Supplementary Information for

Palladium-Catalyzed Aminomethylation and Cyclization of Enynol to

O-Heterocycle Confined 1,3-Dienes

Houjian Yu,¹ Bangkui Yu,¹ Haocheng Zhang,¹ and Hanmin Huang^{1,2,†}

¹Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, 230026, P. R. China.
²State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.

[†]Corresponding author: <u>hanmin@ustc.edu.cn</u>

Table of contents

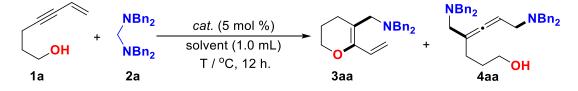
1.	General Information	2
2.	Optimization of the Reaction Conditions	3
3.	General Procedure for the Catalytic Reaction	6
4.	Preparation and Spectral Data of Substrates	7
5.	Products Characterization	21
6.	Synthetic Transformation of Products	35
7.	Mechanistic Experiments	37
8.	X-ray Single Crystal Data for Compound 3ga	42
9.	References	44
10.	NMR Spectra of Materials and Products	45

1. General Information

All non-aqueous reactions and manipulations were using standard Schlenk techniques. All solvents before using were dried by standard methods and stored under N₂ atmosphere. All reactions were monitored by TLC with silica gel-coated plates. NMR spectra were recorded on BRUKER Avence III 400 MHz or 500 MHz NMR spectrometers. Chemical shifts were reported in parts per million (ppm) down field from TMS with the solvent resonance as the internal standard. NMR data are reported as follows: chemical shift, multiplicity, coupling constants (Hz) and integration. Coupling constants (*J*) were reported in Hz and referred to apparent peak multiplications. High resolution mass spectra (HRMS) were recorded on Bruker MicroTOF-QII mass instrument (ESI). Single crystal X-ray diffraction analyses were recorded on Bruker SMART APEX II. All commercially available compounds were purchased from Adamas or Energy Chemical. Aminals used here were known compounds and synthesized according to the reported methods.¹ Enynols used here were synthesized according to the reported methods.² Flash column chromatography was performed using 200-300 mesh silica gels.

2. Optimization of the Reaction Conditions

Table S1. Evaluation of catalysts.^a


N,N,N',N'-tetrabenzylmethanediamine **2a** (146 mg, 0.36 mmol), palladium salt (0.015 mmol, 5 mol %), silver salt (0.03 mmol, 10 mol %), ligand (6 mol %), enynol **1a** (33 mg, 0.30 mmol) and solvent (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N₂ atmosphere. The reaction mixture was stirred at the designed temperature for 12 hours and then cooled to room temperature. The solvent was removed under reduced pressure, the crude product was purified by flash chromatography on silica gels (petroleum ether/ethyl acetate = 200/1 to 50/1) directly to give the desired product **3aa**.

	OH NBn ₂ a 2a	<i>cat.</i> (5 mol %) solvent (1.0 mL) T / ^o C, 12 h.	→ O 3aa	NBn ₂ ⋟ +	NBn ₂ 	NBn ₂
entry	[Pd]	Ligand/[Ag]	solvent	T/ºC	Yield/% 3aa	Yield/% 4aa
1	PdBr ₂	Xantphos/AgOTf	DME	100	52	33
2	Pd(CH ₃ CN) ₂ Cl ₂	Xantphos/AgOTf	DME	100	52	31
3 ^b	[Pd(allyl)Cl] ₂	Xantphos/AgOTf	DME	100	72	trace
4	[Pd(allyl)Cl] ₂	Xantphos	DME	100	N.D	N.D
5 ^c	Pd ₂ (dba) ₃	Xantphos	DME	100	50	7
6	Pd ₂ (dba) ₃	Xantphos	DME	100	N.D	N.D

^aReaction conditions: **1a** (0.3 mmol), **2a** (0.36 mmol), [Pd] (5 mol %), [Ag] (12 mol %), Ligand (6 mol %), solvent (1.0 mL), 12 h, isolated yield. ^{*b*}[Ag] (6 mol %), ^{*c*}HOTf (5 mol %).

