High-throughput screening of an octanoic acid producer strain library enables detection of new targets for increasing titers in Saccharomyces cerevisiae

Leonie Baumann,¹ Stefan Bruder,² Johannes Kabisch,² Eckhard Boles¹ and Mislav Oreb^{*1}

¹Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany

²Department of Biology, Computer-aided Synthetic Biology, Technical University Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany

*Corresponding author: m.oreb@bio.uni-frankfurt.de

SUPPORTING INFORMATION

Table S1.	Plasmids	used in	this study	
-----------	----------	---------	------------	--

Plasmid	Characteristics	Reference
Plasmids from library	-	
pGP564 ("control")	2μ, LEU2, KanR	2
Library	pGP564, yeast genomic DNA fragments of ~ 10 kb size	2
Plate A10, well F1 ("FAS1")	pGP564, [<i>YKL183C-A</i>]*, [<i>LOT5</i>], <i>FAS1</i> , [<i>PRS1</i>]*	2
Plate A16, well E2 (" <i>FAS2"</i>)	pGP564, [SSO1]&, FAS2, YPL230W, [YPL229W]*	2
Plate A1, well F6 ("F7-E2.8")	pGP564, [YBL046W]&, COR1, YBL044W, ECM13, FUI1, [PRE7]*	2
Plate A13, well A3 ("F7-E3.1")	pGP564, [ESC1]&, ERG8, FMP42, FSH2, UBP8, MRE11, MRPL44, YMR226C, TAF7, [MTF1]*	2
Plate A1, well C1 ("F8-E2.4")	pPGP564, GDH3, [YAL061W]*	2
Plate A3, well E7 ("F8-E2.7")	pPGP564, [PSF1], RAD61, HED1, DAD1, KCS1	2
Plate A12, well G7 ("F8-E2.10")	pPGP564, [YML023C]*, APT1, UNG1, YML020W, OST6, YML018C, [PSP2]*	2
Plate A13, well B3 ("TAF7-MTF1")	pPGP564, [YMR226C]*, TAF7, MTF1, RRP5, RPS10B, YMR230W-A, [PEP5]*	2
Plasmids for CRISPR		
pRCC-K	2μ, kanMX, AmpR, pROX3-Cas9 ^{opt} -tCYC1, pSNR52-gRNA-tSUB4	3
pRCC-N	2μ, natNT2, AmpR, pROX3-Cas9 ^{opt} -tCYC1, pSNR52-gRNA-tSUB4	3
pRCC-K-LBV32	pRCC-K with <i>gRNA</i> for <i>pWAR1</i> locus (TTGCTCCTACATTTATCGGA)	This study
pRCC-N-LBV47	pRCC-N with <i>gRNA</i> for <i>URA3</i> locus (AACGTTACAGAAAAGCAGGC)	This study
pRCC-K-LBV103	pRCC-K with <i>gRNA</i> for <i>PYK2</i> locus (ATGTCTTTGGCGGACAAGGG)	1
pRCC-N-SHV42	pRCC-N with <i>gRNA</i> for <i>FAA2</i> locus (GAAGATTTTGAAACCTTACG)	4
Other plasmids		
LBV14	2μ, URA3, AmpR, pPDR12-EnvyGFP-tCYC1	1
LBV91 ("[PSF1]-RAD61")	pGP564, [<i>PSF1</i>], <i>RAD61</i>	This study
LBV92 ("HED1-DAD1-KCS1")	pGP564, HED1, DAD1, KCS1	This study
LBV96 ("[ESC1]&-ERG8")	pGP564, [<i>ESC1</i>]&, <i>ERG8</i>	This study
LBV97 ("FMP42-FSH2")	pGP564, FMP42, FSH2	This study
LBV98 ("UBP8-MRE11")	pGP564, UBP8, MRE11	This study
LBV99 ("MRPL44-YMR226C")	pGP564, MRPL44, YMR226C	This study
LBV104 (" <i>HED1</i> ")	pGP564, <i>HED1</i>	This study
LBV105 (" <i>DAD1</i> ")	pGP564, <i>DAD1</i>	This study
LBV106 (" <i>KCS1</i> ")	pGP564, <i>KCS1</i>	This study
LBV111 ("FMP42")	pGP564, <i>FMP42</i>	This study
LBV112 ("FSH2")	pGP564, <i>FSH2</i>	This study
LBV113 ("KCS1-FSH2")	pGP564, KCS1, FSH2	This study
LBGV023	ConLS'-gfp dropout-ConRE'- <i>LEU2</i> -CEN6-ARS4- KanR-ColE1	5
FWV26	pRS313, CEN6-ARS4, AmpR, HIS3	6
RPB34 (" <i>FAS1</i> ")	pRS315, CEN6-ARS4, AmpR, <i>LEU2</i> , pFAS1-FAS1wt	6
RPB36 (<i>"FAS1^{RK}"</i>)	pRS315, CEN6-ARS4, AmpR, <i>LEU2</i> , pFAS1-FAS1RK	6
RPB38 (" <i>FAS2</i> ")	pRS313, CEN6-ARS4, AmpR, HIS3, pFAS2-FAS2wt	6

