Recommendations for Oil Extraction and Refining Process to Prevent the Formation of Monochloropropane-diol Esters in Sunflower Oil

Karine Redeuil*, Xanthippe Theurillat, Marine Nicolas, Kornél Nagy
Société des Produits Nestlé S.A-, Nestlé Research Lausanne, Route du Jorat 57, 1000 Lausanne 26, Switzerland

Karine Meisser Redeuil, Société de Produits Nestlé SA, Nestlé Research Lausanne, EPFL Innovation Park, Building H, CH-1015 Lausanne

Email: karine.meisser@rdls.nestle.com

Phone: +41 21 785 9229

^{*} To whom correspondence should be addressed:

Table S1: Phosphatidylcholine levels at various stages of the refining process of a solvent extracted cake oil

Type of Oil	dipalmitoyl-PC	palmitoyl-oleoyl- PC	dioleoyl-PC	palmitoyl- linoleoyl-PC (PA ratio)	oleoyl-linoleoyl- PC	dilinoleoyl-PC	Sum of PC
SE cake oil	0.07	2.31	13.32	6.25	7.21	17.95	47.11
Deg. SE cake oil	0.00	0.00	0.02	0.00	0.01	0.01	0.04
1-week cooling SE cake oil 1-week cooling Deg. SE cake oil	0.03 0.00	1.23 0.00	7.15 0.07	3.37 0.03	4.07 0.04	10.34 0.08	26.19 0.23

SUPPLEMENTAL FIGURE CAPTIONS

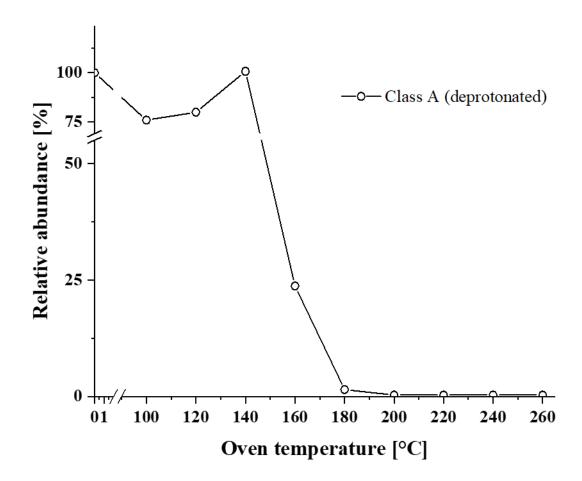
Figure S1: Relative abundance of reported discovered chlorine carrying substances (see Table 1, ion [M-H]⁻) and levels of sunflower major MCPD diesters formed during the in-vitro heat treatment of crude sunflower oil.

Figure S2: Distribution of chlorine-carrying substances identified in negative ionization mode (A) in various bio sunflower oil fractions.

(peak areas were all normalized to OLL peak area)

Figure S3: Distribution of major MCPDEs (LL, OL, PL, OO) in various bio sunflower oil fractions.

(peak areas were all normalized to their deuterated ISTD peak area)


Figure S4: Relative distribution of chlorine carriers class A (A); class B (B); class C (C) and class D (D) along the sunflower refining process. The sum of each carrier class was taken into account and normalized to their internal standard nicarbazin.

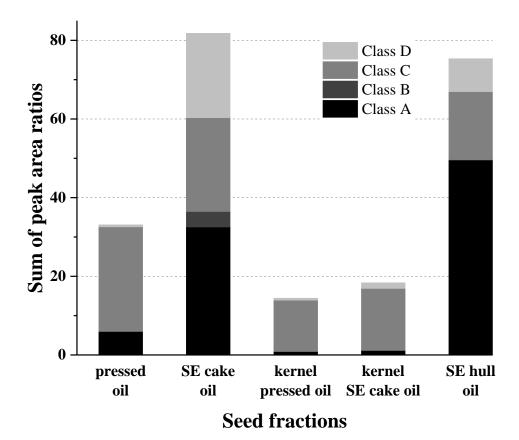

Process step identity: A (Crude); B (Degummed); C (Degummed short cooling); D (Degummed short cooling bleached); E (Degummed bleached short cooling); F (Degummed bleached)

Figure S5: Total 2-MCPD (A) and glycidol content (B) along the sunflower refining process.

Process step identity: A (Crude); B (Degummed); C (Degummed short cooling); D (Degummed short cooling bleached); E (Degummed bleached short cooling); F (Degummed bleached)

Figure S1

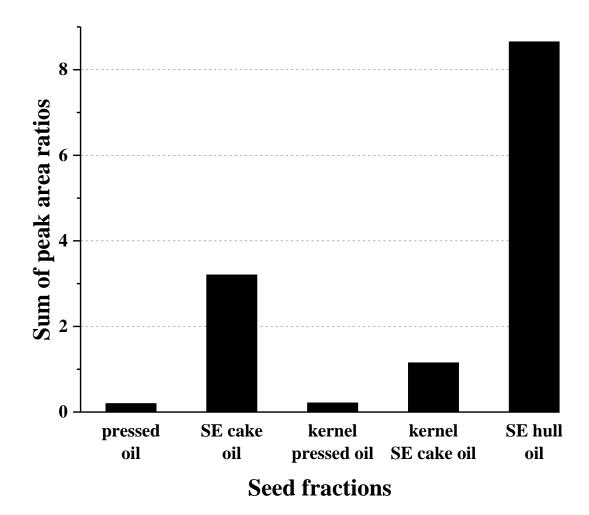
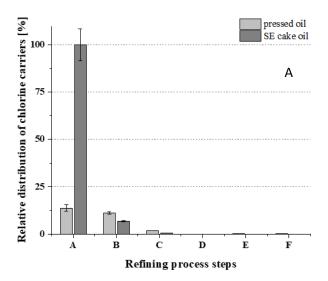
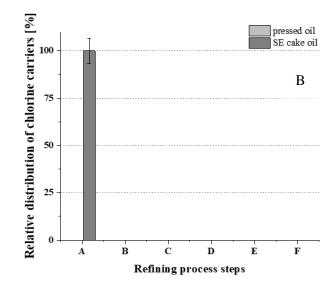
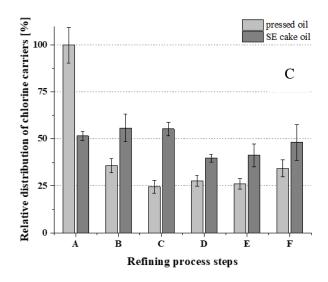





Figure S4

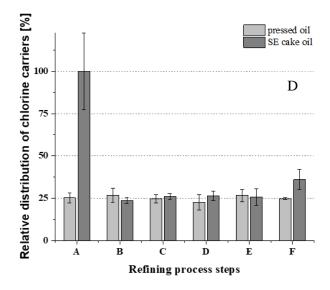
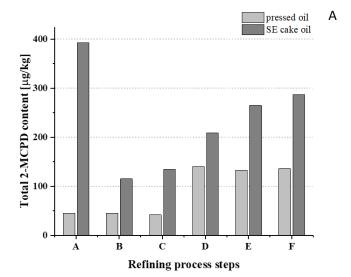
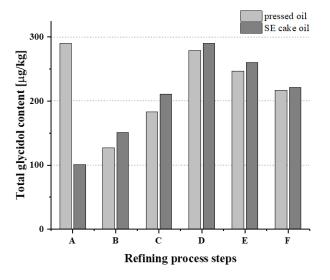




Figure S5

В