Supporting Information: Generalizing the Chiral Self-Assembly of Spheres and Tetrahedra to Non-Spherical and Polydisperse Molecules in

 $(C_{70})_x(C_{60})_{1-x}(SnI_4)_2$

Daniel B. Straus* and Robert J. Cava*

Department of Chemistry, Princeton University, Princeton, NJ 08544 USA *Authors to whom correspondence should be addressed. Email: dstraus@princeton.edu, rcava@princeton.edu

Experimental

1. Synthesis

 $C_{70}(SnI_4)_2$ was synthesized by dissolving 50.15 mg C₇₀ (99%, Proactive Molecular Research) and 2506.86 mg SnI₄ (95%, Alfa-Aesar) in a mixture of 50 mL toluene (ACS, Sigma-Aldrich) and 60 mL 1,2-dichlorobenzene (99%, Acros Organics) using sonication. 25 mL of benzene followed by ~400 mL pentane (98%, Sigma-Aldrich) were layered on top of the dichlorobenzene-toluene solution and left undisturbed so the solution would mix. Two phases of crystals grew: dull black hexagonally shaped crystals of $C_{70}(SnI_4)_2$ as well as shiny black rectangular crystals of another phase that we hypothesize is a C_{70} -pentane intercalation compound.

 $(C_{70})_{0.75}(C_{60})_{0.25}(SnI_4)_2$ was synthesized by dissolving 2.57 mg C₆₀ (99.5%, Proactive Molecular Research), 8.80 mg C₇₀, and 504.0 mg SnI₄ in a mixture of 10 mL toluene and 10 mL 1,2-dichlorobenzene using sonication. ~90 mL pentane was layered on top, and the solution was placed in a 4 °C refrigerator and left undisturbed while the solutions mixed. Dull black crystals of $(C_{70})_{0.75}(C_{60})_{0.25}(SnI_4)_2$ were the only phase that formed.

 $(C_{70})_{0.5}(C_{60})_{0.5}(SnI_4)_2$ was synthesized by dissolving 5.12 mg C₆₀, 6.11 mg C₇₀, and 503.1 mg SnI₄ in a mixture of 10 mL toluene and 10 mL 1,2-dichlorobenzene using sonication. ~90 mL pentane was layered on top, and the solution was placed in a 4 °C refrigerator and left undisturbed while the solutions mixed. Dull black crystals of $(C_{70})_{0.5}(C_{60})_{0.5}(SnI_4)_2$ were the only phase that formed.

 $(C_{70})_{0.25}(C_{60})_{0.75}(SnI_4)_2$ was synthesized by dissolving 7.47 mg C₆₀, 2.93 mg C₇₀, and 504.0 mg SnI₄ in a mixture of 16 mL toluene and 8 mL 1,2-dichlorobenzene using sonication. ~85 mL pentane was layered on top, and the solution was placed in a 4 °C refrigerator and left

undisturbed while the solutions mixed. Dull black crystals of $(C_{70})_{0.25}(C_{60})_{0.75}(SnI_4)_2$ were the only phase that formed.

2. Characterization

Powder X-ray diffraction patterns were collected on a Bruker D8 Advance Eco diffractometer using Cu k α radiation ($\lambda = 1.5406$ Å). To prepare the powder, several crystals of $(C_{70})_x(C_{60})_{1-x}(SnI_4)_2$ were placed on a Bruker miscut Si low background slide and crushed. Lattice parameters were extracted using Le Bail refinements performed with TOPAS.¹