Primer	Sequence 5'-3'	Application		
Insertion of	biosensor in <i>ura3</i> locus			
MRP130	CGCCTGCTTTTCTGTAACGTTGATCATTTATCTTTCACTGCGGAG			
MDD121	AACGTTACAGAAAAGCAGGCGTTTTAGAGCTAGAAATAGCAAGT	Amplification of pRCC N with		
IVIRP131	TAAAATAAGG	amplification of prec-N with		
WGP234	CTTGGTGGTGTTCGTCGTATCTCTTAATCATAGAAGCAGACAATG	ura3		
WGI 234	GAG			
WGP235	TGTTGTCTGACATTTTGAGAGTTAACACCGAAATTACCAAGGCTC			
LBP195	GTATACATGCATTTACTTATAATACAGTTTTGATATCTTTGTTTTGC	Amplification of biosensor		
		(pPDR12-EnvyGFP-tCYC1)		
LBP196		from LBY27 genomic DNA		
MRP141		Amplification for proof of		
MIRP142		successful integration		
Replacemen	It of <i>pwar1</i> by <i>ppDR12</i>	I		
WGP234	GAG			
WGP235	TGTTGTCTGACATTTTGAGAGTTAACACCGAAATTACCAAGGCTC	Amplification of pRCC-K with		
LBP199	TTGCTCCTACATTTATCGGAGTTTTAGAGCTAGAAATAGCAAGTT	<i>pWAR1</i>		
		-		
LBI 200				
LBP201	TTTGCATTTTAC	Amplification of <i>pPDR12</i> with		
LBP202	GACGGCAACGCCAGTTATTGCAATCTGCGTGTCCATTTTTTATTA ATAAGAACAATAAC	downstream regions		
LBP203	GACGCCACTGATATAAATCG	Amplification for proof of		
LBP97	GCTTCATAATAGTTCCTCTGG	successful integration		
Knockout of	FAA2	•		
RPP266	GAAGTCCCGGTGTCCCTGACGTTATTGTAG	Amplification donor DNA for <i>faa2</i> knockout from SHY34		
RPP267	GTGACCCATGTACTCCGCTAGATTGACCAG	genomic DNA & proof of successful knockout		
SHP80	TTAGCCGGTTACACCAAAGG	Amplification of an internal		
LBP275	GCCACGAATTTGCAGTTC	part of FAA2		
Cloning of LBV91-92, 96-99, 104-106, 111-113				
LBP375	GTGGCGGCCGCTCTAGAACTAGTGGATC	Amplification of fragment for		
LBP376	TATCGAATTCCTGCAGCCCGGGGGGATCTCGTCTACCCGAAGTACT CTAGGCTTCCTATGC	LBV91 from F8-E2.7		
LBP377	CGGTGGCGGCCGCTCTAGAACTAGTGGATCTCCGCACCTTTTAAA AAAGGTTGAAAGGGC	Amplification of fragment for		
LBP393	CGGTATCGATAAGCTTGATATCGAATTCC	LBV92 from F8-E2.7		
	GCTTGATATCGAATTCCTGCAGCCCGGGGGGATCGTGCACACTTTC	Amplification of fragment for LBV96 from F7-E3.1		
LBP383	AAGCTAACACGCAC			
LBP390	GGCGGCCGCTCTAGAACTAGTG			
LBP384		Amplification of fragment for LBV97 from F7-E3.1		
LBP385	GTGAGCGCGCGTAATACGACTCACTATAGGAATTATTAATAACAA			
LBP386	GCGGTGGCCGGCCGCTCTAGAACTAGTGGATCGGTTACAGCTATT AAATCTTATAGTCTTG	Amplification of fragment for LBV98 from F7-E3.1		
LBP387	GCTTGATATCGAATTCCTGCAGCCCGGGGGATCGAAAATAAAGG			
	Ι CATCTACAAATCTCAT			

