Supporting Information

Facile Synthesis of Rh Anchored Uniform Spherical COF for One-Pot Tandem Reductive Amination of Aldehydes to Secondary Imines

Nan Wang^{a, b}, Jianguo Liu^{b,c*}, Long Tang^b, Xiuzhi Wei^{b,d}, Chenguang Wang^b, Xinjun Li^b, Longlong Ma^{a, b, *}

^a School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China

^b Key Laboratory of Renewable Energy, CAS, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

^c Dalian National Laboratory for Clean Energy, Dalian 116023, China

^d Department of Engineering Science, University of Science and Technology of China, Hefei 230026, P.R. China

Corresponding Author: liujg@ms.giec.ac.cn; mall@ms.giec.ac.cn

Figure S1. Elemental analysis of Rh/COF1

Figure S2. Elemental analysis of Rh/COF2

Figure S3. ³C CP-MAS solid state NMR spectrum of COF1

Figure S4. ¹³C CP-MAS solid state NMR spectrum of COF2

Figure S5. Raman spectra of the COF1 and COF2

Table S1.The element contents of the as-prepared catalysts determined by SEM-EDS

spectrum.

	C (wt%)	N (wt%)	O (wt%)	Rh (wt%)	Rh ^a (wt%)
Rh/COF1	79.52	4.48	10.18	5.82	4.07
Rh/COF2	79.06	9.76	7.85	3.31	3.27

^a determined by ICP-OES

Figure S6. Nitrogen adsorption-desorption isotherms of COF1 and Rh/COF1.

Figure S7. Nitrogen adsorption-desorption isotherms of COF2 and Rh/COF2.

Figure S8. The catalytic performances as a function of reaction in one-pot tandem reductive amination of benzaldehyde to secondary imines over Rh/COF2 catalyst.(reaction condition, 5mg Rh/COF2, 20bar H₂, 90°C)

Figure S9. Durability test for one-pot tandem reductive amination of benzaldehyde to secondary imines over Rh/COF2 catalyst.

Table S2. Specific surface area, pore volume, pore diameter and yield of COF and Rh/COF.

catalyst	Pore size(nm)	Surface area (m^2/g)	Total volume (cc/g)
COF1	3.65	97.75	8.652*10-2
Rh/COF1	4.37	55.7	6.09*10-2
COF2	8.75	38.51	8.427*10-2

Rh/COF2	9.08	22.63	5.139*10-2

Table S3. Comparison with other reported catalysts in the synthesis of secondary imines.

catalyst	Yield (%)	Ref
$[Ir(COE)_2Cl]_2$	99	[11]
Au-Pd/TiO ₂	87	[12]
(iPrPNP)Fe(H)Br(CO)	96	[13]
Rh/COF2	94%	This work

1H NMR spectra

Figure S10. H NMR spectras of benzenemethanamine

Figure S11. H NMR spectras of dibenzylamine

Figure S12. H NMR spectras of benzaldehyde

Figure S13. H NMR spectras of benzylamine

Figure S14. H NMR spectras of phenethyl alcohol

