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1 Linear simulations

Figure S1: Sketch of one unit cell used in simulations.

To support our experimental results we performed numerical simulations using the finite-

element method software COMSOL Multiphysics. In our metasurfaces the nanoresonators

were designed as nanocubes with side lengths/periods: QOM A 700/930 nm, QOM B

700/890 nm, QOM C 690/930 nm, QOM D 680/930 nm. But fabrication resulted in trun-

cated pyramids on residual lithium niobate (LN) layer (see Fig. 1(b)). We modelled our

metasurfaces as a periodic unit cell containing a LN pyramid and LN residual layer on the

SiO2 substrate as shown in Fig. S1. In Table 1 we provide the four model parameters used

in simulations. Period is the period of the unit cell, Thickness is the thickness of the LN

nanoresonator formed by LN pyramid and LN residual layer, Top length is the pyramid’s

top length and it’s base length was equal to the period value, Residual layer thickness is the

thickness of the LN residual layer under the pyramid.

Table 1: Geometric parameters used in simulations.

Metasurface Period, nm Thickness, nm Top length, nm Residual layer thickness, nm

QOM A 930 680 556 110

QOM B 900 680 594 140

QOM C 930 680 551 75

QOM D 930 680 539 54
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2 Linear spectra

2.1 Normal incidence

Figure S2: Experimental reflectance (solid lines) and transmittance (dotted lines) spectra
for QOMs of interest, spectral positions of electric resonances λER are noted in the title of
each QOM. The polarization is along the LN optic axis. The dashed gray line indicates the
degenerate photon-pair wavelength.

We measured the reflectance and transmittance spectra of our quantum optical meta-

surfaces (QOMs) using a custom-built white-light spectroscopy setup with collimated and

linearly polarized excitation. Two Mie-type resonances appear in transmittance spectra (dot-

ted lines) as dips and in reflectance spectra (solid lines) as peaks as can be seen in Fig. S2.

Their spectral positions are summarized for all QOMs in Table 2. Since the resonances at

shorter wavelengths (λER) are dominated by electric multipole components and the reso-

nances at longer wavelengths by magnetic dipole contribution (as discussed below), we refer

to them simply as electric resonances and magnetic resonances. In reflection, the electric
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resonances appear to be broader and flatter than in transmittance, which can be attributed

to the scattering losses due to fabrication imperfections. Small fringes in the spectra are

caused by Fabry-Pérot-like interferences in the setup.

As the linear spectra showed some constant background coming from scattering, in

Fig. 1(c) it was removed by subtracting from the QOM reflectance RQOM the reflectance

of the wafer Rwaf and normalizing the result to the maximum: (RQOM−Rwaf)/max(RQOM−

Rwaf).

Table 2: Positions of Mie-type resonances.

Metasurface Electric resonance, nm Magnetic resonance, nm

QOM A 1591 1617

QOM B 1578 1595

QOM C 1566 1609

QOM D 1546 1597

2.2 Oblique incidence

In thin films photon pairs created via SPDC are generated within a broad angle.1 In general,

this also applies to our experiment but our optical system collects only pairs within the

NA=0.14. However, for photons generated under an angle the resonances are effectively

shifted. In Fig. S3 we plot experimental and simulated linear transmittance spectra for one

sample metasurface QOM A where the polarization is kept along the LN optic axis. While

at normal incidence in Fig. S3(a) we observe only two Mie-type resonances at 1591 nm and

1617 nm, with oblique incidence in Fig. S3(b,c) the situations drastically changes.

In case of excitation tilted in the xz-plane, Fig. S3(b), the electric resonance splits into

two as clearly seen in Fig. S3(b)(ii) and becomes effectively wider. Additionally a new

blue-shifted lattice resonance is appearing and moving towards shorter wavelengths with

increasing angle of incidence.
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Figure S3: Experimental (solid lines) and simulated (dashed lines) transmittance spectra for
QOM A, polarization along the LN optic axis. (a): normal incidence, (b): oblique incidence
when excitation is tilted in the xz-plane (rotated around y-axis), (c): oblique incidence when
the excitation is tilted in the xy-plane (rotated around z-axis); (i) and (ii): angle of incidence
2◦ and 5◦ respectively. The vertical dashed gray line indicates the degenerate photon-pair
wavelength.

