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I. SEMI-ANALYTICAL APPROACH TO THE MODELLING OF GRAPHENE PLASMONIC CRYSTAL.

We consider the structure, depicted in Fig. 1. The graphene layer is deposited on top of the semi-infinite substrate,
which is characterized by the dielectric constant €g and occupies the half-space z > W + d. From other side the
graphene layer is covered with a spacer layer, which dielectric constant and thickness are €4 and d, respectively. An
array of metallics rods (PECs) with cross-section W x W is deposited on top of the capping layer. The Period consists
of two separations of widths a and b, while distances between neibouring rods W are equal. Thus, the period of
the structure is equal to L = 2W + a + b. In details, slits of width a are arranged at — (W +a+b) /2+ 1L < z <
— (W —a+b)/2+1L, while slits of width b are arranged at (W +a —b) /2+IL <z < (W +a+b) /2+1L (here l is
the number of period).

A. Main equations

Assuming electromagnetic field time-dependence as E,H ~ exp —iwt, we represent Maxwell equations for p-
polarized wave as
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where w is wave cyclic frequency, ¢ is the velocity of light in vacuum. The superscripts j = 1,2, 3,4 correspond to the
spatial domains 2 < 0,0 <z < W, W <z < W 4 d, and z > W + d, respectively. Also for the sake of simplicity we
will admit, that the dielectric constant of all media are e() = 1.

In the medium j = 1 the solutions of Maxwell equation can be represented as
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FIG. 1. Geometry of problem: diffraction grating made of PEC, arranged above the graphene monolayer.

is the out-of-plane wavevector component of mth harmonics, Hy and H (T) are the amplitudes of the magnetic field
of incident and reflected wave of mth harmonics, k, is the in-plane Wavevector component of incident wave. Incide
the substrate, j = 4, the electromagnetic field can be expressed as
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In Eq. (5) zero in the second line means absence of the backward-propagating waves. Inside the finite medium j = 3
electromagnetic fields can be represented in form of the transfer-matrix
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Electromagnetic fields across the graphene are linked through the boundary conditions, namely
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Here o, (w) is the Drude-like expression for graphene’s conductivity, whose form is given in the main text. If this
boundary condition is applied, one can obtain the expression for the electromagnetic fields at z = W as
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where
E{D = Qu (=d) QW F,,

is the total field matrix.

In the medium j = 2, the electromagnetic field can be represented as the superposition of waveguide modes inside
the slits. Thus, inside the spatial domain — (W +a+b) /2 +IL <z < — (W —a+b) /2 +IL (slits of width a) the
tangential components of the electromagnetic field can be written as
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where Vy(;l) = 4/ (%)2 — (%)2 , | is the number of period, Aﬁf D are the amplitudes of forward- and backward-
propagating waves of the nth eigenmode in the [th slit. In the similar manner, inside the spatial domain (W + a — b) /2+
IL<x<(W+a+1b)/2+ 1L (slits of width b) the tangential component of the electromagnetic waves are
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(%)2 , BT(Li’l) stand for the amplitudes of forward- and backward-propagating waves of the nth
eigenmode in slit /. Matching the boundary conditions at the surfaces of the metal film z = 0 and z = W (continuity
of the tangential components of the electric and magnetic fields at slits and condition E, = 0 beyond the slits, details
can be found in Ref. [1] ), and using the Bloch theorem AT = AGY exp (ikyIL), B = B exp (ik,IL), it is
possible to obtain the matrix equations for the amplitudes of the waveguides modes,
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Here elements of matrix U, , can be represented as
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The parameters P(H)k t2mm L Pélﬁ)km +omm/1 A€ different for even and odd n. Namely, when n is even
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For odd n we have
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The amplitudes of the reflected and transmitted waves can be obtained from the amplitudes of waveguide modes as
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The reflectance and transmittance coefficients can be obtained from Egs. (11) and (12) as
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whie the loss function is defined as imaginary part of the reflected wave’s magnetic field at point x = 0, divided by
incident wave’s amplitude, i.e. Im {EOO 7' sHf }
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The absorbance A =1 — R — T of the considered structure is shown at Fig. 2. As seen, the coincidence between the
numerical (dashed lines) and semi-analytical (solid lines) results is excellent. In this figure the absorbance maxima
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FIG. 2. Absorbance A versus frequency w of the structure, depicted in Fig.1 for nornal incidence (k» = 0), calculated by the
semi-analytical (solid lines) or numerical (dashed lines) methods. The parameters of the structure in panel (a) are: Er = 0.6V,
a = 75nm, b = 75nm (blue lines, which corresponds to f = 0), or a = 112.5nm, b = 37.5nm (red lines, which corresponds to
f =0.5). The dependencies in panel (b) are calculated for the parameters Fr = 0.4eV, a = 10nm, b = 10nm (blue line, which
corresponds to f = 0), or a = 17nm, b = 3nm (red line, which corresponds to f = 0.7). In both panels W = 75nm, d = 3nm,
v =3meV.
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FIG. 3. Loss function (depicted by color map) versus frequency w and in-plane wavevector k, for equal values of a and b (a) ,
or nonequal a # b (b). The parameters are the same as in Fig. 2.

