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I. SEMI-ANALYTICAL APPROACH TO THE MODELLING OF GRAPHENE PLASMONIC CRYSTAL.

We consider the structure, depicted in Fig. 1. The graphene layer is deposited on top of the semi-infinite substrate,
which is characterized by the dielectric constant εS and occupies the half-space z > W + d. From other side the
graphene layer is covered with a spacer layer, which dielectric constant and thickness are εd and d, respectively. An
array of metallics rods (PECs) with cross-sectionW ×W is deposited on top of the capping layer. The Period consists
of two separations of widths a and b, while distances between neibouring rods W are equal. Thus, the period of
the structure is equal to L = 2W + a + b. In details, slits of width a are arranged at − (W + a+ b) /2 + lL < x <
− (W − a+ b) /2+ lL, while slits of width b are arranged at (W + a− b) /2+ lL < x < (W + a+ b) /2+ lL (here l is
the number of period).

A. Main equations

Assuming electromagnetic field time-dependence as E,H ∼ exp−iωt, we represent Maxwell equations for p-
polarized wave as
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where ω is wave cyclic frequency, c is the velocity of light in vacuum. The superscripts j = 1, 2, 3, 4 correspond to the
spatial domains z < 0, 0 < z < W , W < z < W + d, and z > W + d, respectively. Also for the sake of simplicity we
will admit, that the dielectric constant of all media are ε(j) = 1.
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FIG. 1. Geometry of problem: diffraction grating made of PEC, arranged above the graphene monolayer.

is the out-of-plane wavevector component of mth harmonics, H(i)
y and H(r)

y||m are the amplitudes of the magnetic field
of incident and reflected wave of mth harmonics, kx is the in-plane wavevector component of incident wave. Incide
the substrate, j = 4, the electromagnetic field can be expressed as(
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In Eq. (5) zero in the second line means absence of the backward-propagating waves. Inside the finite medium j = 3
electromagnetic fields can be represented in form of the transfer-matrix
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Electromagnetic fields across the graphene are linked through the boundary conditions, namely
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Here σg (ω) is the Drude-like expression for graphene’s conductivity, whose form is given in the main text. If this
boundary condition is applied, one can obtain the expression for the electromagnetic fields at z =W as(
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where

F̂ (tot)
m = Q̂m (−d) Q̂(g)

m F̂m

is the total field matrix.

In the medium j = 2, the electromagnetic field can be represented as the superposition of waveguide modes inside
the slits. Thus, inside the spatial domain − (W + a+ b) /2 + lL < x < − (W − a+ b) /2 + lL (slits of width a) the
tangential components of the electromagnetic field can be written as
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propagating waves of the nth eigenmode in the lth slit. In the similar manner, inside the spatial domain (W + a− b) /2+
lL < x < (W + a+ b) /2 + lL (slits of width b) the tangential component of the electromagnetic waves are
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eigenmode in slit l. Matching the boundary conditions at the surfaces of the metal film z = 0 and z =W (continuity
of the tangential components of the electric and magnetic fields at slits and condition Ex ≡ 0 beyond the slits, details
can be found in Ref. [1] ), and using the Bloch theorem A
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possible to obtain the matrix equations for the amplitudes of the waveguides modes,
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Here elements of matrix Ûn′,n can be represented as
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Ûn′,n

)
21

= − ia
2

L
ν(a)n

∞∑
m=−∞

(
F̂m

)
12(

F̂m

)
22

P
(a)
n||kx+2πm/LP

(b)
n′||kx+2πm/L,

(
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The amplitudes of the reflected and transmitted waves can be obtained from the amplitudes of waveguide modes as
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The reflectance and transmittance coefficients can be obtained from Eqs. (11) and (12) as
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whie the loss function is defined as imaginary part of the reflected wave’s magnetic field at point x = 0, divided by
incident wave’s amplitude, i.e. Im
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The absorbance A = 1−R−T of the considered structure is shown at Fig. 2. As seen, the coincidence between the
numerical (dashed lines) and semi-analytical (solid lines) results is excellent. In this figure the absorbance maxima



6

FIG. 2. Absorbance A versus frequency ω of the structure, depicted in Fig. 1 for nornal incidence (kx = 0), calculated by the
semi-analytical (solid lines) or numerical (dashed lines) methods. The parameters of the structure in panel (a) are: EF = 0.6 eV,
a = 75 nm, b = 75 nm (blue lines, which corresponds to f = 0), or a = 112.5 nm, b = 37.5 nm (red lines, which corresponds to
f = 0.5). The dependencies in panel (b) are calculated for the parameters EF = 0.4 eV, a = 10 nm, b = 10 nm (blue line, which
corresponds to f = 0), or a = 17 nm, b = 3 nm (red line, which corresponds to f = 0.7). In both panels W = 75 nm, d = 3 nm,
γ = 3 meV.