Single crystal X-ray diffraction data were collected on a Bruker APEX-II Duo CCD diffractometer or a Bruker D8 Venture diffractometer with a Photon III detector, both using Mo k α ($\lambda = 0.7107$ Å) radiation. Crystals were mounted with Parabar 10312 oil (Hampton Scientific) on Kapton loops (MiTiGen). The data are integrated using SAINT (Bruker AXS) and scaled with a multiscan absorption correction using SADABS (Bruker AXS). The P4₃32 (#212) or P4₁32 (#213) space groups were identified through systematic absences using XPREP (Bruker AXS). The initial solution was found using the intrinsic phasing method of the SHELXT program² and the structure was refined using the least squares algorithm of the SHELXL program³ in the OLEX2 GUI.⁴ The absolute configuration (handedness) of the crystal was resolved using the anomalous dispersion of X-rays, and the correct enantiomer was identified by a Flack parameter of approximately zero.⁵

To refine the single crystal structure for $C_{70}(SnI_4)_2$, a C_{70} molecule was imported from ref 6 (ICSD collection code 75506) using the *importfrag* command in OLEX2 and refined as a rigid body. The coordinates of the C atoms were restrained using an AFIX 9 instruction in SHELXL, which allows the C_{70} molecule to uniformly grow or shrink but fixes the relative position of the C atoms. The occupancy of each C atom was fixed at 1/6 to account for disorder about symmetry

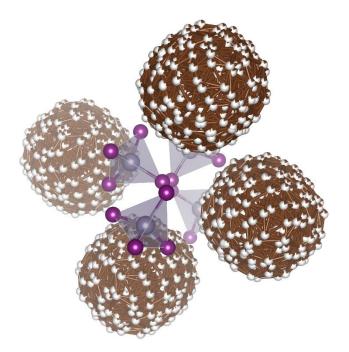
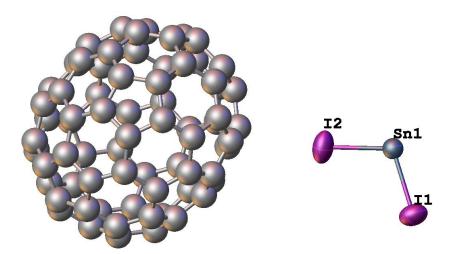
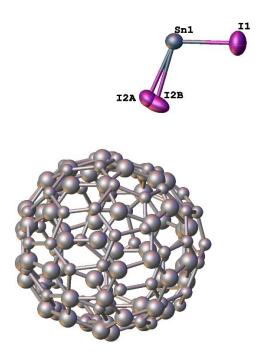
S3

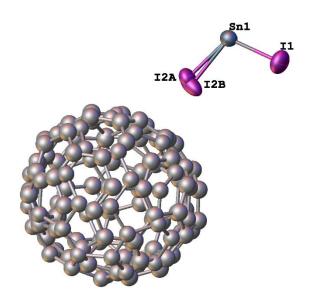
elements. Anisotropic thermal parameters were used for the Sn and I atoms. The C atoms were refined isotropically. Every C atom is restrained to have identical thermal parameters using the EADP instruction in SHELXL.

The single crystal structures of $(C_{70})_x(C_{60})_{1-x}(SnI_4)_2$ (x = 0.25, 0.5, 0.75) were refined similarly to that of $C_{70}(SnI_4)_2$. The C_{70} molecule was refined as a rigid body using the AFIX 9 instruction, with the occupancy of each C atom in C_{70} set to x/6 to account for disorder about symmetry elements where x is the nominal fraction of C_{70} (for instance, the occupancy is set to 1/24 for x = 0.25). To account for the presence of C_{60} , the structure of the C_{60} molecule was taken from the Idealized Molecular Geometry Library.⁷ The thermal parameters of each C atom in C_{70} were restrained to be identical to one another using the EADP instruction. Like C_{70} , the C_{60} molecule was refined as a rigid body using the AFIX 9 instruction. The occupancy of each C atom in C_{60} was fixed as (1 - x)/6 to account for disorder about symmetry elements (for instance, the occupancy is set to 3/24 for x = 0.25). The thermal parameters of each C atom in C_{60} were restrained to be identical to one another using the EADP instruction. In the x = 0.25 and x = .5structures, one of the two symmetry distinct I atoms resolved with disorder, and the occupancies of the two sites were constrained to sum to unity.

