SUPPORTING INFORMATION:

Development of a PointNet for Detecting Morphologies of Self-Assembled Block Oligomers in Atomistic Simulations

Zhengyuan Shen, ${ }^{\dagger,+, \pi}$ Yangzesheng Sun, ${ }^{\ddagger, \pi}$ Timothy P. Lodge, ${ }^{\dagger, \ddagger}$ and J. Ilja Siepmann ${ }^{*, \uparrow, \ddagger, \ldots}$
\dagger Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
\ddagger Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
E-mail: siepmann@umn.edu

PointNet Model and Data Availability

The implementation of the PointNet models and sample data files are freely available from: https://github.com/donshen/pointnet.phasedetection

Table S1. Details of the simulated systems used to generate the point clouds shown in Figure 3
Compound

Table S2. Details of all the simulated systems to generate point clouds for all morphologies other than NET structures.

Figure S1. (Left) Unit vectors obtained by multiplying 5000 random rotation matrices $\boldsymbol{M}_{\text {rot }}$ to the vector [1,0,0]. (Right) Distributions of the cosines of angles between the rotated vectors and the three Cartesian axes.

Figure S2. Confusion matrices for the test data achieved with model A for different sizes of input point clouds.

Figure S3. Confusion matrices for the test data achieved with model B for different sizes of input point clouds.

Figure S4. Confusion matrices for the test data achieved with model C for different sizes of input point clouds.

Figure S5. Confusion matrices for the test data achieved with model D for different sizes of input point clouds.

Figure S6. Examples of input point clouds with $N_{\text {points }}=2000$ (top) and the critical points with highest contributions to the max-pooled features (bottom). To guide the eye, the point clouds are colored from yellow to purple according to a point's average values of its x, y, and z coordinates.

Figure S7. Orientational distributions of the vector perpendicular to the lamellar plane for the systems with LAM morphology: (top row) models A and B; (bottom row) models C and D .

Figure S8. Stack plots of the predicted softmax classification probabilities obtained with models A, B, C, and D (top to bottom) for 50 frames taken at 10 -ns intervals during a 500 -ns MD trajectory. Data in columns (a)-(c) are for a 600 -molecule $\mathrm{A}_{8} \mathrm{~B}\left(\mathrm{~B}_{18}\right)_{2}$ system with 1000 oxygen atoms for the point cloud selected at random from (a) all oxygen atoms, (b) only from oxygen atoms in positions $1,3,5$, and 7 of the polar group, and (c) only from oxygen atoms in positions 2, 5, and 8 of the polar group. Data in columns (d) and (e) are for a 8000 -molecule system of the $\mathrm{A}_{4} \mathrm{~B}\left(\mathrm{~B}_{8}\right)_{2}$ block oligomer with 1000 oxygen atoms for the point cloud selected at random from (d) all oxygen atoms, and (e) only from oxygen atoms located in a subvolume with linear dimensions of $L_{x} / 2, L_{y} / 2$, and $L_{z} / 2$, where L_{x}, L_{y}, and L_{z} are the box lengths for the entire simulation box.

