Supporting Information

Phenoxazine-containing polyaniline derivatives with improved electrochemical stability and processability

Mohammed Almtiri, Timothy J. Dowell, Iwei Chu, David O. Wipf, and Colleen N. Scott*

Mississippi State University, Department of Chemistry, 310 President Circle, Mississippi State, MS 39762 Email: cscott@chemistry.msstate.edu

Table S1: Screened conditions for Buchwald/Hartwig reaction with the synthesis of the small molecule.

Br		Br +	catalyst, li base, so		N N N N N N N N N N N N N N N N N N N		N H
Entry	catalyst	ligand	base	solvent	temp	time	isolated
					(°C)	(h)	yield (%)
1	Pd ₂ dba ₃	BINAP	KO <i>t</i> But	THF	85	24	none
2	$Pd(OAc)_2$	Xphos	Cs_2CO_3	THF	85	72	mono
3	Pd ₂ dba ₃	Xantphos	Cs_2CO_3	Dioxane	100	24	none
4	$Pd(OAc)_2$	Xphos	Cs_2CO_3	Toluene	100	48	none
5	Pd(OAc) ₂	Xphos	Cs_2CO_3	Dioxane	100	48	none
6	$Pd(OAc)_2$	Xphos	KO ^t But	Toluene	100	72	traces
7	Pd(OAc) ₂	Xphos	NaO 'But	THF	85	18	72

1 equiv. dibromide, 2 equiv. N,N-diethyl-PPDA.

Figure S1: ¹H NMR of crude product of small molecule and the dibrominated xanthene starting material. Peaks "a" and "b" shifted up-field in the product and no residual peaks were seen in the crude.

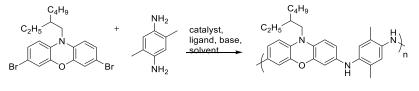
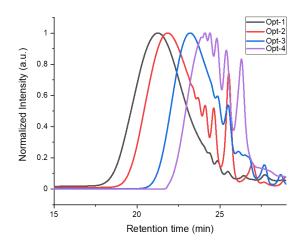
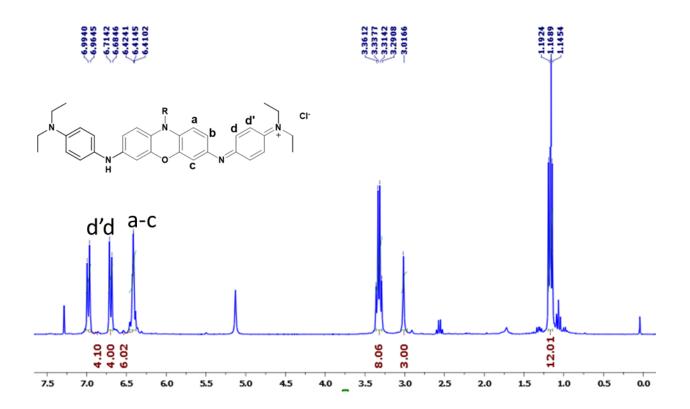



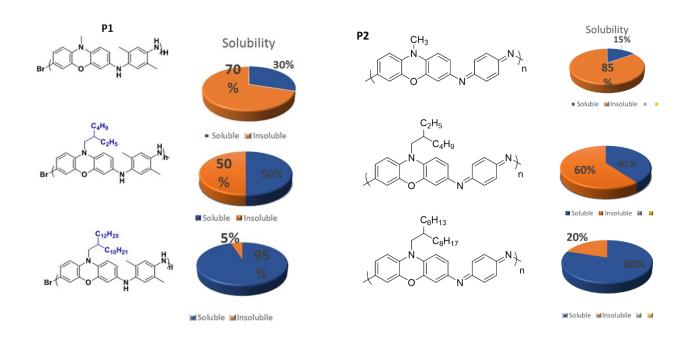
Table S2: Condition optimization of the polymers.