Crystal structure images are visualized using VESTA.⁸ Asymmetric units in Figures S2-S5 are visualized using OLEX2.⁴

Additional Figures


Figure S1: Depiction of 4_1 screw axis in $C_{70}(SnI_4)_2$ with disordered C_{70} molecules shown.

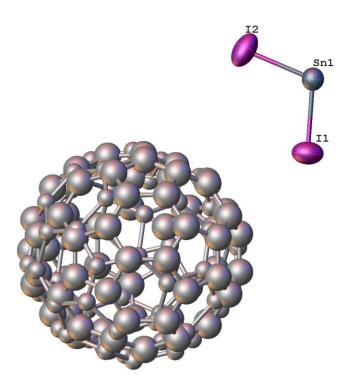

Figure S2: Asymmetric unit for single crystal structure of $C_{70}(SnI_4)_2$. Atoms are represented as 50% probability thermal displacement parameters.

Figure S3: Asymmetric unit for single crystal structure of $(C_{70})_{0.25}(C_{60})_{0.75}(SnI_4)_2$. Atoms are represented as 50% probability thermal displacement parameters.

Figure S4: Asymmetric unit for single crystal structure of $(C_{70})_{0.5}(C_{60})_{0.5}(SnI_4)_2$. Atoms are represented as 50% probability thermal displacement parameters.

Figure S5: Asymmetric unit for single crystal structure of $(C_{70})_{0.75}(C_{60})_{0.25}(SnI_4)_2$. Atoms are represented as 50% probability thermal displacement parameters.

Additional Tables

Table S1: Crystal data and structure refinement for $C_{70}(SnI_4)_2$.

rubie bri erjötar anta anta	
Empirical formula	$C_{70}I_8Sn_2$
Formula weight	2093.31
Temperature/K	294.99
Crystal system	cubic
Space group	P4132
a/Å	17.1493(7)
Volume/Å ³	5043.6(6)
Z	4
$\rho_{calc}g/cm^3$	2.757
μ/mm^{-1}	5.937
F(000)	3776.0
Crystal size/mm ³	$0.568 \times 0.536 \times 0.284$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/	°4.114 to 57.396
Index ranges	$-21 \le h \le 12, -23 \le k \le 22, -23 \le l \le 11$
Reflections collected	20622
Independent reflections	2189 [$R_{int} = 0.0310$, $R_{sigma} = 0.0158$]
Data/restraints/parameters	2189/0/24
Goodness-of-fit on F ²	1.066
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0679, wR_2 = 0.1910$
Final R indexes [all data]	$R_1 = 0.0911, wR_2 = 0.2144$
Largest diff. peak/hole / e Å-	³ 0.93/-0.72
Flack parameter	-0.04(3)

Table S2: Crystal data and structure refinement for	(C_{70})	$(C_{60})_{0.25}$	$_{0})_{0.75}(SnI_{4})_{2}.$
---	------------	-------------------	------------------------------

·	
Empirical formula	$C_{62.5}I_8Sn_2$
Formula weight	2003.23
Temperature/K	295
Crystal system	cubic
Space group	P4 ₃ 32
a/Å	16.7390(13)
Volume/Å ³	4690.2(11)
Z	4
$\rho_{calc}g/cm^3$	2.837
μ/mm^{-1}	6.377
F(000)	3596.0
Crystal size/mm ³	$0.467 \times 0.308 \times 0.266$
Radiation	MoKα (λ = 0.71073)
2 Θ range for data collection/°	3.44 to 58.274
Index ranges	$-20 \le h \le 22, -22 \le k \le 22, -8 \le l \le 22$
Reflections collected	18754
Independent reflections	2127 [$R_{int} = 0.0585$, $R_{sigma} = 0.0367$]
Data/restraints/parameters	2127/0/42
Goodness-of-fit on F ²	1.163
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0759, wR_2 = 0.1507$
Final R indexes [all data]	$R_1 = 0.1277, wR_2 = 0.1725$
Largest diff. peak/hole / e Å ⁻³	0.90/-0.81
Flack parameter	-0.08(2)

