Divalent Ytterbium Hydrido Complex Supported by β-Diketiminato Based Tetradentate Ligand: Synthesis, Structure and Reactivity

Qingqing Wen,[†] Bin Feng,[†] Li Xiang,^{†,‡}* Xuebing Leng,[†] and Yaofeng Chen^{†,*}

[†] State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.

[‡] Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China.

Supporting Information

Contents

1. General	S1
2. Synthesis and characterization data of new complexes	S2
3. X-ray crystallography	S9
4. NMR spectra of new complexes	S13
5. References	S41

General. All manipulations were performed under an atmosphere of nitrogen using Schlenk techniques or in a nitrogen-filled glovebox. THF, toluene, benzene, hexane, C₆D₆, *d*₈-toluene, *d*₈-THF and mesitylene were dried over Na/K alloy, transferred under vacuum, and stored in the glovebox. Cyclohexane, PhSiH₃ and pyridine were dried over CaH₂, transferred under vacuum, degassed by three freeze-pump-thaw cycles, and stored in the glovebox. YbI₂(THF)₂¹, KCH₂SiMe₃² and PhSiD₃³ were synthesized following the literature procedures. The highly pure H₂ (99.999%) was further dired by passing through activated 4 Å molecular sieve. 4-(Dimethylamino)pyridine (DMAP), bipyridine (bpy), triphenylphosphine oxide, triphenylphosphine sulfide and diphenyl disulfide were purified by sublimation before use. ¹H, ¹³C {¹H} and ³¹P {¹H} spectra were recorded on a Varian 400 MHz, an Agilent 400 MHz, a Bruker 400 MHz or an Agilent 600 MHz spectrometer. ²H spectra were recorded on a Bruker 400 MHz spectrometer. Chemical shifts δ were reported in ppm with references to the residual resonance of the deuterated solvents for proton and carbon spectroscopies, to internal C₆D₆ for ²H chemical shifts, and to external H₃PO₄ (85%) for phosphorus chemical shifts. The assignment of ¹H and ¹³C {¹H} resonances was assisted with gCOSY, gHSQC and gHMBC spectra. Elemental analyses were performed by the Analytical Laboratory of Shanghai Institute of Organic Chemistry.

LK (L = [${}^{t}BuC(NDipp)CHC({}^{t}Bu)NCH_2CH_2N(Me)CH_2CH_2NMe_2$]⁻, Dipp = 2,6-(${}^{i}Pr$)₂C₆H₃): LK was synthesized that of LLi.⁴ А THF solution similar to (20 mL) of Me('Bu)CNCH₂CH₂N(Me)CH₂CH₂NMe₂ (5.00 g, 22.0 mmol) was precooled to -78 °C, and then ⁿBuLi (22.0 mmol, 9.2 mL of a 2.40 M solution in hexane) was added dropwise. The mixture was allowed to warm to room temperature and stirred for 2 h, resulting in an orange solution. This mixture was precooled to 0 °C, and ClC('Bu)=N(Dipp) (6.16 g, 22.0 mmol) was added dropwise. After stirring at room temperature for 6 h, the volatiles of the reaction mixture were removed under vacuum. After that, water (8 mL) and hexane (50 mL) were added to the residue. The organic phase was collected, dried over Na₂SO₄, and filtered. The solvent of the filtration was removed under vacuum. The crude product LH was obtained as a yellow oil (9.80 g, 95% yield). The crude product could not be purified by distillation due to its high boiling point, and it is also difficult to be purified by column chromatography due to a hydrolysis of the imine unit in LH. However, the obtained crude product can be used for the synthesis of LK without purification. KH (1.32 g, 33.0 mmol) was added to a THF solution (20 mL) of LH (9.80 g, 20.8 mmol) at room temperature, the precipitate was separated by centrifugation after stirring for 12 h. The solvent of the solution was removed under vacuum, the residue was stirred in 10 mL of hexane, and the volatiles were removed again under vacuum. This operation was repeated for three times to remove THF completely. The residue was washed with hexane (15 mL \times 4) and dried under vacuum to give LK as a yellow solid (6.70 g, 63% yield). ¹H NMR (400 MHz, d_8 -THF, 25 °C): δ 6.71 (d, ${}^{3}J_{H-H} = 7.2$ Hz, 2H, *m*-ArH of Dipp), 6.29 (t, ${}^{3}J_{H-H} = 7.2$ Hz, 1H, *p*-ArH of Dipp), 4.28 (s, 1H, ^{*t*}BuC(N)CH), 3.67 (sept, ${}^{3}J_{H-H} = 6.2$ Hz, 2H, ArCHMe₂), 2.96 (m, 2H, NCH₂), 2.35 (m, 2H, NCH₂), 2.26 (m, 2H, NCH₂), 2.13 (s, 9H, NMe and NMe₂), 2.10 (m, 2H, NCH₂), 1.26 (s, 9H, CMe₃), 1.18 (d, ${}^{3}J_{H-H} = 6.2$ Hz, 6H, ArCHMe₂), 1.08 (s, 9H, CMe₃), 1.01 (d, ${}^{3}J_{H-H}$ = 6.2 Hz, 6H, ArCHMe₂). ¹³C{¹H} NMR (100 MHz, d_8 -THF, 25 °C): δ 180.6, 165.3 (imine C), 152.6 (*i*-ArC of Dipp), 138.2 (*o*-ArC of Dipp), 120.4 (*m*-ArC of Dipp), 113.6 (*p*-ArC of Dipp), 78.8 ('BuC(N)CH), 63.0, 58.3, 57.6, 53.2 (NCH₂), 45.8 (NMe₂), 43.1 (NMe), 41.9, 39.8 (CMe₃), 32.0, 31.3 (CMe₃), 28.6 (ArCHMe₂), 24.4, 22.2 (ArCHMe₂).

[LYb(\mu-I)]² (1): To a THF solution (3 mL) of YbI₂(THF)² (571 mg, 1.0 mmol) was added a THF solution (3 mL) of LK (509 mg, 1.0 mmol) at room temperature. The reaction was stirred for 2 h, resulting in a dark brown solution with gray precipitates. After filtration, the solvent of the filtration was removed under vacuum. The residue was stirred in 5 mL of hexane, and the volatiles were removed again under vacuum. This operation was repeated for three times to remove THF completely, and then the residue was extracted with toluene (15 mL). The solvent of the extraction was removed under vacuum, and the residue was washed with hexane (5 mL × 3) and dried under vacuum to give complex 1 as a dark red solid (400 mg, 52% yield). ¹H NMR (400 MHz, C₆D₆, 25 °C): δ 6.98 (m, 1H, *p*-Ar*H* of Dipp), 6.91 (m, 2H, *m*-Ar*H* of Dipp), 5.35 (s, 1H, 'BuC(N)CH), 4.12 (m, 1H, NCH₂), 3.62 (br, 1H, ArCHMe₂), 3.15 (br, 2H, NCH₂ and ArCHMe₂), 2.67 (m, 1H, NCH₂), 2.25 (s, 3H, NMe), 2.10 – 1.90

(m, 2H, NC*H*₂), 1.72 (m, 2H, NC*H*₂), 1.53 (br, 10H, N*Me*₂, NC*H*₂ and ArCH*Me*₂), 1.46 (s, 9H, C*Me*₃), 1.33 (d, ³*J*_{H-H} = 6.5 Hz, 3H, ArCH*Me*₂), 1.21 (br, 12H, C*Me*₃ and ArCH*Me*₂), 1.09 (br, 3H, ArCH*Me*₂). ¹³C{¹H} NMR (100 MHz, C₆D₆, 25 °C): δ 172.1, 171.2 (imine *C*), 147.5 (*i*-Ar*C* of Dipp), 140.3, 139.1 (*o*-Ar*C* of Dipp), 124.0, 123.2 (*m*-Ar*C* of Dipp), 123.0 (*p*-Ar*C* of Dipp), 89.8 (^{*i*}BuC(N)*C*H), 57.9, 57.2, 55.3, 47.7 (NCH₂), 44.7 (N*Me*), 44.4 (CMe₃), 43.5 (N*Me*), 40.8 (CMe₃), 32.4, 31.0 (C*Me*₃), 29.3 (ArCH*Me*₂), 27.8 (ArCHMe₂), 26.1, 23.8, 22.8 (ArCH*Me*₂). Anal. Calcd for C₆₀H₁₀₆I₂N₈Yb₂: C 46.81; H 6.94; N 7.28. Found: C 46.97; H 6.99; N 7.35.

LYbCH₂SiMe₃ (2): Complex 1 (154 mg, 0.10 mmol) and KCH₂SiMe₃ (27.0 mg, 0.20 mmol) were mixed in 4 mL of benzene at room temperature, resulting in a dark brown solution with gray precipitates. The reaction was kept at room temperature for 30 minutes, and then the solvent was removed under vacuum. The residue was extracted with hexane (8 mL). The solvent of the extraction was removed under vacuum to afford complex 2 as a dark red solid (132 mg, 90% yield). ¹H NMR (400 MHz, C₆D₆, 25 °C): δ 7.00 (m, 1H, *p*-ArH of Dipp), 6.92 (m, 2H, *m*-ArH of Dipp), 5.34 (s, 1H, ^tBuC(N)CH), 4.16 (m, 1H, NCH₂), 3.78 (sept, ${}^{3}J_{H-H} = 6.8$ Hz, 1H, ArCHMe₂), 3.15 (m, 1H, NCH₂), 3.12 (sept, ${}^{3}J_{H-H} = 6.8$ Hz, 1H, ArCHMe₂), 2.65 (m, 1H, NCH₂), 2.06 (s, 3H, NMe), 1.95 (m, 2H, NCH₂), 1.80 (s, 3H, NMe), 1.58 (m, 2H, NCH₂), 1.52 (d, ${}^{3}J_{H-H} = 6.8$ Hz, 3H, ArCHMe₂), 1.49 (s, 9H, CMe₃), 1.41 (d, ${}^{3}J_{H-H} = 6.8$ Hz, 3H, ArCHMe₂), 1.35 (m, 1H, NCH₂), 1.26 (s, 9H, CMe₃), 1.20 (d, ${}^{3}J_{H-H}$ = 6.8 Hz, 3H, ArCHMe₂), 1.06 (m, 6H, ArCHMe₂ and NMe), 0.47 (s, 9H, CH₂SiMe₃), -1.19 (d, 2H, YbCH₂). ¹³C{¹H} NMR (100 MHz, C₆D₆, 25 °C): δ 171.2, 170.6 (imine C), 148.2 (*i*-ArC of Dipp), 140.1, 139.5 (o-ArC of Dipp), 124.0 (p-ArC of Dipp), 123.1, 122.3 (m-ArC of Dipp), 91.9 ('BuC(N)CH), 57.3, 56.9, 55.4, 47.4 (NCH₂), 44.6 (CMe₃), 44.5, 43.8, 41.9 (NMe), 41.2 (CMe₃), 32.5, 31.2 (CMe₃), 27.9 (ArCHMe₂), 27.7, 27.5 (ArCHMe₂), 25.9, 24.1, 22.8 (ArCHMe₂), 17.95 (YbCH₂), 5.97 (SiMe₃). Anal. Calcd for C₃₄H₆₄N₄SiYb: C 55.94; H 8.84; N 7.67. Found: C 56.04; H 9.04; N 7.77.