Table S2. Evaluation of ligands.^{*a*}

N,*N*,*N'*,*N'*-tetrabenzylmethanediamine **2a** (146 mg, 0.36 mmol), palladium salt (0.015 mmol, 5 mol %), silver salt (0.03 mmol, 10 mol %), ligand (6 mol % or 12 mol %), enynol **1a** (33 mg, 0.30 mmol) and solvent (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N₂ atmosphere. The reaction mixture was stirred at the designed temperature for 12 hours and then cooled to room temperature. The solvent was removed under reduced pressure, the crude product was purified by flash chromatography on silica gels (petroleum ether/ethyl acetate = 200/1 to 50/1) directly to give the desired product **3aa**.

entry	[Pd]	Ligand/[Ag]	solvent	T/ºC	Yield/% 3aa	Yield/% 4aa
1	[Pd(allyl)Cl] ₂	Xantphos/AgOTf	DME	100	81	trace
2	[Pd(allyl)Cl] ₂	dppb/AgOTf	DME	100	N.D	N.D
3^{b}	[Pd(allyl)Cl] ₂	Trixiephos/AgOTf	DME	100	38	trace
4 ^c	[Pd(allyl)Cl] ₂	L1/AgOTf	DME	100	34	N.D

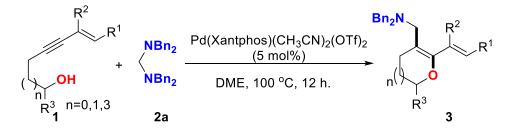
^aReaction conditions: **1a** (0.3 mmol), **2a** (0.36 mmol), [Pd] (5 mol %), [Ag] (6 mol %), ligand (6 m ol %), solvent (1.0 mL), 12 h, isolated yield. ^bligand (12 mol %), ^cL1=1,2-Bis((di-*tert*-butylphosph ino)methyl)benzene

Table S3. Evaluation of temperature.^a

N,*N*,*N'*,*N'*-tetrabenzylmethanediamine **2a** (146 mg, 0.36 mmol), Pd(Xantphos)(CH₃CN)₂(OTf)₂ (16 mg, 5 mol %), enynol **1a** (33 mg, 0.30 mmol) and solvent (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N₂ atmosphere. The reaction mixture was stirred at the designed temperature for 12 hours and then cooled to room temperature. The solvent was removed under reduced pressure, the crude product was purified by flash chromatography on silica gels (petroleum ether/ethyl acetate = 200/1 to 50/1) directly to give the desired product **3aa**.

OH 1a	+ <mark>NBn₂</mark> + <mark>NBn₂</mark> 2a	<i>cat.</i> (5 mol %) solvent (1.0 mL) T / °C, 12 h.	→ O 3aa	NBn ₂	+ NBn ₂ + 4	NBn ₂ OH
entry	[Pd]	solvent	T/ºC	Yield/% 3aa	Yield/% 4aa
1	Pd(Xantphos)(0	CH ₃ CN) ₂ (OTf) ₂	DME	100	81	trace
2	Pd(Xantphos)(0	CH ₃ CN) ₂ (OTf) ₂	DME	120	76	trace
3	Pd(Xantphos)(0	CH ₃ CN) ₂ (OTf) ₂	DME	80	38	53
4	Pd(Xantphos)(0	CH ₃ CN) ₂ (OTf) ₂	DME	60	28	57

^aReaction conditions: **1a** (0.3 mmol), **2a** (0.36 mmol), [Pd] (5 mol %), solvent (1.0 mL), 12 h, isolated yield.

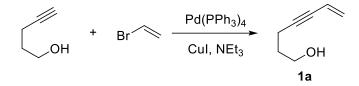

Table S4. Evaluation of solvents.^a

N,N,N',N'-tetrabenzylmethanediamine **2a** (146 mg, 0.36 mmol), Pd(Xantphos)(CH₃CN)₂(OTf)₂ (16 mg, 5 mol %), enynol **1a** (33 mg, 0.30 mmol) and solvent (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N₂ atmosphere. The reaction mixture was stirred at the designed temperature for 12 hours and then cooled to room temperature. The solvent was removed under reduced pressure, the crude product was purified by flash chromatography on silica gels (petroleum ether/ethyl acetate = 200/1 to 50/1) directly to give the desired product **3aa**.