Entry	Pd	Ligand	Base	Solvent	$\begin{array}{c} M_n \\ (g\!/mol)^{[a]} \end{array}$	$\begin{array}{c} M_w \\ (g/mol)^{[a]} \end{array}$	Ð [a]
Opt-1	Pd(OAc) ₂	Xphos	NaO'Bu	THF	12300	25350	2.06
Opt-2	Pd(dba) ₂	BINAP	NaO ^t Bu	THF	9280	15710	1.69
Opt-3	Pd(OAc) ₂	dppf	NaO ^t Bu	THF	3190	5260	1.65
Opt-4	Pd(dba) ₂	dppf	NaO ^t Bu	THF	2230	3060	1.371

 $^{[a]}$ M_n, M_w, and PDI of the polymers were determined by gel permeation chromatography using polystyrene standards in THF at 40 °C.

Figure S2: GPC data for polymer optimization. GPC traces of polymers eluted with THF at 40 °C at a flow rate of 0.7 mL/min.


Figure S3: ¹H NMR of small molecule

P1 R-group	Mn	Mw	Mw/Mn
CH ₃	700	5860	8.23
C₂H₅ ç ^{c,c} ⊂ C₄H₃	12360	20260	1.64
C ₁₂ H ₂₅	45180	60990	1.35
P2 R-group	Mn	Mw	Mw/Mn
CH ₃	-	-	-
C₂H₅ ぢ∽∕⊂C₄H9	12000	16960	1.41

Table S3: Molecular weight distribution of different R-groups on P1 and P2.

Figure S4: Solubility chart showing the effect of the size of the alkyl group on solubility of P1 and P2.

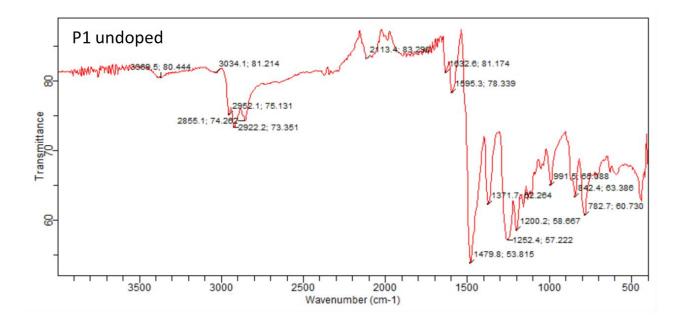
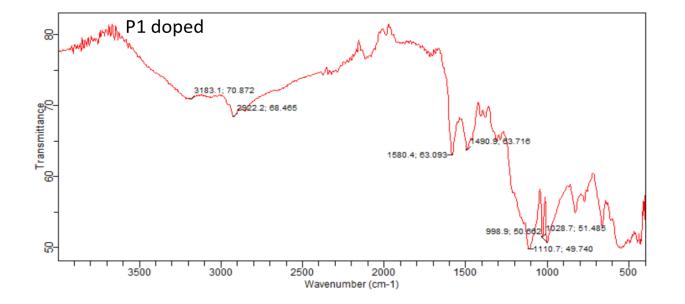
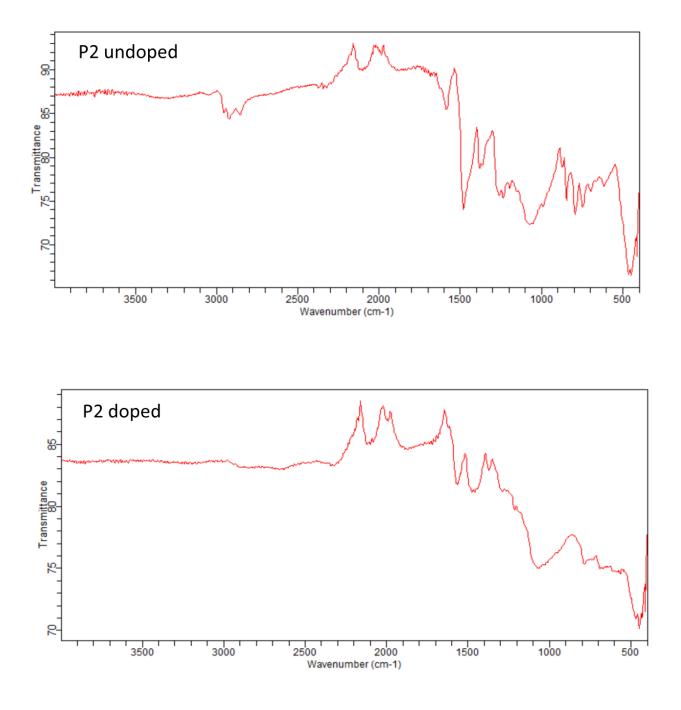




Figure S5: FTIR spectra of doped and undoped P1 and P2.