[LYb(µ-H)]₂ (3): Method A. A hexane solution (3 mL) of 2 (100 mg, 0.14 mmol) was placed in tube

with a Teflon stopcock. The tube was taken out of the glovebox and connected to a Schlenk line. The solution of **2** was degassed at low temperature, and then exposed to 1.0 atm of H_2 at room temperature. After standing at room temperature for 3 h, the resulting solution was concentrated to about 0.5 mL and stood at -35 °C for 12 h. Complex **3** was isolated as dark red crystals (43 mg, 49% yield).

Method B. In the glove box, to a hexane solution (3 mL) of **2** (150 mg, 0.21 mmol) was added a hexane solution (131 mg) of PhSiH₃ (22 mg, 0.21 mmol) at room temperature, resulting in a dark red solution. After standing at room temperature for 10 minutes, the solution was concentrated to about 2 mL and stood at -35 °C for 12 h. The resulting dark red crystalline solids were collected, washed with hexane (1 mL × 3), and dried under vacuum to afford **3** (116 mg, 88% yield). There are two isomers in about 4:1 ratio. ¹H NMR (400 MHz, C₆D₆, 25 °C): isomer **1**, δ 8.95 (t, ¹*J*_{Yb-H} = 358 Hz, 1.6H, Yb*H*). isomer **II**, δ 9.04 (t, ¹*J*_{Yb-H} = 352 Hz, 0.4H, Yb*H*). Most other signals of two isomers are overlapped. 7.12 (m, 2H, *p*-Ar*H* of Dipp), 7.05 (m, 4H, *m*-Ar*H* of Dipp), 4.95 (s, 2H, ¹BuC(N)C*H*), 4.16 (m, 2H, NC*H*₂), 3.61 (m, 2H, ArC*HM*e₂), 3.20 (m, 2H, ArC*HM*e₂), 2.83 (m, 4H, NC*H*₂), 2.41 (s, 6H, N*Me*), 2.33 (m, 4H, NC*H*₂), 2.18 (m, 6H, NC*H*₂) and C*Me*₃). As some signals in the ¹H NMR spectrum of **3** are overlapped and **3** easily decomposes into another complex in solution, we were failed to determine the specific structure of the isomers by ¹H-¹H NOESY spectroscopy. The poor solubility and instability of **3** also caused the difficulty in recording the ¹³C{¹H} and ¹⁷¹Yb NMR spectra of this complex. Anal. Calcd for C₆₀H₁₀₈N₈Yb₂: C 55.97; H 8.45; N 8.70. Found: C 55.76; H 8.24; N 8.74.

[LYb(μ -D)]₂ (3-D): To a hexane solution (3 mL) of 2 (100 mg, 0.14 mmol) was added a hexane solution (86 mg) of PhSiD₃ (16 mg, 0.14 mmol) at room temperature, resulting in a dark red solution. After standing at room temperature for 10 minutes, the solution was concentrated to about 2 mL and stood at -35 °C for 12 h. The resulting dark red crystalline solids were collected, washed with hexane (1 mL × 3), and dried under vacuum to afford **3-D** (78 mg, 88% yield). ²H NMR (60 MHz, C₆H₆, 25 °C): δ 9.03 (br, YbD).

LYb(NC₅H₆) (5): To a toluene solution (1 mL) of 3 (80 mg, 0.06 mmol) was added a toluene solution (155mg) of pyridine (10 mg, 0.12 mmol) at room temperature, resulting in a dark brown solution. After 10 minutes, the volatiles of the reaction solution were removed under vacuum. The residue was washed with cold hexane (1 mL) and dried under vacuum to afford complex 5 as a dark brown solid (65 mg, 72% yield). ¹H NMR (400 MHz, C₆D₆, 25 °C): δ 7.02 (d, ³J_{H-H} = 5.6 Hz, 1H, NCH=CH), 6.97 (m, 1H, *p*-Ar*H* of Dipp), 6.89 (m, 2H, *m*-Ar*H* of Dipp), 6.55 (dd, ${}^{3}J_{H-H} = 8.4$ Hz, ${}^{3}J_{H-H} = 5.6$ Hz, 1H, CH₂CHCH), 5.39 (m, 2H, 'BuC(N)CH and NCH=CH), 4.73 (m, 1H, NCH₂CH), 4.12 (m, 3H, NCH₂ and NCH₂CH), 3.66 (sept, ${}^{3}J_{H-H} = 6.5$ Hz, 1H, ArCHMe₂), 3.16 (m, 2H, ArCHMe₂ and NCH₂), 2.57 (m, 1H, NCH₂), 2.03 (s, 3H, NMe), 1.85 (m, 2H, NCH₂), 1.79 – 1.61 (m, 5H, NMe and NCH₂), 1.46 (s, 10H, CMe₃ and NCH₂), 1.41 (d, ${}^{3}J_{H-H} = 6.5$ Hz, 3H, ArCHMe₂), 1.33 (d, ${}^{3}J_{H-H} = 6.5$ Hz, 3H, ArCHMe₂), 1.24 (s, 9H, CMe₃), 1.18 (d, ${}^{3}J_{H-H} = 6.5$ Hz, 3H, ArCHMe₂), 1.07 (d, ${}^{3}J_{H-H} = 6.5$ Hz, 3H, ArCHMe₂), 1.02 (br, 3H, NMe). ¹³C{¹H} NMR (100 MHz, C₆D₆, 25 °C): δ 172.8, 170.5 (imine C), 148.8 (NCH), 147.2 (*i*-ArC of Dipp), 140.4, 139.4 (*o*-ArC of Dipp), 128.5 (CH₂CHCH), 124.2 (*p*-ArC of Dipp), 123.1, 122.5 (*m*-ArC of Dipp), 92.9 (CH₂CH), 92.57, 92.52 (NCHCH and ^{*t*}BuC(N)CH), 57.8, 56.9, 55.1 (NCH₂), 48.6 (NCH₂CH), 47.7 (NCH₂), 44.4 (CMe₃), 44.2, 41.3 (NMe), 41.1 (CMe₃), 32.3, 31.2 (CMe₃), 27.90, 27.85 (ArCHMe₂), 27.6, 25.8, 24.0, 22.4 (ArCHMe₂). Anal. Calcd for C₃₅H₅₉N₅Yb: C, 58.15; H, 8.23; N, 9.69. Found: C, 58.43; H, 8.31; N, 9.21.

L'Yb(DMAP) (6): To a toluene solution (1 mL) of **3** (80 mg, 0.06 mmol) was added a toluene solution (1 mL) of 4-dimethylamino pyridine (15 mg, 0.12 mmol) at room temperature, resulting in a dark red solution. After standing at room temperature for 10 minutes, the resulting solution was concentrated to about 0.5 mL and stood at -35 °C. Layering hexane (2 mL) on the toluene solution afforded complex **6** as dark red crystals (85 mg, 89% yield). Anal. Calcd for C₃₇H₆₄N₆Yb: C, 58.02; H, 8.42; N, 10.97. Found: C, 57.32; H, 8.56; N, 10.78. ¹H NMR (600 MHz, C₆D₆, 25 °C): δ 4.79 (d, ³*J*_{H-H} = 6.0 Hz, 1H, [']BuC(N)C*H*), 4.29 (m, 2H, NC*H*₂ and ArC*H*Me₂), 3.91 (d, ³*J*_{H-H} = 6.0 Hz, 1H, [']BuC*H*). As complex **6** is unstable in solution and the signals of **6** are overlapped with those of the decomposed complex, the assignment of other signals of **6** is unsuccessful. The ¹H NMR spectral monitoring of **6** in C₆D₆

indicated that **6** converted into a new complex **6'** via a ligand redistribution reaction, accompanied by a releasing of 4-dimethylamino pyridine. ¹H NMR (400 MHz, C₆D₆, 25 °C) of **6'**: δ 7.13 (m, 2H, *m*-Ar*H* of Dipp), 6.96 (m, 1H, *p*-Ar*H* of Dipp), 4.23 (d, ³*J*_{H-H} = 7.2 Hz, 1H, ^{*i*}BuC(N)C*H*), 3.84 (d, ³*J*_{H-H} = 7.2 Hz, 1H, ^{*i*}BuC*H*), 3.57 (m, 2H, ArC*H*Me₂ and NC*H*₂), 3.36 (m, 1H, ArC*H*Me₂), 3.11 (m, 2H, NC*H*₂), 2.92 (m, 1H, NC*H*₂), 2.65 (m, 2H, NC*H*₂), 2.22 (s, 3H, N*Me*), 2.13 (m, 1H, NC*H*₂), 2.01 (m, 1H, NC*H*₂), 1.90 (s, 6H, N*Me*₂), 1.45-1.19 (m, 30H, ArCH*Me*₂ and C*Me*₃). Attempts to grow the single crystals of **6'** did not succeed, complex **6'** might be a dimer or oligomer as [L'Yb]_n (L' = ['BuC(NDipp)CHCH('Bu)NCH₂CH₂N(Me)CH₂CH₂NMe₂]²⁻).

L'Yb(bpy-) (7): To a toluene solution (1 mL) of **3** (50 mg, 0.04 mmol) was added a toluene solution (1 mL) of bipyridine (12 mg, 0.08 mmol) at room temperature, resulting in an orange solution. After standing for 10 minutes, the volatiles of the reaction solution were removed under vacuum. The residue was washed with cold hexane (1 mL) and dried under vacuum to afford complex **7** as an orange solid (50 mg, 80% yield). This complex is paramagnetic. ¹H NMR (400 MHz, C₆D₆, 25 °C): δ 253.60, 154.10, 142.25, 105.26, 99.37, 77.30, 53.83, 16.34, 7.16, 2.11, 1.22, 0.70, 0.60, -2.81, -4.90, -5.60, -16.76, -24.72, -33.43, -35.86, -38.78, -40.22, -46.77, -49.37, -79.36, -84.48, -112.08, -136.42, -165.19, -193.82, -203.19, -241.20, -264.07. Anal. Calcd for C₄₀H₆₂N₆Yb: C, 60.05; H, 7.81; N, 10.50. Found: C, 59.49; H, 7.84; N, 10.55.