Table S2. Oligonucleotides used	l in	this	study.
---------------------------------	------	------	--------

1 BP388	GCTCCACCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCAGTCG	Amplification of fragment for	
251 300	AGTTTTATCGGATCTG		
	GTATCGATAAGCTTGATATCGAATTCCGTTCTCTTTATCATCTATA	LBV99 from F7-E3.1	
LDF 3 <i>3</i> 4	ТАТТАСТСТТАТАС		
	CGGTGGCGGCCGCTCTAGAACTAGTGGATCTCCGCACCTTTTAAA		
LDF377	AAAGGTTGAAAGGGC	Amplification of fragment for LBV104 from F8-E2.7	
	GTCGACGGTATCGATAAGCTTGATATCGAATTCAGTTGCGGTTCC		
LBF410	CTCTGTCTCTC		
	CCACCGCGGTGGCGGCCGCTCTAGAACTAGTGGTTCAAAGAGGA	Amplification of fragment for	
LDP411	GAACGTTTG		
	GTATCGATAAGCTTGATATCGAATTCAAAGAAAGGATAGAACTA	LBV105 from F8-E2.7	
LBP412	ATGAATATTCT		
	CCGCGGTGGCGGCCGCTCTAGAACTAGTGATGTACATATATCCTC	A multipation of function out for	
LDP415	ACACGTCCG	Amplification of fragment for	
LBP393	CGGTATCGATAAGCTTGATATCGAATTCC	LBV100 HOIH F8-E2.7	
	CACCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCCTTAAGGTA		
LDP304	GATAATAGTGGTCCAT	Amplification of fragments for	
100424	CTGACACAATGGACAATTAAATAAAATTAAGTAAAAAAAA	LBV111 from F7-E3.1	
LDP451	GACTTTAATTTTTAAACGGTGAGTAAGGAAAG		
	GTGAGCGCGCGTAATACGACTCACTATAGGAATTATTAATAACAA	Amplification of fragment for	
LDP303	ATAAAAAAGCAGGG		
100422	CACCGCGGTGGCGGCCGCTCTAGAACTAGTGTACAGTCTTTACTG	LBV112 from F7-E3.1	
LBP433	СССТААТА		
	CCGCGGTGGCGGCCGCTCTAGAACTAGTGATGTACATATATCCTC		
LBP413	ACACGTCCG	Amplification of fragments for	
LBP436	GGCCAGTATTAGGGCAGTAAAGACTGTACGAAAAACACTTTTCT		
	GTTCTTGTTTGTC		
LBP385	GTGAGCGCGCGTAATACGACTCACTATAGGAATTATTAATAACAA	E3.1	
	ATAAAAAAGCAGGG		
LBP437	GACAAACAAGAACAGAAAAGTGTTTTTCGTACAGTCTTTACTGCC		
	СТААТА		

Figure S1. Fluorescence signal of genomically integrated vs. plasmid-based biosensor. The two strains LBY27 and LBY31 contain a stable genomic integration of the biosensor *pPDR12-GFP* whereas VGY2 was transformed with a multi-copy plasmid (LBV14) containing *pPDR12-GFP*. All strains were inoculated to an OD₆₀₀ = 0.1 and grown in buffered (selective) SCD medium. Aliquots were taken after 4 h for GFP fluorescence measurement in a flow cytometer (common logarithmic transformation of fluorescence area plotted). LBY27 (non-producer). VGY2 (producer): *FAS1^{RK}*. LBY31 (producer): *FAS1^{RK}*, $\Delta pWAR1$::*pPDR12*.

Figure S2. Evaluation of biosensor response to supplemented octanoic acid. Strain LBY27, which contains a stable integration of the biosensor *pPDR12-GFP*, was inoculated to an OD₆₀₀ = 0.1 and cultivated until stationary phase. The indicated octanoic acid amounts were added, and the cultures were cultivated for another 3 h before measurement of GFP fluorescence in a flow cytometer (common logarithmic transformation of fluorescence area plotted).