Table S4: E	PR data for	• P1 and P2.
-------------	-------------	----------------------------

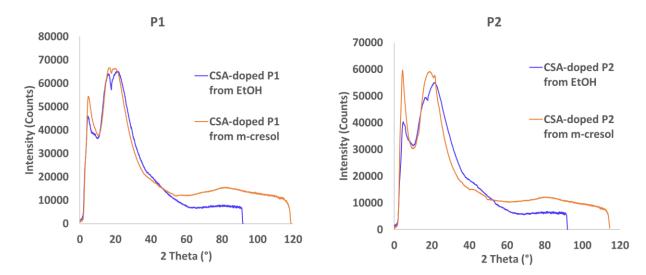
P1				P2	
dopants	a/b	g-factor	dopants	a/b	g-factor
CSA	1.63	2.0045	CSA	1.36	2.0039
PSS	1.08	2.0034	PSS	1.78	2.0054
DBS	1.19	2.0036	DBS	1.18	2.0040
HCI	1.05	2.0033	HCI	1.05	2.0035

Entry	Sample preparation	Conductivity (S/cm)	Average
1	P1-CSA	0.0012	-
2	P1-CSA	0.019	-
3	P1-CSA- <i>m</i> -cresol/no heat	4.48	
4	P1-CSA- <i>m</i> -cresol/no heat	1.39	2.82
5	P1-CSA- <i>m</i> -cresol/no heat	2.58	
3	P1-CSA- <i>m</i> -cresol/no heat	4.58	
6	P1-CSA- <i>m</i> -cresol /heat 1 min	4.08	
7	P1-CSA-m-cresol/heat 2 min	2.85	-
8	P1-CSA- <i>m</i> -cresol/heat 3 min	2.56	
9	P1-CSA-m-cresol/heat 4 min	2.38	

Table S5: Summary of conductivity studies for P1.

Entry 1 was spin-coated; entry 2 was drop-casted; entries 3-12 were drop-casted. All films were prepared on glass slides. Entries 3-12 were slowly dried in the presence of *m*-cresol vapor. All samples were air-dried for 24 h following preparation. For entries 9-12, heating was provided by a heating gun.

Entry	Sample Preparation	Conductivity (S/cm)	Average
1	P2-CSA-m-cresol	0.350	
2	P2-CSA-m-cresol	0.350	0.408
3	P2-CSA-m-cresol	0.431	
4	P2-CSA-m-cresol	0.499	


Table S6: Summary of conductivity studies for P2.

All samples were drop casted on glass slides and the solvent slowly removed in the presence of *m*-cresol vapor, followed by 24 h air drying.

Figure S6: SEM images of P1 at different length scale.

Figure S7: XRD data for **P1** and **P2** crushed films casted from EtOH in the presence and absence of *m*-cresol (temp. at 100 K).

Index	2 theta (deg)	D-spacing (Å)	Intensity (counts)
1	4.715	18.72445	33614.7
2	16.093	5.50316	29389.9
3	21.167	4.19389	26976.5

Table S7: XRD values for P1 absence of *m*-cresol

 Table S8: XRD values for P1 presence of *m*-cresol

Index	2 theta (deg)	D-spacing (Å)	Intensity (counts)
1	4.701	18.78396	48643.3
2	16.538	5.35589	49379.9
3	19.709	4.5008	47205.4
4	81.963	1.17457	256.738

Table S9: XRD values for P2 absence of *m*-cresol

Index	2 theta (deg)	D-spacing (Å)	Intensity (counts)
1	1	4.879	18.09659
2	2	16.584	5.34128
3	3	21.577	4.11526

 Table S10: XRD values for P2 presence of *m*-cresol

Index	2 theta (deg)	D-spacing (Å)	Intensity (counts)
1	4.255	20.74743	54007.3
2	18.697	4.74211	59113.3
3	21.474	4.13468	57623.6
4	42.427	2.12881	14900.5
5	48.132	1.88897	12521.9
6	81.137	1.18442	11958.1

Figure S8: TUNA AFM of P1. $10 \times 10 \mu m$ imaged region. Height Sensor, Peak Force Error, and Contact Current.