LYb(OPPh₂) (8): To a toluene solution (1 mL) of **3** (80 mg, 0.06 mmol) was added a toluene solution (1 mL) of triphenylphosphine oxide (35 mg, 0.12 mmol) at room temperature, resulting in a red solution. After standing for 10 minutes, the volatiles of the reaction solution were removed under vacuum. The residue was washed with hexane (1 mL × 3) and dried under vacuum to afford complex **8** as a red solid (77 mg, 73% yield). ¹H NMR (400 MHz, C₆D₆, 25 °C): δ 7.94 (m, 4H, *o*-PhH of OPPh₂), 7.32 (m, 4H, *m*-PhH of OPPh₂), 7.11 (m, 2H, *p*-PhH of OPPh₂), 6.91 (m, 3H, *m*- and *p*-ArH of Dipp), 5.39 (s, 1H, 'BuC(N)CH), 4.17 (br, 1H, NCH₂), 3.57 (br, 1H, ArCHMe₂), 3.19 (br, 2H, ArCHMe₂ and NCH₂), 2.61 (m, 1H, NCH₂), 2.04 (s, 3H, NMe), 1.82 (m, 3H, NCH₂), 1.70 (m, 2H, NCH₂), 1.48 (s,

9H, CMe₃), 1.31 (m, 15H, CMe₃, ArCHMe₂ and NMe), 1.20 (m, 6H, ArCHMe₂ and NMe), 1.09 (m, 6H, ArCHMe₂). ¹³C {¹H} NMR (100 MHz, C₆D₆, 25 °C): δ 172.6, 170.5 (imine C), 155.66 (d, ¹J_{P-C} = 36.5 Hz, *i*-PhC of OPPh₂), 155.62 (d, ¹J_{P-C} = 36.9 Hz, *i*-PhC of OPPh₂), 147.2 (*i*-ArC of Dipp), 140.4, 139.2 (*o*-ArC of Dipp), 129.04 (d, ²J_{P-C} = 20.5 Hz, *o*-PhC of OPPh₂), 128.99 (d, ²J_{P-C} = 20.8 Hz, *o*-PhC of OPPh₂), 126.6 (d, ⁴J_{P-C} = 6.9 Hz, *p*-PhC of OPPh₂), 124.1, 123.1 (*m*-ArC of Dipp), 122.5 (*p*-ArC of Dipp), 91.9 (ⁱBuC(N)CH), 57.9, 56.8, 55.2, 47.9 (NCH₂), 44.57, 44.53 (CMe₃ and NMe₂), 41.8 (NMe), 41.1 (CMe₃), 32.4, 31.3 (CMe₃), 27.8, 27.6 (ArCHMe₂), 27.3, 26.0, 23.9, 22.5 (ArCHMe₂), the signals of *m*-PhC of OPPh₂ were overlapped with those of C₆D₆. ³¹P {¹H} NMR (162 MHz, C₆D₆, 25 °C): δ 84.05. Anal. Calcd for C₄₂H₆₃N₄OPYb: C, 59.77; H, 7.52; N, 6.64. Found: C, 59.38; H, 7.27; N, 6.36.

[LYb(µ-SPh)]₂ (9): To a toluene solution (1 mL) of **3** (80 mg, 0.06 mmol) was added a toluene solution (1 mL) of diphenyl disulfide (13.5 mg, 0.06 mmol) at room temperature, resulting in a dark brown solution. After standing at room temperature for 10 minutes, the resulting solution was concentrated to about 0.5 mL and stood at -35 °C. Layering hexane (2 mL) on the toluene solution afforded complex **9** as brown crystals (60 mg, 64% yield). ¹H NMR (400 MHz, C₆D₆, 25 °C) δ 7.83 (d, ³J_{H-H} = 7.6 Hz, 2H, *o*-PhH of SPh), 7.14 (t, ${}^{3}J_{H-H} = 7.6$ Hz, 2H, *m*-PhH of SPh), 6.92 (m, 4H, *p*-PhH of SPh, and *m*and *p*-ArH of Dipp), 5.37 (s, 1H, ^{*t*}BuC(N)CH), 4.13 (br, 1H, NCH₂), 3.41 (m, 1H, ArCHMe₂), 3.15 (m, 2H, NCH₂ and ArCHMe₂), 2.67 (br, 1H, NCH₂), 2.17 (s, 3H, NMe), 2.08-1.87 (m, 3H, NCH₂), 1.66 (m, 2H, NCH₂), 1.50 (m, 6H, NMe₂), 1.43 (s, 9H, CMe₃), 1.24 (m, 15H, CMe₃ and ArCHMe₂), 1.18 (d, ${}^{3}J_{H-H} = 6.8$ Hz, 3H, ArCHMe₂), 1.07 (d, ${}^{3}J_{H-H} = 6.8$ Hz, 3H, ArCHMe₂). ${}^{13}C{}^{1}H$ NMR (100 MHz, C₆D₆, 25 °C): δ 172.0, 171.5 (imine C), 150.2 (*i*-PhC of SPh), 147.4 (*i*-ArC of Dipp), 140.5, 139.3 (*o*-ArC of Dipp), 134.2 (o-PhC of SPh), 128.1 (m-PhC of SPh), 124.0 (p-ArC of Dipp), 123.1, 122.9 (m-ArC of Dipp), 120.6 (*p*-PhH of SPh), 91.4 ('BuC(N)CH), 57.7, 57.2, 55.4, 47.7 (NCH₂), 44.6 (NMe), 44.4 (CMe₃), 42.3 (NMe), 40.9 (CMe₃), 32.4, 31.0 (CMe₃), 28.2, 27.7 (ArCHMe₂), 27.6, 26.1, 23.8, 22.7 (ArCHMe₂). Anal. Calcd for C₇₂H₁₁₆N₈S₂Yb₂: C, 57.50; H, 7.77; N, 7.45. Found: C, 57.10; H, 7.83; N, 7.37.

LYb(SPh)₂ (10): To a toluene solution (1 mL) of **3** (71 mg, 0.055 mmol) was added a toluene solution (1 mL) of diphenyl disulfide (24 mg, 0.11 mmol) at room temperature, resulting in an orange solution. After standing for 10 minutes, the volatiles of the reaction solution were removed under vacuum. The residue was washed with hexane (1 mL × 3) and dried under vacuum to afford complex **10** as a yellow solid (72 mg, 76% yield). This complex is paramagnetic. ¹H NMR (400 MHz, C₆D₆, 25 °C) δ 96.53, 38.88, 23.38, 18.51, 17.00, 15.16, 11.04, 7.35, 5.93, 3.68, 1.21, -0.02, -6.23, -11.11, -14.27, -24.84, - 81.06, -86.90, -90.17. Anal. Calcd for C₄₂H₆₃N₄S₂Yb: C, 58.58; H, 7.37; N, 6.51. Found: C, 59.19; H, 7.50; N, 6.44. In addition, a ¹H NMR investigation in C₆D₆ also showed that complex **9** reacts with 1.0 equiv. of PhSSPh to give complex **10** (see Figure S28).

X-ray Crystallography:

Single crystals of **1** suitable for single-crystal X-ray diffraction were grown from a THF/hexane mixture, those of **2** were from a hexane solution, those of **3** were from a toluene solution, those of **5**, **6**, **8** and **9** were from a toluene/hexane mixture, those of **7** were from a mesitylene solution, and those of **10** were from a toluene/cyclohexane mixture. The crystals were mounted under a nitrogen atmosphere on a glass fiber at low temperature. Data collection of **1**, **3**, **5**, **6**, **7**, **9** and **10** was performed on a Bruker D8 Venture with Ga K α radiation ($\lambda = 1.34139$ Å), that of **2** and **8** was performed on a Bruker APEX-II CCD with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The SMART program package was used to determine the unit cell parameters. The absorption correction was applied using SADABS program.⁵ All structures were solved by direct methods and refined on F^2 by full-matrix least-squares techniques with anisotropic thermal parameters for non-hydrogen atoms. Hydrogen atoms were placed at calculated positions and were included in the structure calculation, except for the hydrogen atoms of Yb–H, which were located in the Fourier different map. Calculations were carried out using the SHELXL-97, SHELXL-2014 or Olex2 program.⁶ Crystallographic data and refinement parameters are listed in Table S1.

	1	2	0.5(3)		
formula	$C_{60}H_{106}I_2N_8Yb_2$	C ₃₄ H ₆₄ N ₄ SiYb	$C_{30}H_{54}N_4Yb$		
fw	1539.40	730.02	643.81		
color	red	red	red		
crystal system	monoclinic	monoclinic	monoclinic		
space group	$P2_{1}/c$	$P2_{1}/n$	$P2_{1}/n$		
a, Å	10.240(1)	11.376(1)	11.917(1)		
b, Å	28.616(1)	23.594(1)	20.310(1)		
<i>c</i> , Å	11.527(1)	14.219(1)	13.183(1)		
α , deg	90	90	90		
β , deg	109.493(3)	102.100(1)	92.514(2)		
γ, deg	90	90	90		
V, Å ³	3184.1(3)	3731.6(1)	3187.9(2)		
Ζ	2	4	4		
$D_{\text{calcd}}, \text{mg/m}^3$	1.606	1.299	1.341		
absorption coefficient, mm ⁻¹	15.071	8.616	9.814		
<i>F</i> (000)	1536	1520	1328		
<i>T</i> (K)	170(2)	170(2)	173(2)		
θ range, deg	3.786, 54.995	3.210, 54.926	3.787, 54.933		
no. of reflns collected	21040	33590	32617		
no. of unique reflns	6035	7067	6042		
no. of obsd reflns $(I \ge 2\sigma(I))$	4051	6417	5156		
no. of params	338	381	333		
final <i>R</i> , <i>wR</i> (<i>I</i> > $2\sigma(I)$)	0.067, 0.168	0.024, 0.056	0.034, 0.085		
goodness of fit on F^2	1.108	1.049	1.026		
$\Delta \rho_{max,min}, e \text{\AA}^{-3}$	2.002, -1.594	0.436, -1.037	1.258, -1.129		

 Table S1. Crystallographic data and refinement parameters

	5	6	7. mesitylene
formula	C35H59N5Yb	$C_{37}H_{64}N_6Yb$	C49H74N6Yb
fw	722.91	765.98	920.18
color	red	red	orange
crystal system	triclinic	monoclinic	monoclinic
space group	$P\overline{1}$	C2/c	$P2_{1}/c$
<i>a</i> , Å	9.777(1)	31.728(1)	21.092(1)
b, Å	10.429(1)	12.136(1)	13.185(1)
<i>c</i> , Å	19.793(1)	21.846(1)	16.504(1)
a, deg	78.372(2)	90	90
β , deg	77.701(2)	101.593(2)	94.546(2)
γ, deg	65.313(2)	90	90
V, Å ³	1777.2(1)	8239.9(4)	4575.6(3)
Ζ	2	8	4
$D_{\text{calcd}}, \text{mg/m}^3$	1.351	1.235	1.336
absorption coefficient, mm ⁻¹	8.848	8.307	6.954
<i>F</i> (000)	748	3184	1920
<i>T</i> (K)	170(2)	173(2)	173(2)
θ range, deg	4.092, 55.173	3.594, 54.884	3.738, 54.944
no. of reflns collected	20165	38830	48464
no. of unique reflns	6737	7815	8668
no. of obsd reflns $(I \ge 2\sigma(I))$	6239	6589	7415
no. of params	383	412	536
final R, wR ($I > 2\sigma(I)$)	0.038, 0.099	0.034, 0.076	0.028, 0.065
goodness of fit on F^2	1.042	1.053	1.028
$\Delta \rho_{max,min}, e \text{\AA}^{-3}$	1.247, -1.791	0.658, -0.902	0.431, -0.833

