SUPPORTING INFORMATION:

Development of a PointNet for Detecting Morphologies of Self-Assembled Block Oligomers in Atomistic Simulations

Zhengyuan Shen, †,‡,¶ Yangzesheng Sun, ‡,¶ Timothy P. Lodge, †,‡ and J. Ilja Siepmann *,†,‡,¶

†Department of Chemical Engineering and Materials Science, University of Minnesota, 421
Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States

- ‡ Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis,
 Minnesota 55455-0431, United States
- ¶ Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis,
 Minnesota 55455-0431, United States

E-mail: siepmann@umn.edu

PointNet Model and Data Availability

The implementation of the PointNet models and sample data files are freely available from: https://github.com/donshen/pointnet.phasedetection

Table S1. Details of the simulated systems used to generate the point clouds shown in Figure 3

Compound	Structure	System Size	$T_{ m SIM}/{ m K}$	Morphology
$A_4B(B_8)_3$	HO OH OH	594	460	BCC
$A_4B(B_{10})_2$	OH OH HO OH	500	490	НРС
$\mathrm{A_{2}B_{7}A_{2}}$	ОН ОН	1000	430	LAM
$\mathrm{B}_{6}\mathrm{A}_{4}\mathrm{B}_{6}$	OH OH	1504	440	HPL
$A_2B_{12}A_2$	ОН	1000	520	DIS

Table S2. Details of all the simulated systems to generate point clouds for all morphologies other than NET structures.

Compound	Structure	System Size	$T_{ m SIM}/{ m K}$	Morphology
	OH LIO		322.27	1 00
$A_2B_4A_2$	но	1000	400	DIS
$A_2B_6A_2$	OH HO, A A A A	1000	400	LAM
	ОН	1000	460	DIS
$A_2B_7A_2$	он он	1000	400	LAM
	НО	1000	460	DIS
$A_2B_8A_2$	OH	1000 & 8000	400	LAM
	HOOHOH	1000	460	DIS
$A_2B_{10}A_2$	óн	1000	400	LAM
	НО	1000	460	DIS
$A_2B_{12}A_2$		1000	430	LAM
	HO OH	1000	490	DIS
$A_3B_{12}A_3$	OH OH	1000	460	LAM
	ОН	1000	550	DIS
$A_3B_{12}A_3$	OH OH	1000	460	LAM
	ОН	1000	550	DIS
$B_6A_4A_6$	он он	1504	440	HPL
	OH OH	1504	490	DIS
A_3B_6	ÓН	1000	400	LAM
	HO	1000	460	DIS
$\overline{\mathrm{A_4B_{12}}}$	OH OH	1000	490	LAM
	OH	1000	550	DIS
$\overline{\mathrm{A_6B_{12}}}$	OH OH OH	1000	580	LAM
	OH OH	1000	670	DIS
$A_4B(B_8)_2$	OH OH	500 & 4000	490	HPC
	OH	500	550	DIS
$A_4B(B_{10})_2$	OH OH	500	490	HPC
	OH	500	550	DIS
$A_4B(B_8)_3$	OH OH	594	460	BCC
	HO	594	550	DIS
	OH \			
	OH			
$\mathrm{A}_{10}\mathrm{B}_{20}$	HO 18	600	640	LAM
	QΗ			
	HO 17			
$A_8B(B_{18})_2$	16	600	610	HPC

Figure S1. (Left) Unit vectors obtained by multiplying 5000 random rotation matrices M_{rot} to the vector [1,0,0]. (Right) Distributions of the cosines of angles between the rotated vectors and the three Cartesian axes.

Figure S2. Confusion matrices for the test data achieved with model A for different sizes of input point clouds.

Figure S3. Confusion matrices for the test data achieved with model B for different sizes of input point clouds.

Figure S4. Confusion matrices for the test data achieved with model C for different sizes of input point clouds.

Figure S5. Confusion matrices for the test data achieved with model D for different sizes of input point clouds.

Figure S6. Examples of input point clouds with $N_{\text{points}} = 2000$ (top) and the critical points with highest contributions to the max-pooled features (bottom). To guide the eye, the point clouds are colored from yellow to purple according to a point's average values of its x, y, and z coordinates.

Figure S7. Orientational distributions of the vector perpendicular to the lamellar plane for the systems with LAM morphology: (top row) models A and B; (bottom row) models C and D.

Figure S8. Stack plots of the predicted softmax classification probabilities obtained with models A, B, C, and D (top to bottom) for 50 frames taken at 10-ns intervals during a 500-ns MD trajectory. Data in columns (a)-(c) are for a 600-molecule $A_8B(B_{18})_2$ system with 1000 oxygen atoms for the point cloud selected at random from (a) all oxygen atoms, (b) only from oxygen atoms in positions 1, 3, 5, and 7 of the polar group, and (c) only from oxygen atoms in positions 2, 5, and 8 of the polar group. Data in columns (d) and (e) are for a 8000-molecule system of the $A_4B(B_8)_2$ block oligomer with 1000 oxygen atoms for the point cloud selected at random from (d) all oxygen atoms, and (e) only from oxygen atoms located in a subvolume with linear dimensions of $L_x/2$, $L_y/2$, and $L_z/2$, where L_x , L_y , and L_z are the box lengths for the entire simulation box.