Supporting Information

Self-Templated Formation of Fluffy Graphene-Wrapped Ni₅P₄ Hollow Spheres for Li-Ion Battery Anodes with High Cycling Stability

Chunfei Zhang^{a,b}, Gisang Park^b, Byong-June Lee^b, Lan Xia^a, He Miao^a, Jinliang Yuan^{a,*} and

Jong-Sung Yu^{b,c*}

^aLaboratory of Renewable Energy for Maritime Applications, Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China

^bDepartment of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.

^cDepartment of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

Corresponding Authors

Jinliang Yuan, yuanjinliang@nbu.edu.cn,

Jong-Sung Yu, jsyu@dgist.ac.kr

Figure S1. XRD patterns of Ni(OH)₂ and Ni₂P generated with different Ni/P molar ratios.

As shown in Figure S1, the phosphorization of Ni(OH)₂ will not occur at a temperature of 280 °C, and a great amount of Ni(OH)₂ can be phosphorized into Ni₂P at a temperature of 320 °C, which can be fully transformed into Ni₂P if the Ni/P molar ratio decreases to 0.06. By-products such as phosphates cover on the surface of Ni₂P can be removed by diluted HCl and high-quality Ni₂P is collected.

Figure S2. SEM images of Ni(OH)₂ and Ni₂P porous spheres.

Figure S3. XRD patterns of Ni_5P_4 synthesized with different mass ratios of Ni spheres to $NaH_2PO_2 \cdot H_2O$.

Figure S4. HR-TEM image (a) and SAED pattern (b) of Ni₅P₄.

Figure S5. G- and D-bands of graphene in the Raman spectrum of Ni₅P₄@FG.

Figure S6. EDX analysis of Ni₅P₄

Figure S7. EDX analysis of pristine Ni₅P₄@FG

Figure S8. TG analysis of the pristine Ni₅P₄ and Ni₅P₄@FG samples

Figure S9. XRD spectrum of Ni@G

Figure S10. EDX analysis of C, F, O, Ni and P elements on the different points shown in Figure 6b and d. The trace amount of Ni is also detected in the SEI layers (points A and B), which may result from surface contamination when the samples were detached from the copper foils.

Figure S11. Ex-situ XRD of Ni_5P_4 and Ni_5P_4 @FG in copper foils detached from the cells before and after 300 cycles

Figure S12. SEM and TEM images of Ni_5P_4 (a,b) and Ni_5P_4 @FG (c,d) after 300 cycles

Structures	Methods	Current density	Specific capacity	Cardo anarchara
		(mA g ⁻¹)	(mAh g ⁻¹) [#]	Cycle number
$Ni_5P_4@C^{[1]}$	Wet-chemistry and a	0.1.C	644	50
sphere	solid-state reaction	0.1 C		
$Ni_5P_4/C^{[2]}$	Triphenylphosphine-based	0.2.0	600	100
Nanoparticle	solvothermal reaction	0.2 C		
Ni ₅ P ₄ ^[3]	P-assisted reaction with	0.5.0	400	100
Nanosheet	Ni foam	0.5 C		
Ni ₅ P ₄ ^[4]	PH ₃ -assisted reaction with		~500	100
Nanofoam	Ni-P nanofoams	50 (~0.07 C)		
Ni_5P_4 (This work)	PH ₃ -assisted reaction with		583	300
Hollow sphere	hollow Ni sphere	500 (~0.7 C) [*]		
$Ni_5P_4@FG$ (This work)	PH ₃ -assisted reaction with		739	300
Hollow sphere	hollow Ni@G sphere	500 (~0.7 C)*		

Table S1. Ni₅P₄-based Li-ion battery anodes and their performance.

* The rate is calculated on the basis of the theoretical specific capacity of Ni_5P_4 (767 mAh g⁻¹)

[#]Determined after each specified cycle numbers.

Cells	$R_{s}(\Omega)$	$R_{sf}(\Omega)$	$R_{ct}(\Omega)$	C _{int} (F)
Fresh Ni ₅ P ₄	7.30	467.9	75.5	/
Ni ₅ P ₄ after 1 cycle	7.33	216.0	39.9	/
Fresh Ni ₅ P ₄ @FG	10.11	524.0	25.5	/
Ni ₅ P ₄ @FG after 1 cycle	11.00	297.7	6.2	/
Ni ₅ P ₄ @FG after 300 cycles	21.65	122.1	36.9	0.095
Ni ₅ P ₄ after 300 cycles	17.27	190.0	58.9	0.89

Table S2. Representative resistances in the equivalent circuits of different Ni_5P_4 and Ni_5P_4 @FG cells.

References

[1] Lu,Y.; Tu, J. P.; Xiong, Q. Q.; Xiang, J. Y.; Mai, Y. J.; Zhang, J.; Qiao, Y. Q.; Wang, X. L.; Gu, C. D.; Mao, S. X. Controllable Synthesis of a Monophase Nickel Phosphide/Carbon (Ni₅P₄/C) Composite Electrode via Wet-Chemistry and a Solid-State Reaction for the Anode in Lithium Secondary Batteries, *Adv. Funct. Mater.***2012**, *22*, 3927–3935.

[2] Jiang, J.; Wang, C.; Li, W.; Yang, Q. One-Pot Synthesis of Carbon-Coated Ni₅P₄
Nanoparticles and CoP Nanorods for High-Rate and High-Stability Lithium-Ion Batteries, *J. Mater. Chem. A*2015, *3*, 23345–23351.

[3] Feng, X.; Tang, M.; O'Neill, S.; Hu, Y. Y. In Situ Synthesis and In Operando NMR Studies of a High-Performance Ni₅P₄-Nanosheet Anode, *J. Mater. Chem.* A**2018**, *6*, 22240–22247.

[4] Records, W. C.; Wei, S.; Belcher, A. M. Virus-Templated Nickel Phosphide Nanofoams as Additive-Free, Thin-Film Li-Ion Microbattery Anodes, *Small***2019**, *15*, 1903166.