	8	9	10
formula	C ₄₂ H ₆₃ N ₄ OPYb	$C_{72}H_{116}N_8S_2Yb_2$	$C_{42}H_{63}N_4S_2Yb$
fw	843.97	1503.92	861.12
color	red	brown	yellow
crystal system	monoclinic	monoclinic	monoclinic
space group	$P2_{1}/n$	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> , Å	19.463(1)	15.231(1)	19.433(1)
b, Å	11.075(1)	34.584(1)	13.508(1)
c, Å	20.645(1)	21.662(1)	17.331(1)
α , deg	90	90	90
β , deg	113.247(3)	95.572(2)	100.930(2)
γ, deg	90	90	90
V, Å ³	4088.6(4)	11356.5(5)	4466.6(3)
Z	4	6	4
$D_{\text{calcd}}, (\text{mg/m}^3)$	1.371	1.319	1.281
absorption coefficient, mm ⁻¹	7.935	8.644	7.648
F(000)	1744	4656	1780
<i>T</i> (K)	173(2)	185(2)	192(1)
θ range, deg	4.021, 55.010	2.769, 55.001	3.488, 54.987
no. of refns collected	34631	124671	35229
no. of unique refns	7654	21642	8460
no. of obsd refns $(I > 2\sigma(I))$	6347	14445	6217
no. of params	455	1174	455
final <i>R</i> , <i>wR</i> (I> 2σ (I))	0.066, 0.180	0.053, 0.129	0.067, 0.174
goodness of fit on F^2	1.109	1.043	1.043
$\Delta \rho_{max, min}, e Å^{-3}$	1.806, -2.377	2.276, -1.469	1.807, -2.742

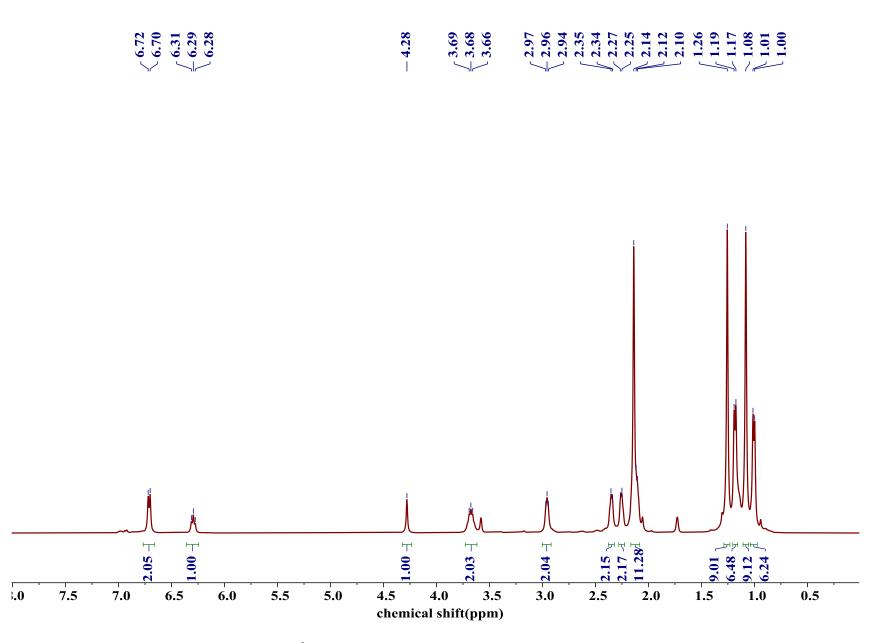


Figure S1. ¹H NMR spectrum of LK (400 MHz, *d*₈-THF, 25 °C).

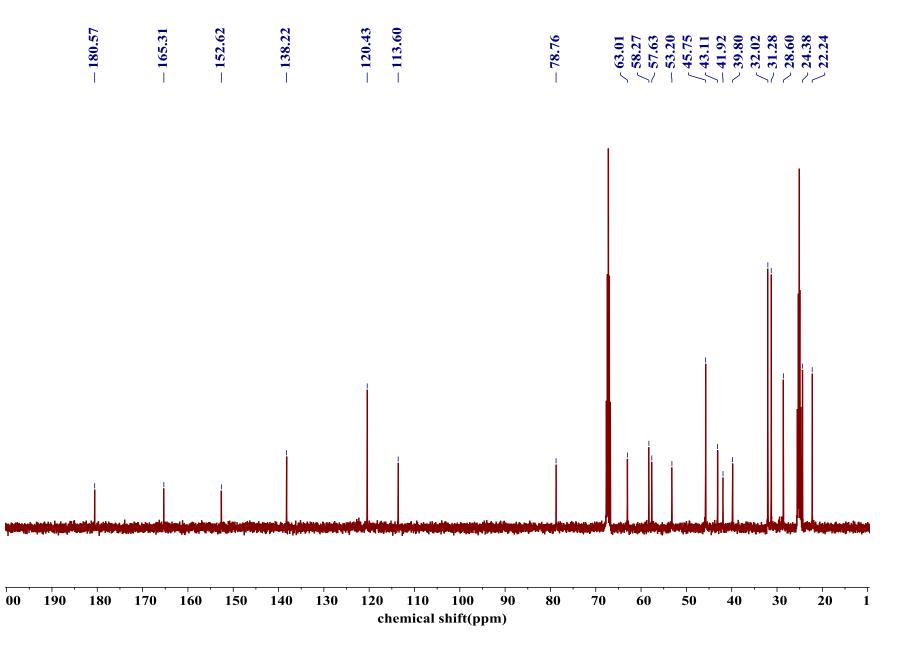


Figure S2. ¹³C{¹H} NMR spectrum of LK (100 MHz, d_8 -THF, 25 °C).

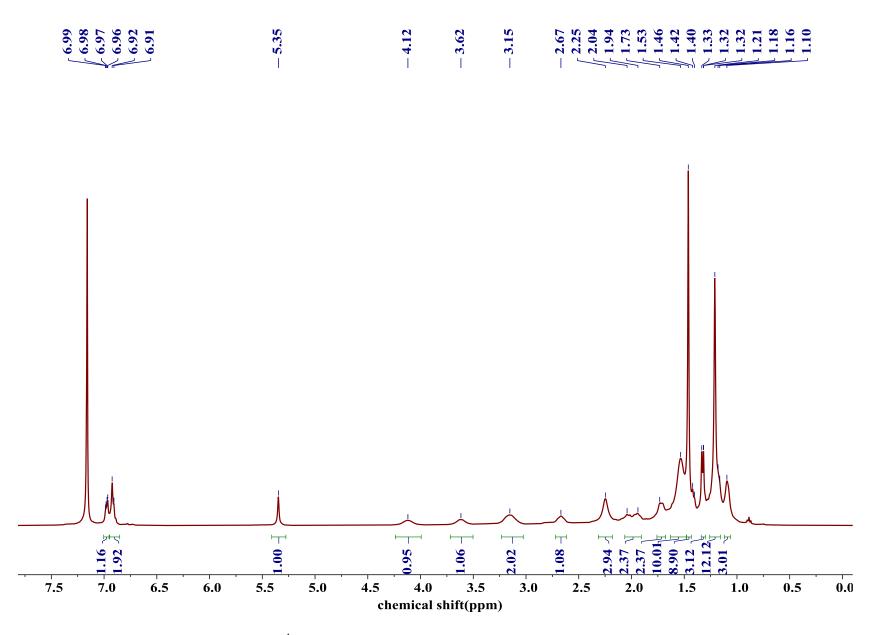


Figure S3. ¹H NMR spectrum of complex 1 (400 MHz, C_6D_6 , 25 °C).

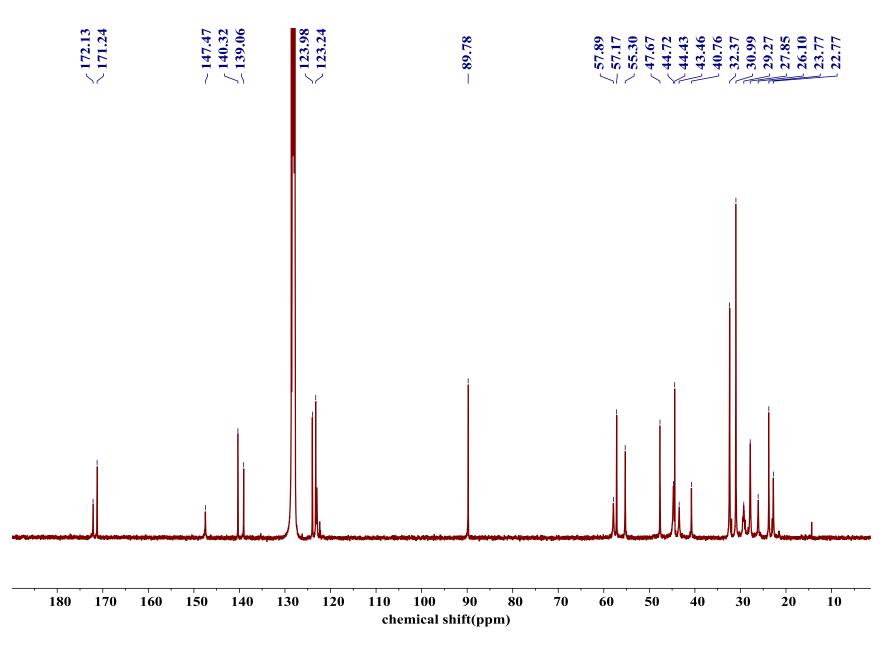


Figure S4. ${}^{13}C{}^{1}H$ NMR spectrum of complex 1 (100 MHz, C₆D₆, 25 °C).

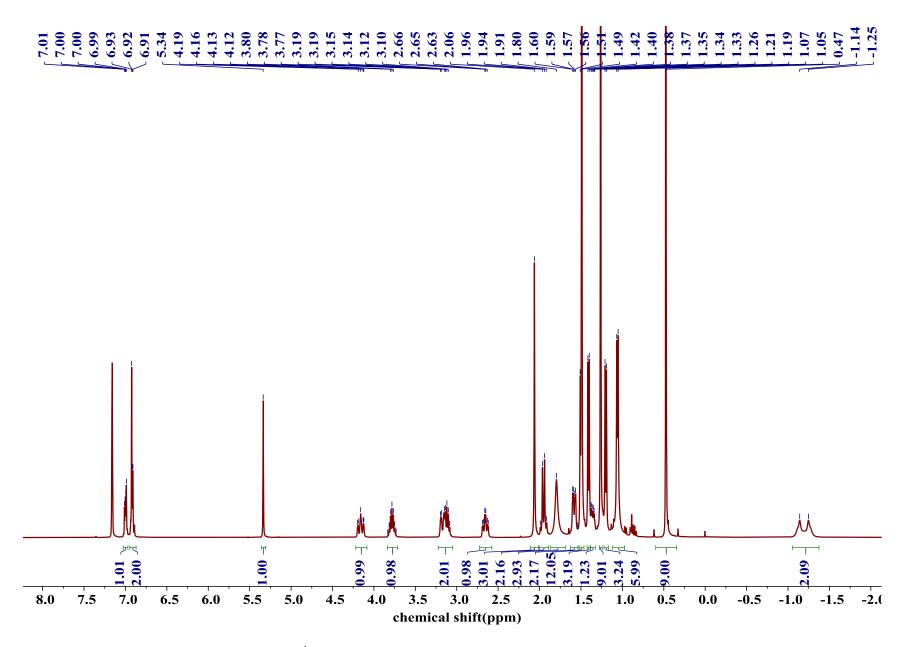


Figure S5. ¹H NMR spectrum of complex 2 (400 MHz, C₆D₆, 25 °C).

