨𝐭 𝒄𝐀
 𝒌 = (⟨𝑺𝒁⟩𝐁𝐒

𝑺𝐀 ) k(dimer)
1 0.800 2.0 0.5 0.5 1.600 0.400 0.500
2 -0.482 1.5 0.5 0.5 -0.963 0.321 0.333
3 -0.499 1.5 0.5 0.5 -0.999 0.333 0.333
4 0.681 1.5 0.5 0.5 1.362 0.454 0.333

Table S5. Spin projection factors of model C.

 ⟨𝑺𝒁,𝐀⟩𝐆𝐒 𝑺𝐀 ⟨𝑺𝒁⟩𝐁𝐒 𝑺𝐭𝐨𝐭 𝒄𝐀
 𝒌 = (⟨𝑺𝒁⟩𝐁𝐒

𝑺𝐀 ) k(dimer)
1 0.883 2 0.5 0.5 1.767 0.442 0.500
2 -0.490 1.5 0.5 0.5 -0.980 0.327 0.333
3 -0.461 1.5 0.5 0.5 -0.922 0.307 0.333
4 0.567 1.5 0.5 0.5 1.135 0.378 0.333
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Table S6. Calculated hyperfine coupling constants (MHz) of different protonation state models.
Hydrogen 
Atoms Aiso Assignment

A) OH−, OH2, COOH
H(W2) 1.3 HI

HE1(His332) -0.7 HII

H(W1) 4.2 HIII

HE2(His337) 0.1 HIV

H(Wx) -0.3 HV

B) OH2, OH2, COO−

H(W2) 1.8 HI

HE1(His332) -0.6 HII

H(W1) 1.7 HIII

HE2(His337) 0.1 HIV

H(Wx) -0.1 HV

C) OH2, OH−, COOH
H(W2) 7.7 HIII

HE1(His332) -0.7 HII

H(W1) 1.1 HI

HE2(His337) 0.1 HIV

H(Wx) 0.0 HV

Experimental
HI ±1.8 (± 0.4)  
HII ±0.1 (± 0.4)  
HIII ±2.6 (± 0.2)  
HIV ±0.2 (± 0.2)  
HV ±0.4 (± 0.6)  
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Table S7. Calculated isotropic proton hyperfine coupling constants (HFCs) of the S2 state by 
straight and Boltzmann averaging over protonation-state structures A and B. Also shown are the 
experimental hyperfine coupling constants that were previously measured by 2D HYSCORE 
spectroscopy and their tentative assignments. 

Atoms
Aiso 
(MHz)

Aiso 
(MHz)

Aiso 
(MHz) Assignment

 A + B
Boltzmann 
Averagea Expt.b  

H(W2) 1.5 1.5 ±1.8 (± 0.4) HI

HE1(His332) -0.7 -0.7 ±0.1 (± 0.4) HII

H(W1) 3.0 3.3 ±2.6 (± 0.2) HIII

HE2(His337) 0.1 0.1 ±0.2 (± 0.2) HIV

H(Wx) -0.2 -0.2 ±0.4 (± 0.6) HV

a Boltzmann average is taken at T = 200 K when the S1-to-S2 transition was advanced under 
illumination in experimental measurements..
b Experimental isotropic proton HPCs from Energy & Environ. Sci. 2012, 5, 7747-7756.

Table S8. Calculated isotropic proton hyperfine coupling constants (HFCs, in MHz) of the S2 
state of model C', experimental HFCs (in MHz) and their tentative assignments.

 Atoms C'a Expt.b Assignment
H(W1) -1.3 ±1.8 (± 0.4) HI

HE1(His332) -0.6 ±0.1 (± 0.4) HII

H(W2) -5.9 ±2.6 (± 0.2) HIII

HE2(His337) -0.1 ±0.2 (± 0.2) HIV

H(Wx) 0.1 ±0.4 (± 0.6) HV

a Deprotonated model of the S2 state with W1 = H2O, W2 = OH−, and D61 = COO− (model C')
b Experimental isotropic proton HPCs from Energy & Environ. Sci. 2012, 5, 7747-7756.
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