correspond to the excitation of surface plasmon-polaritons. In more details, when for some particular frequency w
the in-plane wavevector of one of the diffracted harmonics k, + 27m/L coincides with the surface plasmon-polariton
eigenvalue (obtained from the dispersion relation), the resonant excitation of surface plasmon-polariton takes place.
Hence, the energy of incident wave is transformed into the energy of excited surface plasmon-polariton, last fact is
revealed in the maximum of absorbance at this particular frequency w. When widths of the neibouring slits are equal
(a = b and, hence, f = 0), the spectrum of absorption (blue line) contain one maximum at w ~ 35 THz [Fig. 2(a)],
or w ~ 43 THz [Fig.2(b)]. When widths of neibouring peaks are not equal, a # b and f # 0, the high-frequency
maximum turns to be blue-shifted (see red lines in Fig.2), and an additional low-frequency peak at w ~ 30 THz
[Fig. 2(a)], or w & 25 THz [Fig. 2(b)| appears in the spectrum.

When a = b, the period of the structure is equal to D = L/2. The respective band structure is represented in
Fig.3(a). In this case the center of the first Brillouin zone k, = 0 coincides with left margem of Fig.3(a), and the
edge of the first Brillouin zone k, = 7/D = 27 /L ~ 40 yum~" corresponds to the right margem of Fig. 3(a). Also from
Fig. 3(a) one can see, that one of the bands starts at frequency w ~ 25 THz (at k, = 27/L) and ends at w =~ 43 THz
(at k; = 0). For normal incidence it is possible to excite the mode, which corresponds to the crossing of band structure
with scanlines k, = 2rm/D (here m is integer). In other words, due to the periodicity of band structure with period



27/D it is possible to excite modes, which lie at center of the first Brillouin zone. Modes at the edge of the first
Brillouin zone can not be excited at normal incidence. As a result, mode at w = 43 THz (depicted by the filled circle)
can be excited, but mode at w ~ 25 THz (depicted by cross) can not be excited at normal incidence. This results in
only one absorption peak, like depicted by blue lines in Fig. 2.

When a # b, the period of the structure is equal to D = L. The respective band structure is represented in Fig. 3(b).
In this case the center of the first Brillouin zone k, = 0 coincides with left margem of the panel, but the edge of
the first Brillouin zone /D = 7/L ~ 20 um~! corresponds to the center of Fig.3(b). Right margem of Fig.3(b),
k, = 2m/L ~ 40 um~! corresponds to the center of second Brillouin zone. As one can see, nonequality of neibouring
slits leads to the band folding: now band edge w ~ 25 THz as well as that w ~ 43 THz lie at the center of the first
Brillouin zone and both can be excited at normal incidence, which explains two peaks at Fig.2, when a # b (red
lines).

II. NUMERICAL CALCULATIONS

The numerical simulations were implemented in COMSOL Multiphysics, a finite element method solver. Three
different types of simulations are performed within the wave optics module. Graphene was simulated as a 2D surface
with a Drude like optical conductivity. For all the presented numerical calculations, the relaxation rate of graphene’s
optical conductivity is set to y=3 meV.
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FIG. 4. Comparison between the absorption spectra of the numerical calculations (solid-line) and semi-analytical calculations
(dashed-line) for f=0 (black) and f=-2/3 (red)

For the periodic structures, the setup includes Floquet periodic boundary conditions. For the band-structure, we
used the eigenfrequency analysis. To avoid excessive numerical issues with the non-linearity of the equations, for the
eigenfrequency calculations we considered a lossless version of silver. The numerical and semi-analytical spectra were
shifted by a constant wave-length A\g. The numerical spectra was then adjusted according to the semi-analytical data,
which was also consistent with the numerical absorption spectra.

For the Zak phase calculations, we considered a periodic system with Floquet k vectors covering the 1st Brillouin
zone. The eigen-fields for each k and z = 2y were then used for the calculation described in the main text. To obtain
the periodic part of the electric field, it was multiplied by e(=%*). For the absorption calculations A periodic port
excites a TM electromagnetic wave and the total transmission, reflection and absorption are calculated. For the finite
systems, PEC boundaries are considered, instead of the periodic boundary conditions.
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FIG. 5. Linear variation of the gap Aw between the plasmonic bands 1- 2 (solid line) and 3-4 (dashed line) as a function of f
for small values of f. The inset shows Aw X f for f =[—0.8,0.8].

40/(@) /—" 40|(b) /
38 38t
~N N .
£ 36 £ 36t
T = -
[ [J] )
& & -
34 I 34t <&
.. >
04 "
2 & 2F @
.O o f1=-1/3,f2=-1/2 & e f1=-1/3,f2=1/2
0 10 20 30 40 0 10 20 30 40

n n

FIG. 6. Energy spectrum of a finite system containing (a) 20 unit cells with f1=-2/3 and 20 unit cells with f,=-1/2 and (b)

20 unit cells with fi1=-2/3 and 20 unit cells with f = 1/2. For sgn(f1)=sgn(f1), the system does not have mid-gap states. For
sgn(f1) # sgn(f1) the system presents a mid-gap state.
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