Supplemental files

New insights on the good compatibility of ether-based localized high-concentration electrolyte with Li metal

Tao Li[#], Yan Li[#], Yiling Sun, Zhengfang Qian, Renheng Wang*

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China **Table S1.** Interfacial resistance of Li | NCM523 batteries with DMC-based LHCE and DME-based LHCE at 1^{st} cycle and 74^{th} cycle.

	3^{rd} cycle resistance (Ω)		74 th cycle resistance (Ω)	
	R _e	R _{SEI} + R _{ct}	R _e	R _{SEI} +R _{ct}
DMC-basd LHCE	7.3	27.6	9.9	47.9
DME-basd LHCE	3.5	20.7	3.4	24.6

Figure S1. XPS spectra depth profiles of SEI formed in (a) DMC-based LHCE and (b)

DME-based LHCE. The Li metal anodes were obtained from Li | NCM523 batteries after the 1st charge process at 0.1 C.

Figure S2. The peak area ratio of (c) S-containing and (d) N-containing species in SEI

formed in the DMC-based LHCE and DME-based LHCE after etching 8min.

Figure S3. The atomic concentration of F, N, S in SEI formed in (a) DMC-based LHCE and (b) DME-based LHCE after etching different time.