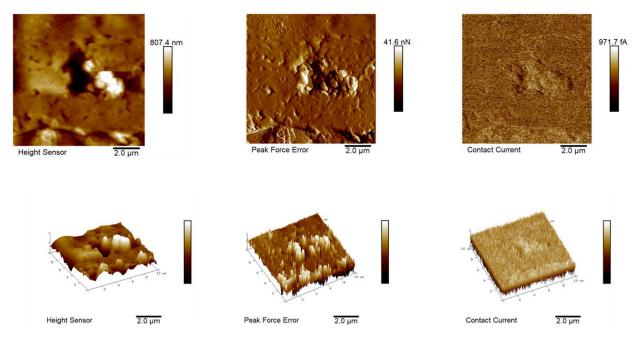


Figure S9: 100 cyclic voltammetry cycles of doped P1 on spray-cast films on ITO/glass in 0.1 M TBAPF₆/acetonitrile.

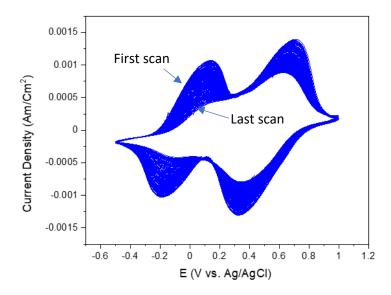
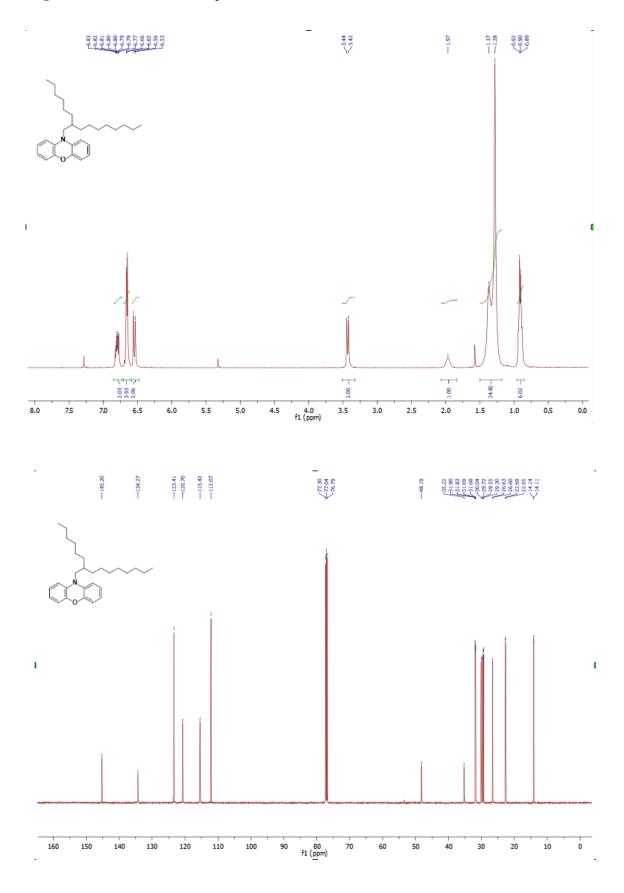