For the excitation tilted in the xy-plane, Fig. S3(c), the electric resonance moves to

the shorter wavelengths by ≈10 nm for 2◦ incidence angle. In case of QOM A where its

position at normal incidence 1591 nm is red-shifted in relation to the degenerate photon-pair

wavelength λdeg= 2 · λp= 1576 nm, this means that the electric resonance moves closer to

the degeneracy (at θxy = 2◦ it is at 1581 nm). This leads to more efficient sum-frequency

generation (SFG) when signal and idler are incident under a small angle, as confirmed in the

top panel of Fig. 4(b). Following the quantum-classical correspondence, SPDC for photon

pairs emitted under a small angle should also be more efficient in QOM A.
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Figure S4: (a)-(c) Simulated transmittance spectra for QOMs B, C, D, respectively; for
normal incidence (top row) and for the incidence angle 2◦ in the xz-plane (θxz, middle row)
and in the xy-plane (θxy, bottom row). Polarization along the LN optic axis, z-axis. The
vertical dashed gray line indicates the degenerate photon-pair wavelength.

For other QOMs the tendency in the linear spectra is the same (see Fig. S4): under

oblique incidence the electric resonance shifts to shorter wavelengths. But since for QOM B

the electric resonance is very close to λdeg and for QOMs C and D the electric resonances

are already blue-shifted with respect to λdeg, upon increasing the angle of incidence they

will move even further away from the degenerate wavelength. Thus, in these metasurfaces

SFG/SPDC will only decrease at larger angles of incidence/emission.

Measurements with oblique incidence were performed by rotating the sample around its

y-axis with a manual rotation stage (Fig. S3(b)) and around its z-axis with a motorized

rotation stage (Fig. S3(c)). The manual stage was less precise which led to the discrepancy

between the experimental curves and simulations in Fig. S3(b). But the tendency is still

clear.
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3 Multipole decomposition

Figure S5: Multipole decomposition for QOMs of interest for polarization along the LN optic
axis. The dashed gray line indicates the degenerate photon-pair wavelength. ED: electric
dipole, EQ: electric quadrupole, EO: electric octupole, Etot: sum of ED, EQ, EO; MD:
magnetic dipole, MQ: magnetic quadrupole, MO: magnetic octupole, Mtot: sum of MD,
MQ, MO.

To perform multipole decomposition we used the method described in Ref. 2. As shown

in Fig. S5, the resonances at shorter wavelengths are dominated by electric dipole and

quadrupole contributions (therefore they are called electric), whereas the resonances at longer

wavelengths are dominated by the magnetic dipole (therefore they are called magnetic). As

discussed in the Supporting Information of Ref. 3, the multipole decomposition is very sen-

sitive to the geometric parameters and can give only a general impression of the resonance’s

multipolar composition.
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4 Field enhancement

Figure S6: Field enhancement FE inside one pyramid for QOMs of interest, polarization
along the LN optic axis, z-axis. The dashed gray line indicates the degenerate photon-pair
wavelength. FEx, FEy, FEz are field enhancements of x, y or z electric field component
respectively.

Additionally, we calculated the field enhancement4 inside our QOMs as

FEi =
1

Vres

∫
Vres

|Ei|2

E2
0

dV, (1)

where Vres is the volume of one LN nanoresonator, i = x, y, z and Ei is the corresponding

electric field component, and E0 is the amplitude of the incident electric field. In Fig. S6 we

plot these components as well as the total field enhancement (solid lines with shading below

them): FE = FEx + FEy + FEz.

Clearly, at the electric resonances the z-component of electric field contributes the most

to the total field enhancement; but at the magnetic resonances the x-component becomes
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dominant. The field enhancement at the electric resonances is at least 10 times larger

(≈10 times for the QOMs C, D and ≈20-25 times for the QOMs A, B) than at the magnetic

resonances. These simulations demonstrate that the highest field enhancement is at the

electric resonance where the electric field component along the lithium niobate optic axis

(z-component) is enhanced the most. This supports our experimental results: the electric

resonances are more efficient for spontaneous parametric down-conversion (SPDC). Thus, in

our QOMs we are able to fully utilize the lithium niobate’s largest second-order susceptibility

tensor element χ
(2)
zzz.