	NBn ₂ Pd(Xant	Pd(Xantphos)(CH ₃ CN) ₂ (OTf) ₂					
OH 1a		lvent,12 h		3aa	+ 4a	OH	
entry	[Pd]		solvent	T/⁰C	Yield/% 3aa	Yield/% 4aa	
1	Pd(Xantphos)(CH ₃ C	N) ₂ (OTf) ₂	DME	100	81	trace	
2	Pd(Xantphos)(CH ₃ C	N) ₂ (OTf) ₂	THF	100	70	13	
3	Pd(Xantphos)(CH ₃ C	N) ₂ (OTf) ₂	DCM	100	40	26	
4	Pd(Xantphos)(CH ₃ C	N) ₂ (OTf) ₂	CH₃CN	100	trace	61	
5	Pd(Xantphos)(CH ₃ C	N) ₂ (OTf) ₂	<i>p</i> -xylene	100	63	trace	
6	Pd(Xantphos)(CH ₃ C	N) ₂ (OTf) ₂	mesitylene	100	67	trace	
7	Pd(Xantphos)(CH ₃ C	N) ₂ (OTf) ₂	DMF	100	23	trace	
8	Pd(Xantphos)(CH ₃ C	N) ₂ (OTf) ₂	DMSO	100	31	trace	

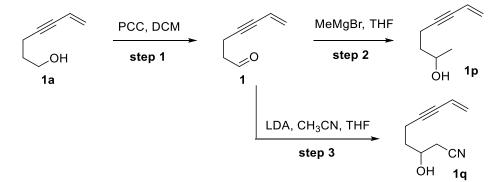
^aReaction conditions: **1a** (0.3 mmol), **2a** (0.36 mmol), [Pd] (5 mol %), solvent (1.0 mL), 12 h, isolated yield.

3. General Procedure for the Catalytic Reaction



Aminal **2a** (0.36 mmol), Pd(Xantphos)(CH₃CN)₂(OTf)₂ (16.0 mg, 5 mol %), enynol **1** (0.30 mmol) and DME (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N₂ atmosphere. The reaction mixture was stirred at 100 °C in an oil bath for 12 hours and then cooled to room temperature. The solvent was removed under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 200/1 to 50/1) to give the desired product as a colorless oil.

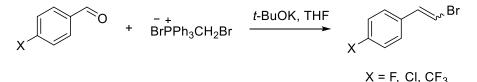
4. Preparation and Spectral Data of Substrates


a) Preparation of Enynol Derivatives

General Procedure A. Synthesis of substrate 1a.

Step 1. The mixture of copper (I) iodide (190 mg, 2 mol %) and tetrakis(triphenylphosphine)palladium (578 mg, 1 mol %) were dissolved in triethylamine (14 mL) under N₂ atmosphere at 0 °C. The 4-Pentyn-1-ol (4.2 g, 50 mmol) and vinyl bromide (1.0 M in THF, 70 mL, 70 mmol) were added and the resulting mixture was stirred at 45 °C in an oil bath until the complete conversion of the starting material. The reaction mixture was cooled to room temperature and filtered. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1 to 5/1) to afford **1a** (4.68 g, 85% yield).

General Procedure B. Synthesis of substrates 1p and 1q.


Step 1. The mixture of pyridinium chlorochromate (15.0 g, 70 mmol) and silica gel (15.0 g) was dissolved in CH₂Cl₂ (80 mL) under N₂ atmosphere at 0 °C. hept-6-en-4-yn-1-ol (5.5 g, 50 mmol) was added and stirred at room temperature for 2 hours until the complete conversion of the starting material. The reaction mixture was filtered and washed with Et₂O (10 mL \times 3). The combined organic layer was dried over anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure, the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 20/1 to 10/1) to afford **1** (3.90 g, 72% yield).

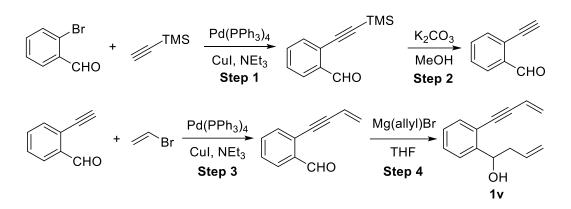
Step 2. A solution of Methylmagnesium bromide (3.0 M in THF, 4.0 mL, 12 mmol) was added dropwise to a solution of crude 6-hepten-4-ynal (1.1 g, 10 mmol) in THF

(20 mL) at 0 °C under N₂ atmosphere. The reaction mixture was stirred at room temperature for 1 hour. The reaction was quenched by saturated NH₄Cl solution and extracted with Et₂O (20 mL \times 3). The combined organic layer was dried over anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure, the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10/1 to 5/1) to afford substrate **1p** (930 mg, 75% yield).