Figure S10: ¹H and ¹³C NMR spectra of 1b

S11

Figure S11: ¹H and ¹³C NMR spectra of 1c

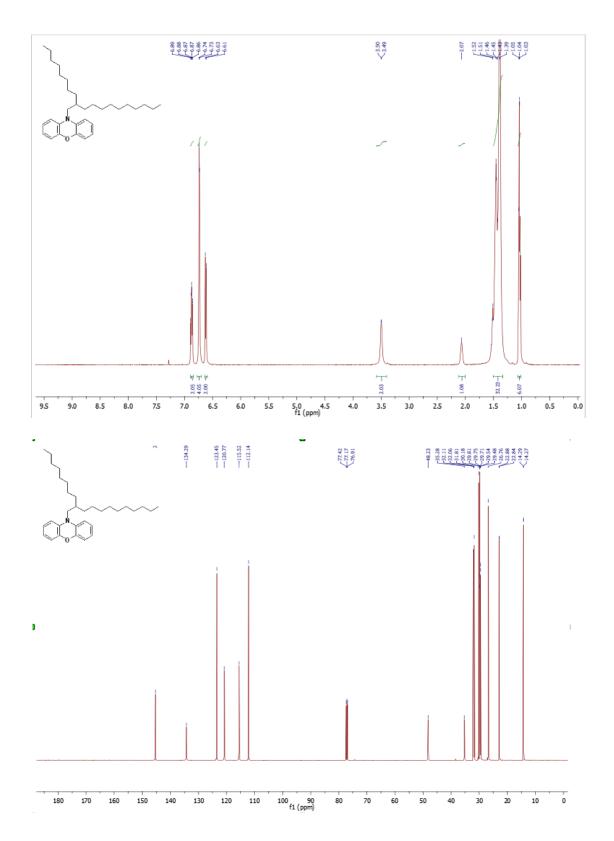


Figure S12: ¹H and ¹³C NMR spectra of 2b

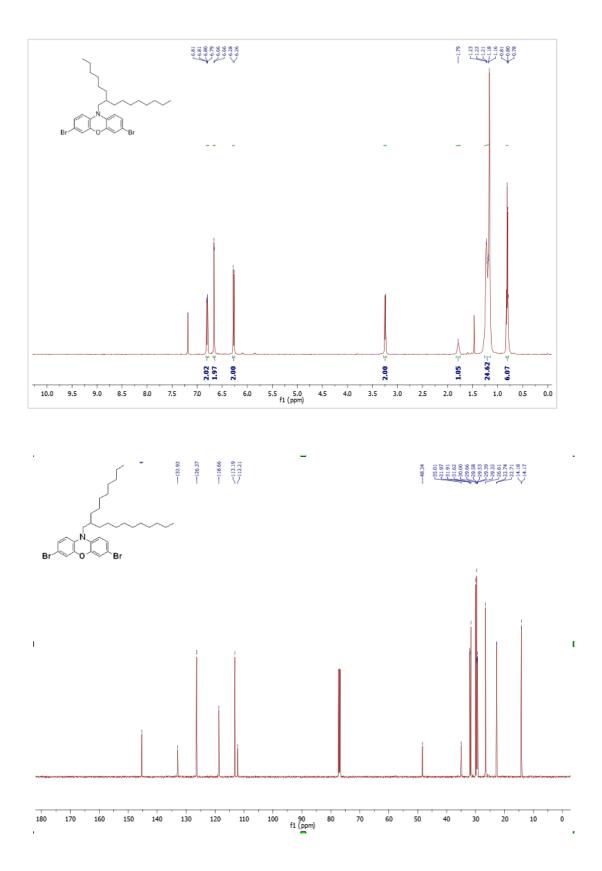
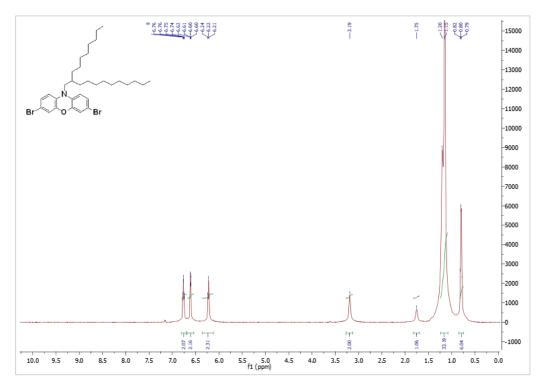
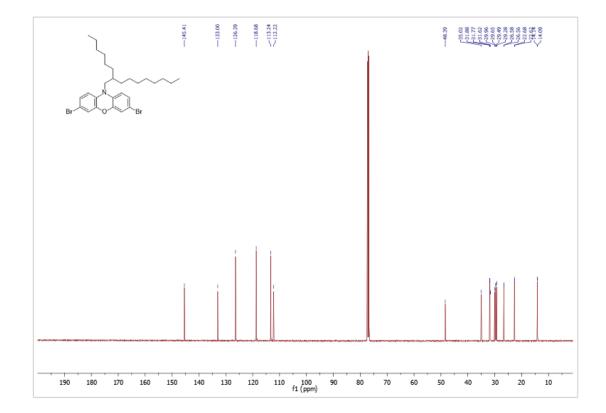




Figure S13: ¹H and ¹³C NMR spectra of 2c