5 Correlation experiment in reflection

We pumped the nonlinear metasurfaces with a cw pig-tailed diode laser delivering up to

∼ 70 mW at 788 nm. The pump power was controlled using a half-wave plate (HWP) and

a polarizing beam-splitter (PBS). We used another HWP to rotate the pump polarization.

The pump beam with a diameter of ∼ 2.5 mm was focused into the metasurfaces using a 90◦

off-axis gold-coated parabolic mirror with 15 mm reflective focal length. The same parabolic

mirror collected the backward-generated SPDC radiation. The parabolic mirror played an

essential role as, being free from chromatic aberrations, it ensured the collection of photon

pairs from the same point where the pump laser was focused.

A longpass dichroic mirror with cut-on wavelength at 950 nm split the SPDC radiation

and the portion of the pump laser reflected at the sample surface, with the SPDC being

transmitted. Another longpass filter with cut-on wavelength at 1400 nm filtered out the

remaining pump and removed most part of the fluorescence. We detected degenerate photon

pairs after a 50 nm FWHM bandpass filter centered at 1575 nm. A broadband linear film

polarizer oriented parallel to the LN optic axis selected photon pairs with z polarization.

The polarizer also served as an additional filter removing fluorescence.

A parabolic mirror identical to the one used for focusing and collection fed the radiation
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into the input facet of a 50:50 broadband single-mode fiber splitter (1550 nm ± 100 nm).

Due to the identity of the two parabolic mirrors, the NA of the fiber (0.14) also determined

the collection angle of SPDC. The two outputs of the fiber splitter were sent to infrared

superconducting nanowire single-photon detectors (SNSPD). We registered the arrival time

differences between the two detectors using a Swabian Instruments time-tagger (not shown).

6 Simulations of sum-frequency generation

Simulations of sum-frequency generation were done in COMSOL Multiphysics using the un-

depleted pump approximation, and included three steps. The first two are linear simulations

of electromagnetic field for a plane wave excitation at (1) the signal frequency ωs and (2)

the corresponding idler frequency ωi = ωp−ωs, where ωp is the frequency of our pump laser.

Based on the electric fields from the first two steps, we calculated the nonlinear polarization

(see Eq. 2) inside a LN nanoresonator (pyramid and residual layer, see Fig. S1) which in turn

served as a source for the final SFG simulation. This algorithm was repeated by varying

the signal frequency and setting the idler frequency accordingly. For the simulations of SFG

with oblique incidence of signal and idler the excitation at the first step (signal study) was

tilted by 2◦ and at the second step (idler study) by −2◦, both either in xy or in xz planes

(see sketches in Fig. S3). The components of the nonlinear polarization had the form5

PNL
x (ωp) = 4ε0 (d31[Ex(ωs)Ez(ωi) + Ez(ωs)Ex(ωi)]− d22[Ex(ωs)Ey(ωi) + Ey(ωs)Ex(ωi)]) ,

PNL
y (ωp) = 4ε0 (d22[Ey(ωs)Ey(ωi)− Ex(ωs)Ex(ωi)] + d31[Ey(ωs)Ez(ωi) + Ez(ωs)Ey(ωi)]) ,

PNL
z (ωp) = 4ε0 (d31[Ex(ωs)Ex(ωi) + Ey(ωs)Ey(ωi)] + d33Ez(ωs)Ez(ωi)) , (2)

where Ex,y,z(ω) were the components of the signal (ωs) or idler (ωi) electric field, and d22 =

1.9 pm/V, d31 = −3.2 pm/V, d33 =
1

2
χ(2)
zzz = −19.5 pm/V at 1313 nm.6

The resulting SFG spectra were multiplied by the SPDC spectrum from the wafer (gray
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stars in Fig. 4(a)), to take into account the detectors sensitivity, and convolved with a Gaus-

sian with FWHM 8.8 nm, to take into account the detectors timing jitter.
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