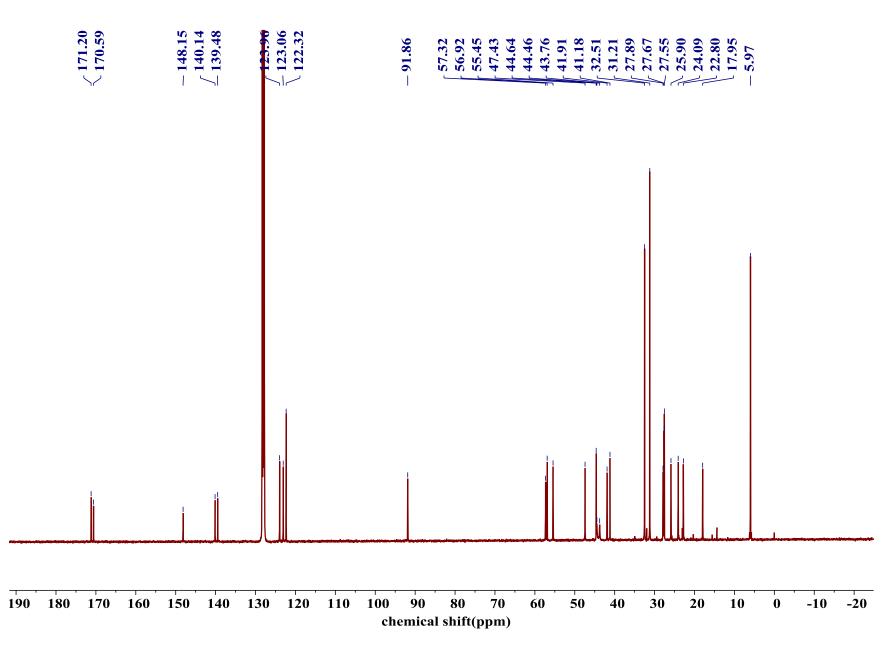
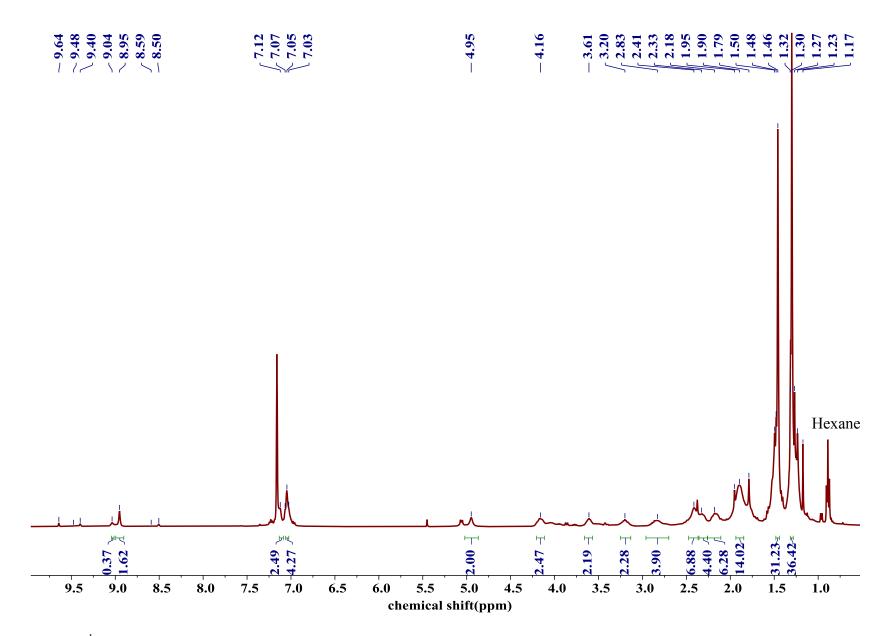
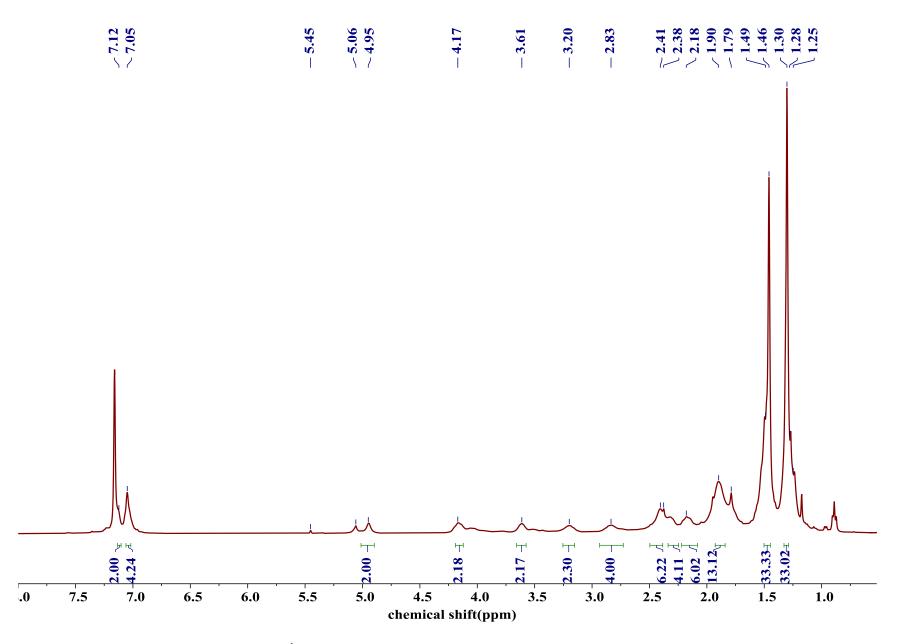
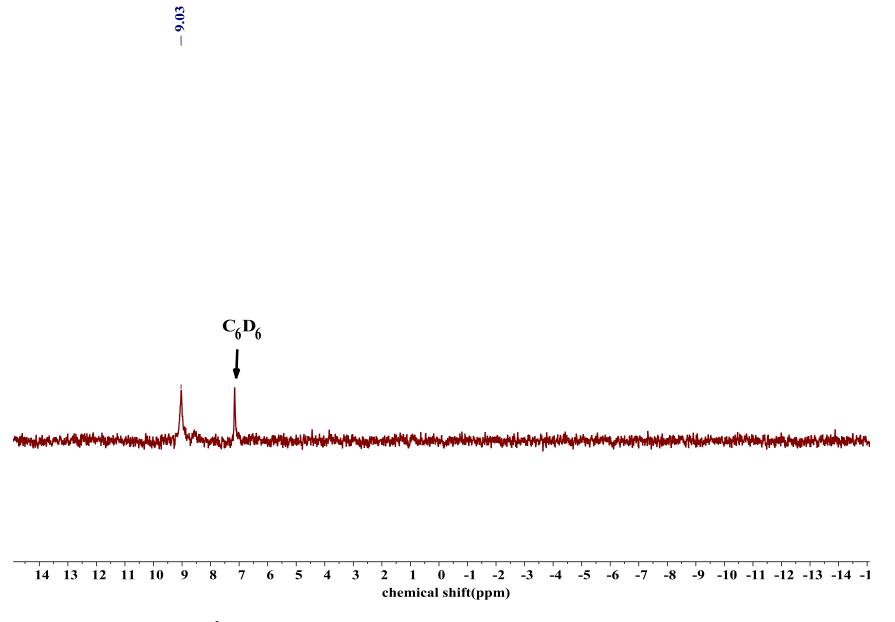


Figure S6. ${}^{13}C{}^{1}H$ NMR spectrum of complex 2 (100 MHz, C₆D₆, 25 °C).

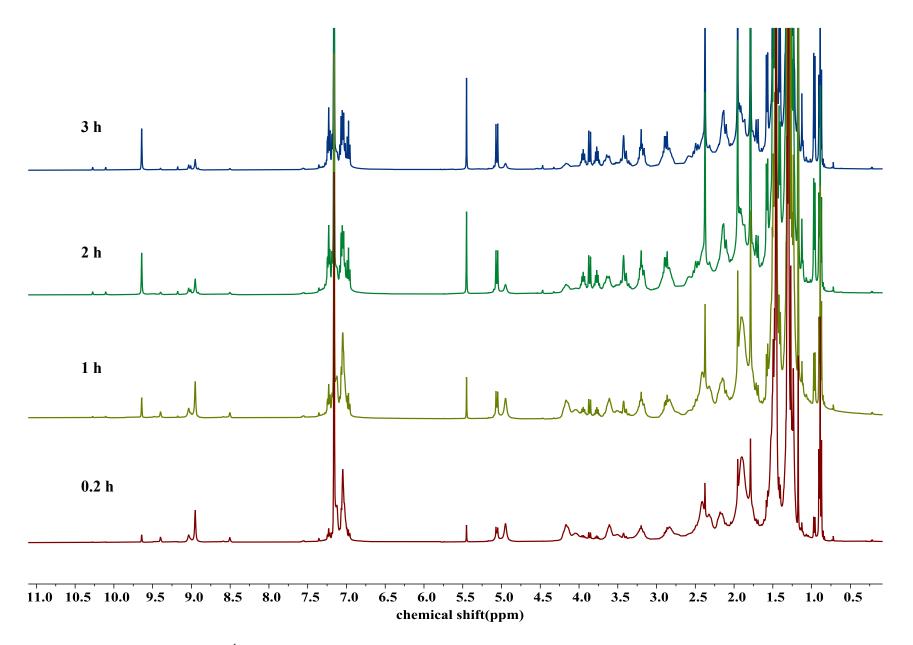

Figure S7. ¹H NMR spectrum of complex 3 (400 MHz, C₆D₆, 25 °C). A small amount of complex 3 have decomposed into complex 4.

Figure S8. ¹H NMR spectrum of complex **3-D** (400 MHz, C₆D₆, 25 °C).

Figure S9. ²H NMR spectrum of complex **3-D** (60 MHz, C₆H₆, 25 °C). C₆D₆ as the reference.

Figure S10. ¹H NMR spectral monitoring on transformation of **3** to **4** (400 MHz, C₆D₆, 25 °C).

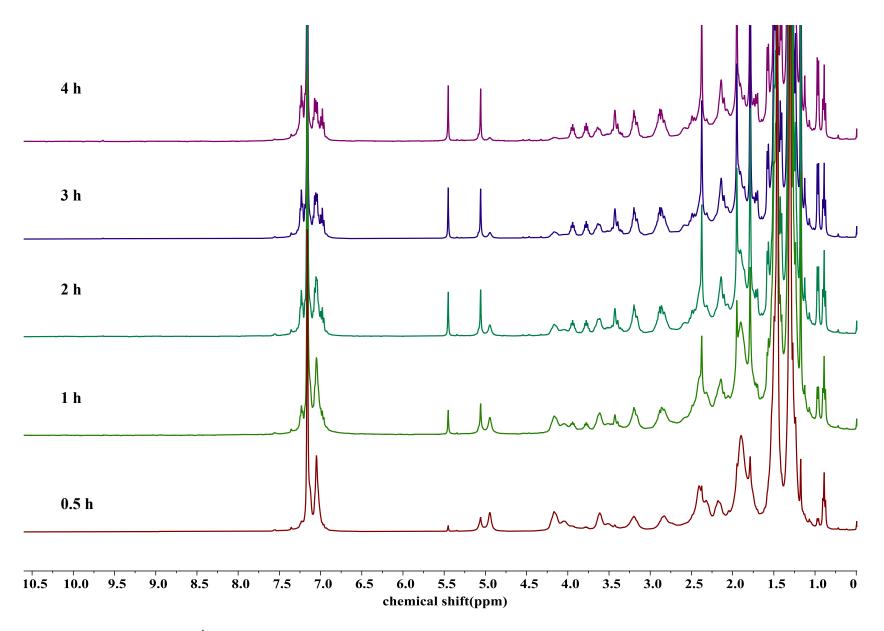


Figure S11. ¹H NMR spectral monitoring on transformation of **3-D** to **4-D** (400 MHz, C₆D₆, 25 °C).