20010 000 01 01 0000 0110 0010	
Empirical formula	$C_{65}I_8Sn_2$
Formula weight	2033.23
Temperature/K	295.01
Crystal system	cubic
Space group	P4 ₃ 32
a/Å	16.8763(13)
Volume/Å ³	4806.5(11)
Z	4
$\rho_{calc}g/cm^3$	2.810
μ/mm^{-1}	6.225
F(000)	3656.0
Crystal size/mm ³	$0.421\times0.382\times0.303$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.412 to 57.394
Index ranges	$-22 \le h \le 21, -22 \le k \le 13, -21 \le l \le 21$
Reflections collected	19074
Independent reflections	2081 [$R_{int} = 0.0387$, $R_{sigma} = 0.0239$]
Data/restraints/parameters	2081/0/42
Goodness-of-fit on F ²	1.188
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0794, wR_2 = 0.1478$
Final R indexes [all data]	$R_1 = 0.1241, wR_2 = 0.1714$
Largest diff. peak/hole / e Å ⁻³	1.03/-1.13
Flack parameter	-0.10(2)

Table S3: Crystal data and structure refinement for $(C_{70})_{0.5}(C_{60})_{0.5}(SnI_4)_2$.

Table 54. Crystal uata allu stru	$C_{70} = C_{60} = C$
Empirical formula	$C_{67.5}I_8Sn_2$
Formula weight	2063.25
Temperature/K	295
Crystal system	cubic
Space group	P4 ₃ 32
a/Å	17.0312(3)
Volume/Å ³	4940.1(3)
Z	4
$\rho_{calc}g/cm^3$	2.774
μ/mm^{-1}	6.059
F(000)	3716.0
Crystal size/mm ³	$0.279\times0.268\times0.186$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.348 to 59.06
Index ranges	$-17 \le h \le 22, -23 \le k \le 23, -14 \le l \le 23$
Reflections collected	27967
Independent reflections	2323 [$R_{int} = 0.0568$, $R_{sigma} = 0.0223$]
Data/restraints/parameters	2323/0/32
Goodness-of-fit on F ²	1.034
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0580, wR_2 = 0.1532$
Final R indexes [all data]	$R_1 = 0.0823, wR_2 = 0.1761$
Largest diff. peak/hole / e Å ⁻³	0.70/-0.79
Flack parameter	-0.06(3)

Table S4: Crystal data and structure refinement for $(C_{70})_{0.75}(C_{60})_{0.25}(SnI_4)_2$.

References

- (1) Coelho, A. A. TOPAS and TOPAS-Academic : an optimization program integrating computer algebra and crystallographic objects written in C++. *J. Appl. Crystallogr.* **2018**, *51*, 210–218.
- (2) Sheldrick, G. M. SHELXT Integrated space-group and crystal-structure determination. *Acta Crystallogr. Sect. A Found. Adv.* **2015**, *71*, 3–8.
- (3) Sheldrick, G. M. Crystal structure refinement with SHELXL . *Acta Crystallogr. Sect. C Struct. Chem.* **2015**, *71*, 3–8.
- (4) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2 : a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* 2009, *42*, 339– 341.
- (5) Flack, H. D. On enantiomorph-polarity estimation. *Acta Crystallogr. Sect. A Found. Crystallogr.* 1983, 39, 876–881.
- (6) van Smaalen, S.; Petricek, V.; de Boer, J. L.; Dusek, M.; Verheijen, M. A.; Meijer, G. Low-temperature structure of solid C70. *Chem. Phys. Lett.* **1994**, *223*, 323–328.
- (7) Guzei, I. A. An idealized molecular geometry library for refinement of poorly behaved molecular fragments with constraints. *J. Appl. Crystallogr.* **2014**, *47*, 806–809.
- (8) Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. *J. Appl. Crystallogr.* **2011**, *44*, 1272–1276.