Figure S4. Fluorescence signals of library populations (E2 sorting). Strain LBY27 (non-producer) and LBY39+control (producer + empty vector) serve as controls. All contain a stable integration of the biosensor *pPDR12-GFP*. Populations of Flasks 1-8 (LBY39 with library) were grown for 66 h in buffered SCD^{-leu} medium before measurement of GFP fluorescence in a flow cytometer (common logarithmic transformation of fluorescence area plotted). The top 7.5 % of fluorescent events of Flask 7 and Flask 8, respectively, were sorted. LBY39: *FAS1^{RK}*, Δ*faa2*.

Figure S5. Fluorescence signals of library populations (E3 sorting). Strain LBY27 (non-producer) and LBY39+control (producer + empty vector) serve as controls. All contain a stable integration of the biosensor *pPDR12-GFP*. Populations of Flasks 7-8 (LBY39 with library) were grown for 66 h in buffered SCD^{-leu} medium before measurement of GFP fluorescence in a flow cytometer (common logarithmic transformation of fluorescence area plotted). The top 5 % and top 1% of fluorescent events of Flask 7 and Flask 8, respectively, were sorted. LBY39: *FAS1^{RK}*, Δ*faa2*.

Figure S6. Effect of additional expression of *FAS* **genes in LBY38 (***FAS1*^{*RK*} **) background strain.** OD₆₀₀ (dots) and octanoic acid titers (bars) of octanoic acid producer strain LBY38 with plasmids containing indicated genes (+ empty plasmid LBGV023 or FWV26, for those with only one gene indicated). As control served LBY38 carrying empty vectors FWV26 and LBGV023. Fatty acids were extracted, methylated and quantified via GC 72 h after inoculation in buffered SCD^{-leu-his} medium. LBY38: *FAS1*^{*RK*}, Δ *faa2. n* = 2, error bars = ± SD. Statistical analysis (indicated column vs. control) was performed using two-tailed unpaired *t* test (* *P* < 0.05).

Figure S7. Identification of genes increasing octanoic acid titers. OD_{600} (dots) and octanoic acid titers (bars) of octanoic acid producer strain LBY38 containing either the vector control or plasmids with the indicated genes. (A) Plasmid F8-E2.7 contains all five genes indicated on the x-axis (B) Plasmid F7-E3.1 contains all ten genes indicated on the x-axis. Fatty acids were extracted, methylated and quantified via GC 48 h after inoculation in buffered SCD^{-leu} medium. LBY38 (producer): *FAS1^{RK}*, *Δfaa2.* []: intact ORF, possibly missing up- or downstream regions. []&: 5' end of gene is missing. n = 2, error bars = ± SD. Statistical analysis (indicated column vs. control) was performed using two-tailed unpaired *t* test (* P < 0.05, ** P < 0.01).

Figure S8. Growth and metabolic performance of selected strains. Cell densities and glucose and ethanol titers of strain CEN.PK2-1C containing either the vector control or plasmids with the indicated genes. Strains were grown in buffered SCD^{-leu} medium in shake flasks on a cell growth quantifier and samples were taken for HPLC measurement over the course of fermentation. n = 3, error bars = ± SD.

REFERENCES

(1) Baumann, L., Rajkumar, A. S., Morrissey, J. P., Boles, E., and Oreb, M. (2018) A yeast-based biosensor for screening of short- and medium-chain fatty acid production. *ACS Synth. Biol.* 7, 2640–2646.

(2) Jones, G. M., Stalker, J., Humphray, S., West, A., Cox, T., Rogers, J., Dunham, I., and Prelich, G. (2008) A systematic library for comprehensive overexpression screens in *Saccharomyces cerevisiae*. *Nat. Methods 5*, 239–241.

(3) Generoso, W. C., Gottardi, M., Oreb, M., and Boles, E. (2016) Simplified CRISPR-Cas genome editing for *Saccharomyces cerevisiae*. *J. Microbiol. Methods* 127, 203–205.

(4) Henritzi, S., Fischer, M., Grininger, M., Oreb, M., and Boles, E. (2018) An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in *Saccharomyces cerevisiae*. *Biotechnol*. *Biofuels* 11.

(5) Lee, M. E., DeLoache, W. C., Cervantes, B., and Dueber, J. E. (2015) A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly. *ACS Synth. Biol. 4*, 975–986.

(6) Gajewski, J., Pavlovic, R., Fischer, M., Boles, E., and Grininger, M. (2017) Engineering fungal *de novo* fatty acid synthesis for short chain fatty acid production. *Nat. Commun. 8*, 14650.