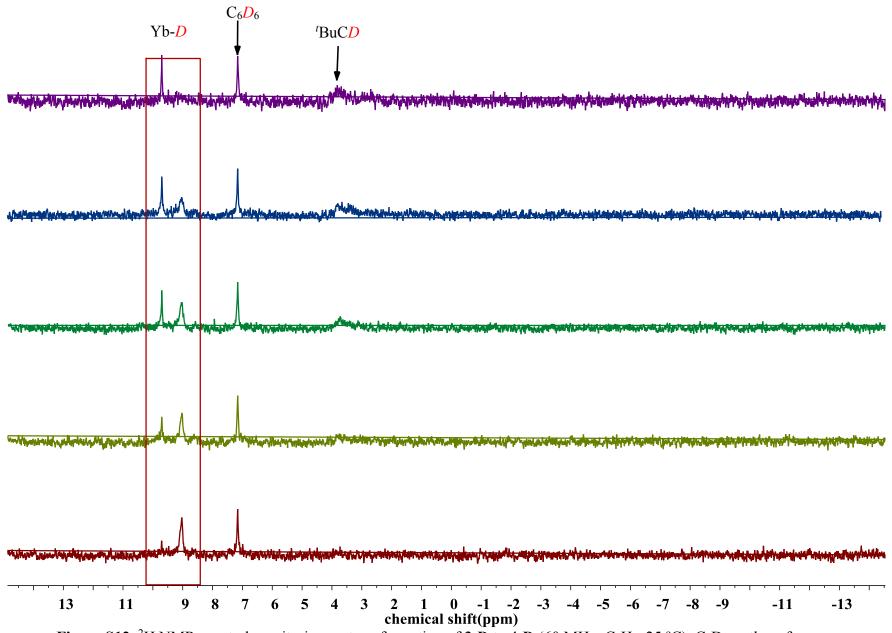


Figure S12. ²H NMR spectral monitoring on transformation of **3-D** to **4-D** (60 MHz, C₆H₆, 25 °C). C₆D₆ as the reference.

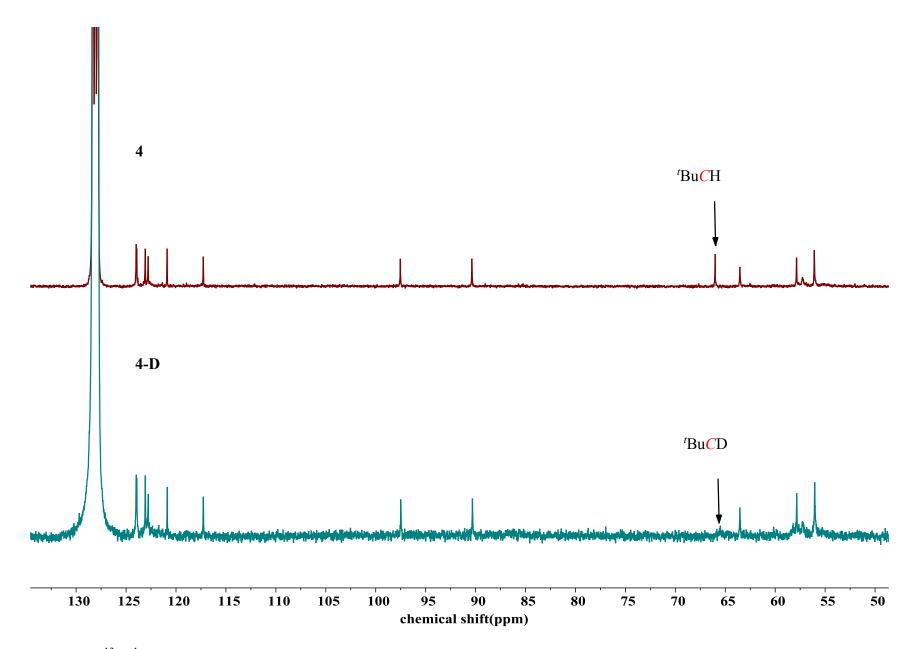


Figure S13. ¹³C{¹H} NMR spectra of 4 and 4-D, which indicate the presence of ${}^{t}BuCH$ in 4 and ${}^{t}BuCD$ in 4-D (100 MHz, C₆D₆, 25 °C).

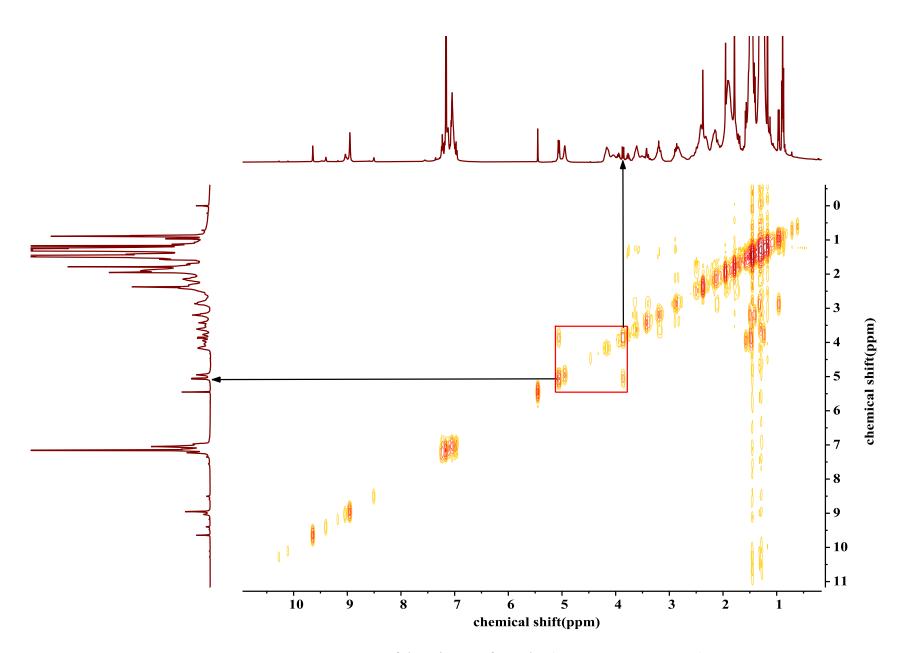
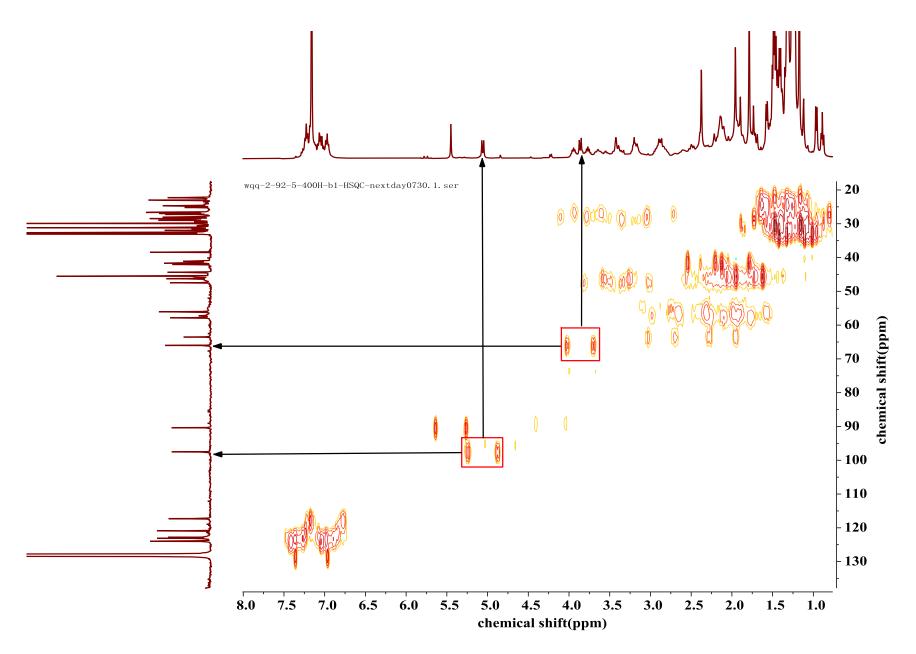
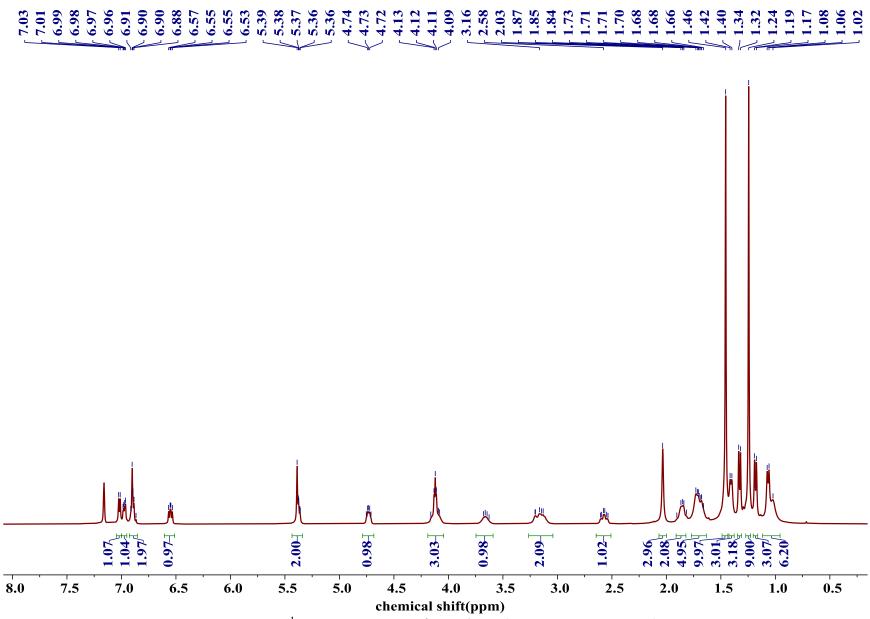
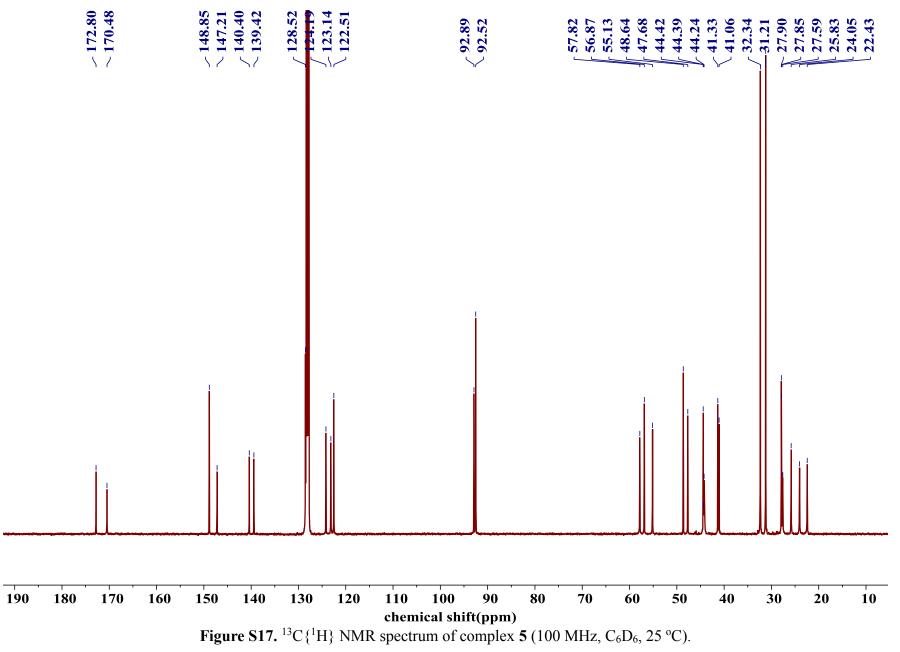
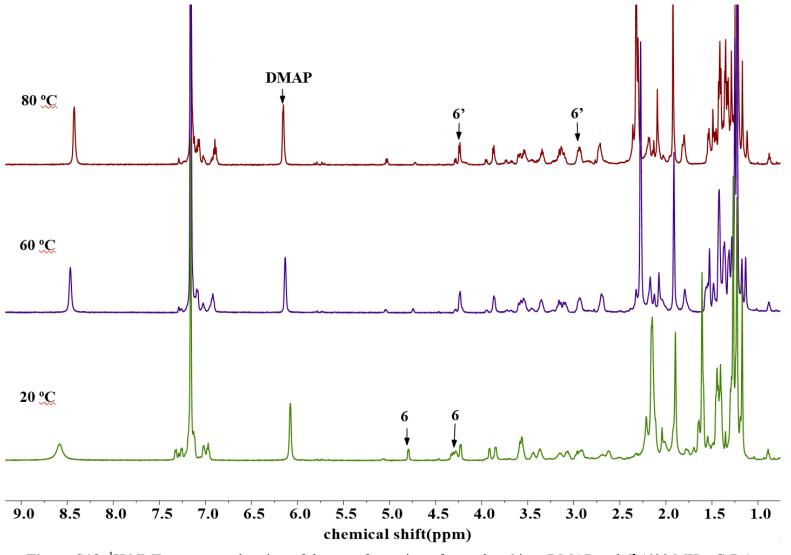
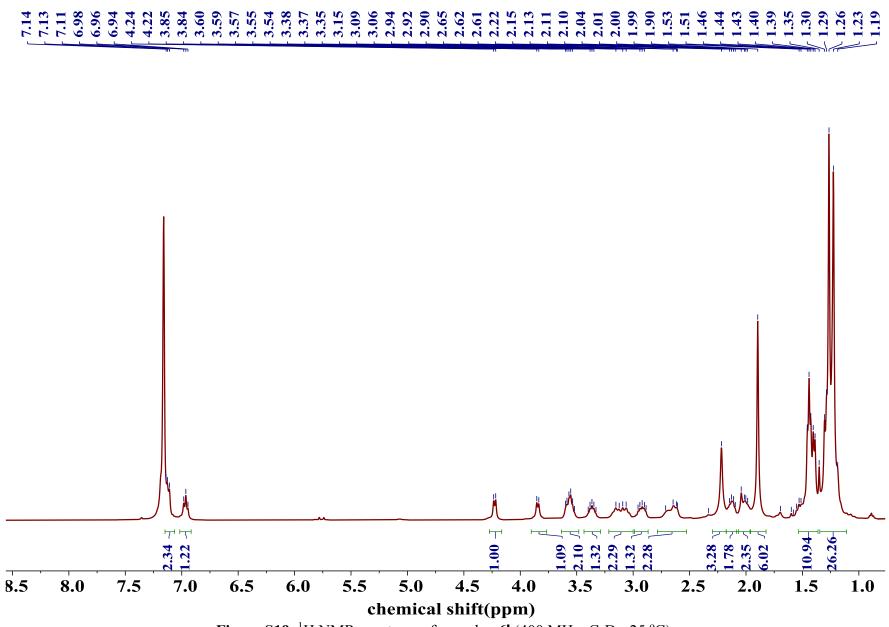