Step 3. To a stirred solution of dry CH₃CN (0.25 g, 6 mmol) and dry tetrahydrofuran (10 mL) was added dropwise lithium diisopropylamide (3 mL, 6 mmol, 2M solution, in THF/heptane/ethylbenzene) at -78 °C, and the solution was stirred at the same temperature for 1 hour under nitrogen atmosphere. A solution of 6-hepten-4-ynal (0.54 g, 5.0 mmol) in dried THF (5 mL) was then introduced via a syringe. The temperature was maintained at -78 °C, and the reaction mixture was stirred for an additional 1 hour. Next, the reaction mixture was allowed to warm to room temperature. After being stirred for an additional 3 hours, the reaction was quenched by saturated NH₄Cl solution and extracted with DCM (20 mL × 3). The combined organic layer was dried over anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure, the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 5/1 to 2/1) to afford substrate **1q** (325 mg, 44% yield).

General Procedure C. Synthesis of alkenyl bromides.

To a cooled (-78 °C) suspension of bromomethyltriphenylphosphonium bromide (21.0 g, 48.0 mmol) in dried THF (150 mL) under nitrogen atmosphere, was added potassium *tert*-butoxide (6.3 g, 56.0 mmol). The resulting yellow mixture was stirred at the indicated temperature for 1 hour. A solution of benzaldehyde derivative (40 mmol) in dried THF (5 mL) was then introduced via a syringe. The temperature was maintained at -78 °C, and the mixture was stirred for additional 5 hours. The mixture was diluted with petroleum ether (80 mL), and filtered under reduced pressure. The residue obtained was purified by column chromatography (silica gel, petroleum ether) to afford (2-bromovinyl)benzene derivative (yield: 75%-80%) as a yellow oil. **General Procedure D.** Synthesis of alkenyl bromides.


Triethylamine (112 mg, 1.1 mmol) was added to a solution of the α , β -unsaturated aromatic carboxylic acid (22 mmol, 1.0 eq.) in dichloromethane (120 mL, technical grade). After the mixture was stirred for 5 minutes at room temperature, NBS (9.54 g, 26.4 mmol, 1.2 eq.) was added. After 20 minutes no more gas evolution was observed. Then dichloromethane was evaporated under reduced pressure and the residue was purified by flash chromatography (silica gel, petroleum ether) to afford the product (yield: 60%-90%) as a yellow oil.

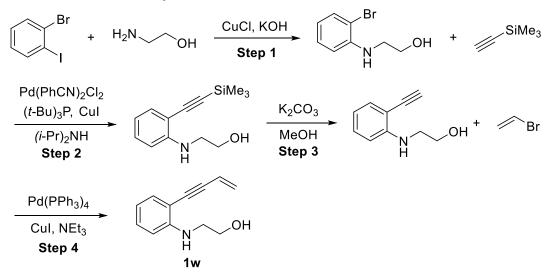
General Procedure E. Synthesis of alkenyl bromides.

Step 1. The mixture of pyridinium chlorochromate (9.0 g, 42 mmol) and silica gel (10.0 g) was dissolved in CH₂Cl₂ (80 mL) under an N₂ atmosphere at 0 °C. Substrate **1** (30 mmol, 1.0 eq) was added and stirred at room temperature for 2 hours until the complete conversion of the starting material. The reaction mixture was filtered and washed with Et₂O (10 mL \times 3). The combined organic layer was dried over anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure, the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10/1 to 5/1) to afford aliphatic aldehyde **2** (yield: 80%-85%) as a colorless oil.

Step 2. To a cooled (-78 °C) suspension of bromomethyltriphenylphosphonium bromide (21.0 g, 48.0 mmol) in dried THF (150 mL) under nitrogen atmosphere, was added potassium *tert*-butoxide (6.3 g, 56.0 mmol). The resulting yellow mixture was stirred at the indicated temperature for 1 hour. A solution of aliphatic aldehyde 2 (24 mmol, 1.0 eq) in dried THF (5 mL) was then introduced via a syringe. The temperature was maintained at -78 °C, and the mixture was stirred for additional 5 hours. The mixture was diluted with petroleum ether (80 mL), and filtered under reduced pressure. The residue obtained was purified by column chromatography (silica gel, petroleum ether) to afford Alkenyl bromide derivative (yield: 70%-90%) as a yellow oil.

General Procedure F. Synthesis of substrate 1v.