FIG. 3. Loss function (depicted by color map) versus frequency ω and in-plane wavevector kx for equal values of a and b (a) ,
or nonequal a 6= b (b). The parameters are the same as in Fig. 2.

correspond to the excitation of surface plasmon-polaritons. In more details, when for some particular frequency ω
the in-plane wavevector of one of the diffracted harmonics kx + 2πm/L coincides with the surface plasmon-polariton
eigenvalue (obtained from the dispersion relation), the resonant excitation of surface plasmon-polariton takes place.
Hence, the energy of incident wave is transformed into the energy of excited surface plasmon-polariton, last fact is
revealed in the maximum of absorbance at this particular frequency ω. When widths of the neibouring slits are equal
(a = b and, hence, f = 0), the spectrum of absorption (blue line) contain one maximum at ω ≈ 35THz [Fig. 2(a)],
or ω ≈ 43THz [Fig. 2(b)]. When widths of neibouring peaks are not equal, a 6= b and f 6= 0, the high-frequency
maximum turns to be blue-shifted (see red lines in Fig. 2), and an additional low-frequency peak at ω ≈ 30THz
[Fig. 2(a)], or ω ≈ 25THz [Fig. 2(b)] appears in the spectrum.

When a = b, the period of the structure is equal to D = L/2. The respective band structure is represented in
Fig. 3(a). In this case the center of the first Brillouin zone kx = 0 coincides with left margem of Fig. 3(a), and the
edge of the first Brillouin zone kx = π/D = 2π/L ≈ 40µm−1 corresponds to the right margem of Fig. 3(a). Also from
Fig. 3(a) one can see, that one of the bands starts at frequency ω ≈ 25THz (at kx = 2π/L) and ends at ω ≈ 43THz
(at kx = 0). For normal incidence it is possible to excite the mode, which corresponds to the crossing of band structure
with scanlines kx = 2πm/D (here m is integer). In other words, due to the periodicity of band structure with period
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2π/D it is possible to excite modes, which lie at center of the first Brillouin zone. Modes at the edge of the first
Brillouin zone can not be excited at normal incidence. As a result, mode at ω ≈ 43THz (depicted by the filled circle)
can be excited, but mode at ω ≈ 25THz (depicted by cross) can not be excited at normal incidence. This results in
only one absorption peak, like depicted by blue lines in Fig. 2.

When a 6= b, the period of the structure is equal to D = L. The respective band structure is represented in Fig. 3(b).
In this case the center of the first Brillouin zone kx = 0 coincides with left margem of the panel, but the edge of
the first Brillouin zone π/D = π/L ≈ 20µm−1 corresponds to the center of Fig. 3(b). Right margem of Fig. 3(b),
kx = 2π/L ≈ 40µm−1 corresponds to the center of second Brillouin zone. As one can see, nonequality of neibouring
slits leads to the band folding: now band edge ω ≈ 25THz as well as that ω ≈ 43THz lie at the center of the first
Brillouin zone and both can be excited at normal incidence, which explains two peaks at Fig. 2, when a 6= b (red
lines).

II. NUMERICAL CALCULATIONS

The numerical simulations were implemented in COMSOL Multiphysics, a finite element method solver. Three
different types of simulations are performed within the wave optics module. Graphene was simulated as a 2D surface
with a Drude like optical conductivity. For all the presented numerical calculations, the relaxation rate of graphene’s
optical conductivity is set to γ=3 meV.
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FIG. 4. Comparison between the absorption spectra of the numerical calculations (solid-line) and semi-analytical calculations
(dashed-line) for f=0 (black) and f=-2/3 (red)

For the periodic structures, the setup includes Floquet periodic boundary conditions. For the band-structure, we
used the eigenfrequency analysis. To avoid excessive numerical issues with the non-linearity of the equations, for the
eigenfrequency calculations we considered a lossless version of silver. The numerical and semi-analytical spectra were
shifted by a constant wave-length λ0. The numerical spectra was then adjusted according to the semi-analytical data,
which was also consistent with the numerical absorption spectra.

For the Zak phase calculations, we considered a periodic system with Floquet k vectors covering the 1st Brillouin
zone. The eigen-fields for each k and z = z0 were then used for the calculation described in the main text. To obtain
the periodic part of the electric field, it was multiplied by e(−kx). For the absorption calculations A periodic port
excites a TM electromagnetic wave and the total transmission, reflection and absorption are calculated. For the finite
systems, PEC boundaries are considered, instead of the periodic boundary conditions.
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III. ADDITIONAL FIGURES
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FIG. 5. Linear variation of the gap ∆ω between the plasmonic bands 1- 2 (solid line) and 3-4 (dashed line) as a function of f
for small values of f . The inset shows ∆ω × f for f = [−0.8, 0.8].
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FIG. 6. Energy spectrum of a finite system containing (a) 20 unit cells with f1=-2/3 and 20 unit cells with f2=-1/2 and (b)
20 unit cells with f1=-2/3 and 20 unit cells with f = 1/2. For sgn(f1)=sgn(f1), the system does not have mid-gap states. For
sgn(f1) 6= sgn(f1) the system presents a mid-gap state.
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