Supporting Information for ## A Guide to Water Free Lithium Bis(oxalate) Borate (LiBOB) Ceren Zor^{a,‡}, Yaprak Subaşı^{b,c‡}, Durata Haciu^b, Mehmet Somer^b and Semih Afyon^{d,e*} ^aUniversity of Oxford, Department of Materials, Oxford, OX1 3PH, United Kingdom. ^bKoç University, Department of Chemistry, Sarıyer, Istanbul, 34450, Turkey. ^cKoç University Boron and Advanced Materials Application and Research Center (KUBAM), Istanbul, 34450, Turkey. ^dGebze Technical University, Energy Technologies Institute, Gebze, Kocaeli, 41400, Turkey. ^eGebze Technical University, Department of Mechanical Engineering, Gebze, Kocaeli, 41400, Turkey. *Corresponding author: E-mail: safyon@gtu.edu.tr, [‡]C. Z. and Y. S. should be considered co-first authors. **Figure S1.** XPRD patterns of high purity anhydrous LiBOB synthesized using different protective gases (dry air and N_2). **Figure S2.** XRPD pattern showing crystalline water, HBO₂, and Li₂C₂O₄ formation after aging the anhydrous LiBOB for 2 days under ambient conditions. **Figure S3.** SEM micrographs for anhydrous LiBOB aged under ambient conditions showing changes in the prismatic morphology and formation of pores. **Figure S4.** SEM micrographs showing the morphology of the products synthesized at 150-200 °C. **Figure S5.** XRPD patterns of (a) theoretical anhydrous LiBOB (violet) and as-synthesized anhydrous LiBOB (black), (b) theoretical LiBOB.H₂O (violet) and as-obtained LiBOB.H₂O (30 mins air exposed sample) (yellow). **Figure S6.** The comparison of TGA curves of the as-synthesized anhydrous LiBOB (blue), (b) LiBOB.H₂O (red).