Figure S14. gCOSY spectra of the mixture of 3 and 4 (400 MHz, C₆D₆, 25 °C).

Figure S15. gHSQC spectra of **4** (400 MHz, C₆D₆, 25 °C).

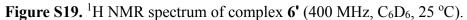

Figure S16. ¹H NMR spectrum of complex 5 (400 MHz, C₆D₆, 25 °C).

Figure S18. ¹H NMR spectrum showing of the transformation of complex **6** into DMAP and **6'** (600 MHz, C₆D₆)

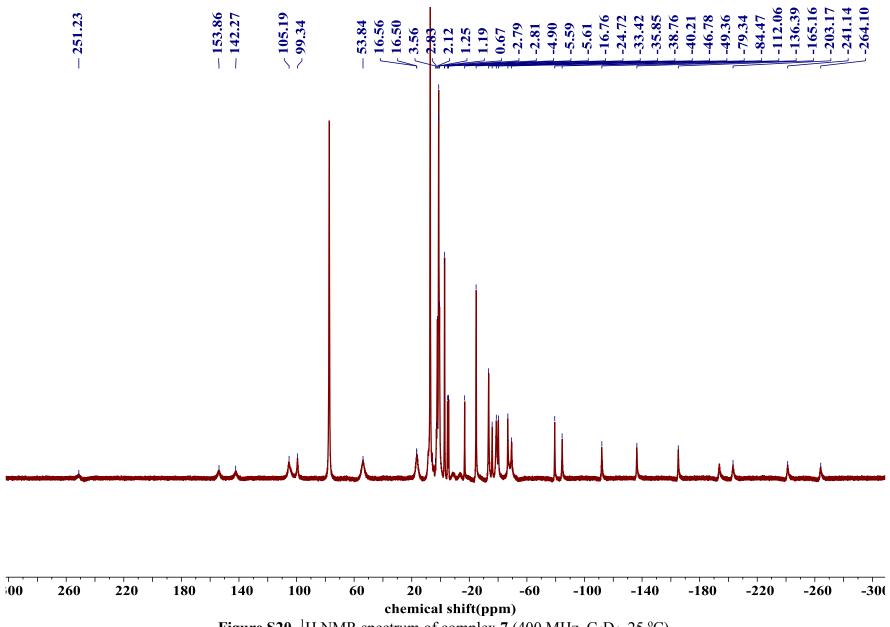
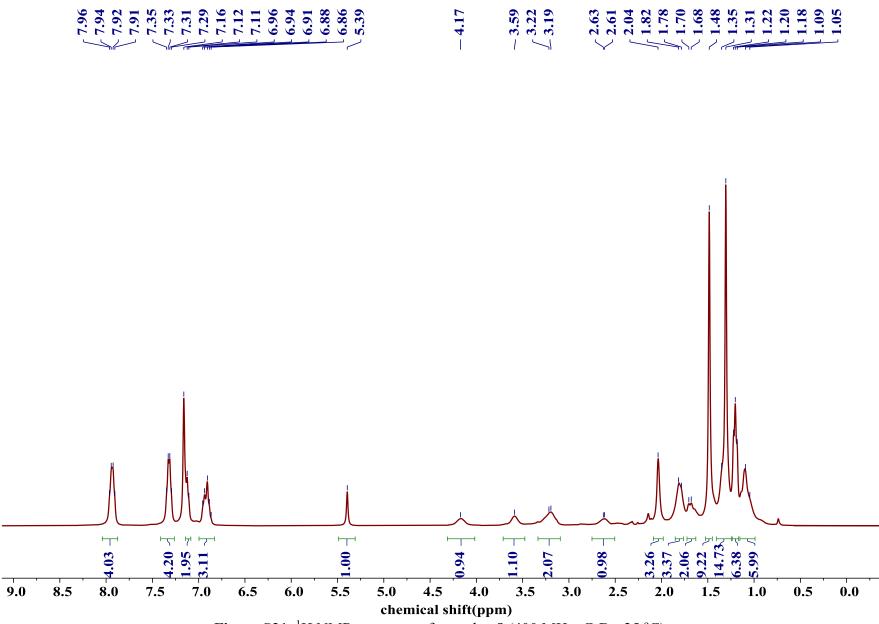
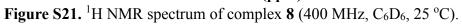
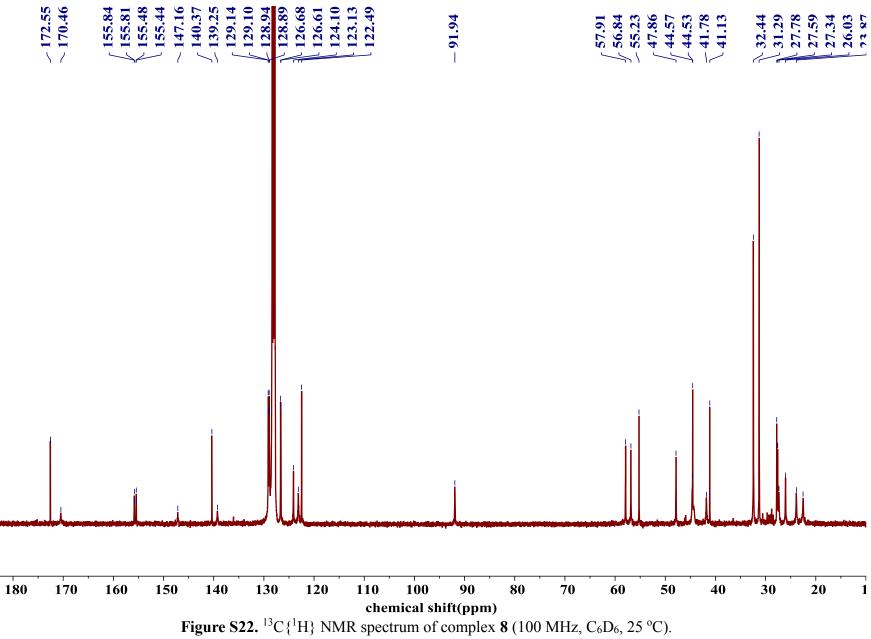
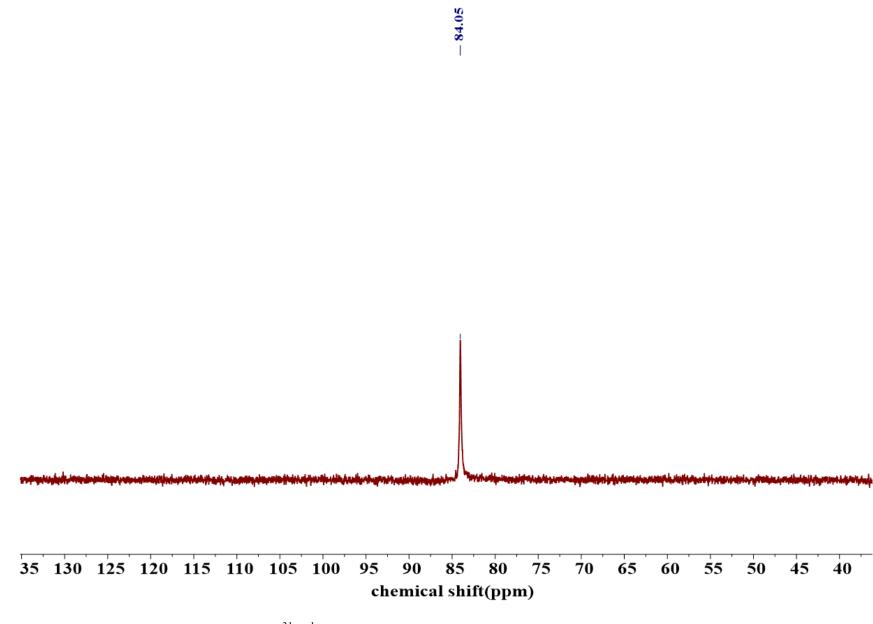






Figure S20. ¹H NMR spectrum of complex 7 (400 MHz, C₆D₆, 25 °C).

Figure S23. ³¹P{¹H} NMR spectrum of complex **8** (162 MHz, C₆D₆, 25 °C).

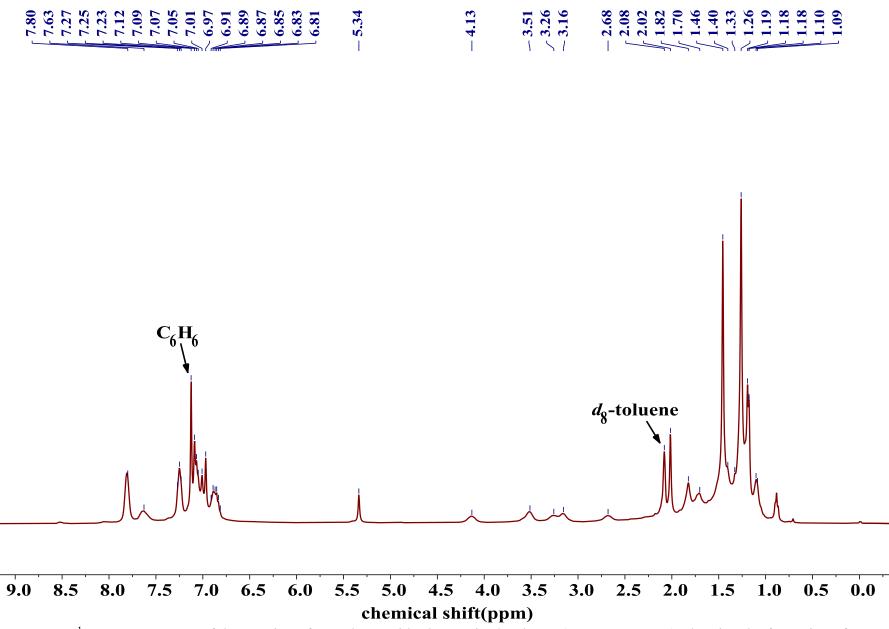


Figure S24. ¹H NMR spectrum of the reaction of complex 3 with Ph₃P=O in d_8 -toluene (400 MHz, 25 °C), showing the formation of C₆H₆.

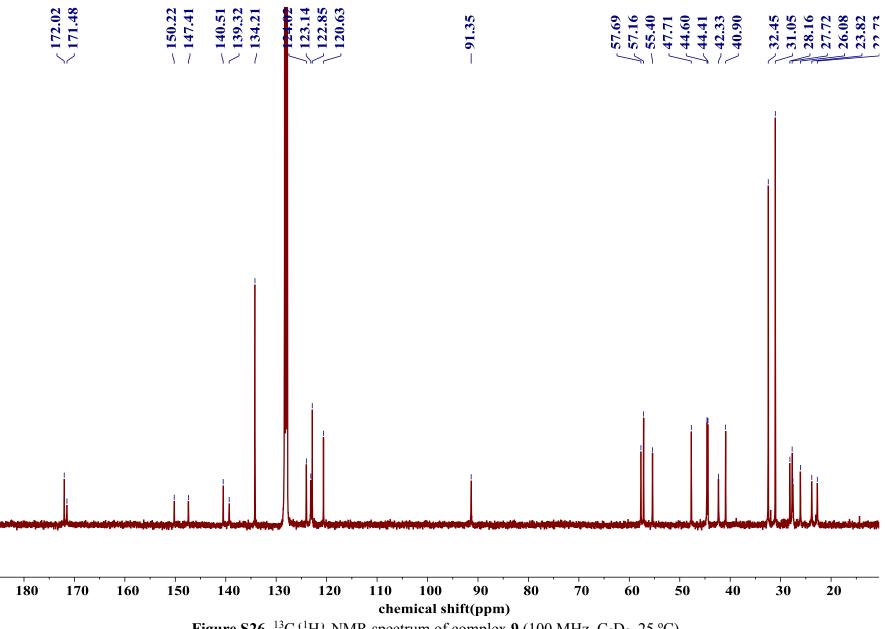
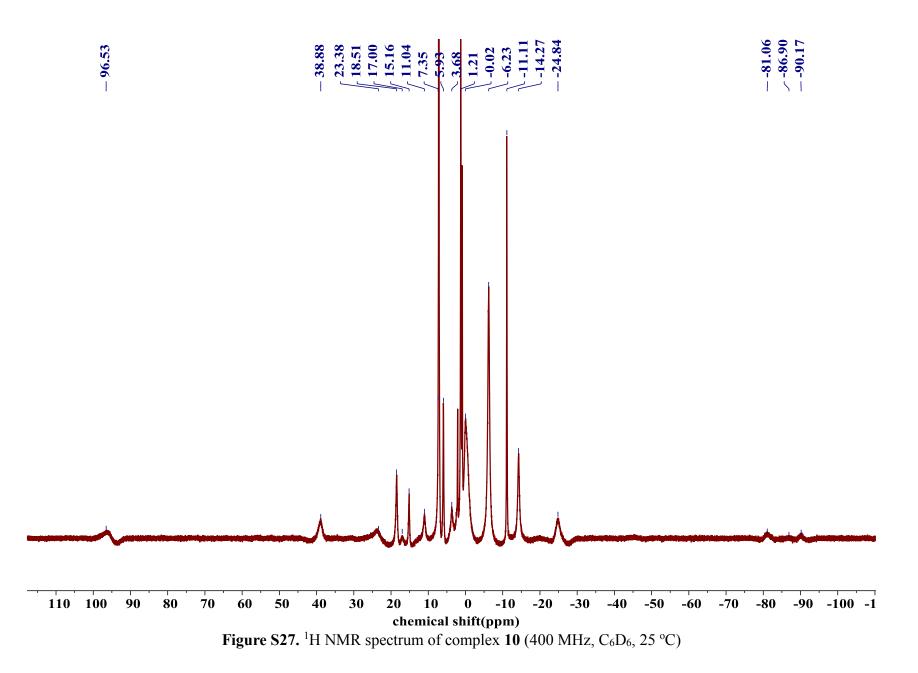



Figure S26. ${}^{13}C{}^{1}H$ NMR spectrum of complex 9 (100 MHz, C₆D₆, 25 °C).

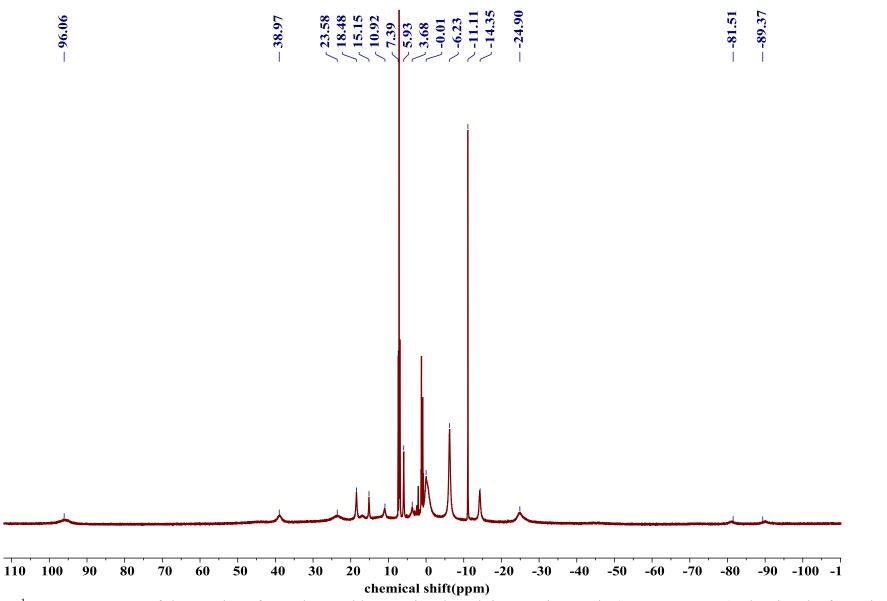


Figure S28. ¹H NMR spectrum of the reaction of complex 9 with 1.0 euiv. PhSSPh in C_6D_6 in 20 min (400 MHz, 25 °C), showing the formation of complex 10.

References

(1) Watson, P. L.; Tulip, T. H.; Williams, I. Defluorination of Perfluoroolefins by Divalent Lanthanoid Reagents: Activating Carbon-Fluorine Bonds. *Organometallics* **1990**, *9*, 1999–2009.

(2) Hitchcock, P. B.; Khvostov, A. V.; Lappert, M. F. Synthesis and Structures of Crystalline Bis(trimethylsilyl)methanido Complexes of Potassium, Calcium and Ytterbium. *J. Organomet. Chem.*2002, *663*, 263–268.

(3) Zhou, W.; Marquard, S. L.; Bezpalko, M. W.; Foxman, B. M.; Thomas, C. M. Catalytic Hydrosilylation of Ketones Using a Co/Zr Heterobimetallic Complex: Evidence for an Unusual Mechanism Involving Ketyl Radicals. *Organometallics* **2013**, *32*, 1766–1772.

(4) Kurogi, T.; Chu, J. X.; Chen, Y. F.; Mindiola, D. J. Neutral and Anionic Monomeric Zirconium Imides Prepared via Selective C=N Bond Cleavage of a Multidentate and Sterically Demanding β-Diketiminato Ligand. *Chem. Asian J.* 2019, *14*, 2629–2638.

(5) Sheldrick, G. M. SADABS: An Empirical Absorption Correction Program for Area Detector Data; University of Göttingen: Göttingen, Germany, **1996**.

(6) (a) Sheldrick, G. M.; *SHELXS-97* and *SHELXL-97*; University of Göttingen: Göttingen, Germany, **1997** and **2008**. (b) Sheldrick, G. M. *SHELXS-2014*; University of Göttingen: Göttingen, Germany, **2014**. (c) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Cryst.* **2009**, *42*, 339–341. (d) *SMART*, Version 5.628; Bruker AXS Inc.: Madison, WI, **2002**. (e) *SAINT*+, Vdrsion 6.22a; Bruker AXS Inc.: Madison, WI, **2002**. (f) *SAINT*+, Vdrsion v7.68A; Bruker AXS Inc.: Madison, WI, **2009**. (g) *SHELXTL NT/2000*, Version 6.1; Bruker AXS Inc.: Madison, WI, **2002**.