Step 1. The mixture of copper (I) iodide (190 mg, 2 mol %) and tetrakis(triphenylphosphine)palladium (578 mg, 1 mol %) were dissolved in triethylamine (13.8 mL) under N₂ atmosphere at 0 °C. 2-Bromobenzaldehyde (9.25 g, 50 mmol) and ethynyltrimethylsilane (9.2 mL, 65 mmol) were added and the resulting mixture was stirred at 45 °C in an oil bath until the complete conversion of the starting material. The reaction mixture was cooled to room temperature and filtered. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/ethyl acetate = 50/1 to 20/1) to afford 2-((trimethylsilyl)ethynyl)benzaldehyde (9.3 g, 92% yield).


Step 2. 2-((Trimethylsilyl)ethynyl)benzaldehyde (9.3 g, 46 mmol) was dissolved in anhydrous MeOH (60 mL) under N₂ atmosphere at room temperature. K₂CO₃ (635 mg, 4.6 mmol) was added and stirred for 10 minutes until the complete conversion of the starting material. The reaction was quenched by H₂O and extracted with CH₂Cl₂ (40 mL \times 3). The combined organic layer was dried over anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure, the crude product was used for the next step directly without further purification.

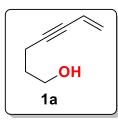
Step 3. The mixture of copper (I) iodide (175 mg, 2 mol %) and tetrakis(triphenylphosphine)palladium (532 mg, 1 mol %) were dissolved in (12.8)mL) under N_2 atmosphere triethylamine at 0 Č. The crude 2-ethynylbenzaldehyde and vinyl bromide (1.0 M in THF, 60 mL, 60 mmol) were added and the resulting mixture was stirred at 45 °C in an oil bath until the complete conversion of the starting material. The reaction mixture was cooled to room temperature and filtered. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/ethyl acetate = 50/1to 20/1) to afford 2-(but-3-en-1-yn-1-yl)benzaldehyde (6.3 g, 87% yield).

Step 4. A solution of allylmagnesium bromide (1.0 M in THF, 24 mL, 24 mmol) was added dropwise to a solution of 2-(but-3-en-1-yn-1-yl)benzaldehyde (3.1 g, 20

mmol in THF (30 mL) at 0 °C under N₂ atmosphere. The reaction mixture was stirred at room temperature for 1 hour. The reaction was quenched by saturated NH₄Cl solution and extracted with EtOAc (20 mL \times 3). The combined organic layer was dried over anhydrous Na₂SO₄. After evaporation of the solvent under reduced pressure, the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10/1) to afford substrate **1v** (3.4 g, 85% yield).

General Procedure G. Synthesis of substrate 1w.

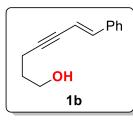
Step 1. CuCl (495 mg, 10 mol %), KOH (5.6 g, 100 mmol), 1-bromo-2-iodobenzene (6.5 mL, 50 mmol) and amino alcohol (9.15 g, 150 mmol) were added to a 100 mL round-bottomed flask under N₂ atmosphere. The reaction mixture was stirred at room temperature for 8-12 hours. The resulting mixture was diluted with water (80 mL) before extraction with ethyl acetate, and dried over Na₂SO₄. The filtrate was concentrated under reduced pressure, and the mixture was purified by column chromatography on silica gel (petroleum ether/ ethyl acetate = 5/1) to afford the desired product 2-((2-bromophenyl)amino)ethan-1-ol (yield: 7.8 g, 72%).


Step 2. The mixture of copper (I) iodide (78 mg, 2 mol %) and Bis(benzon itrile) palladium chloride (234 mg, 3 mol %) were dissolved in 1,4-dioxane (4 0 mL) under N₂ atmosphere. 2-((2-bromophenyl)amino)ethan-1-ol (4.3 g, 20 m mol), ethynyltrimethysilane (4.0 mL, 30 mmol), *Tri-tert*-butylphosphine (290 uL, 1.2 mmol), and Diisopropylamine (8.0 mL, 58 mmol) were added and the mi xture was stirred at 45 °C in an oil bath until the complete conversion of the starting material. The reaction mixture was cooled to room temperature and filt ered. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/ethyl acetate = 5/1) to aff ord 2-((2-((trimethylsilyl)ethynyl)phenyl)amino)ethan-1-ol (3.6 g, 75% yield).

Step 3. 2-((2-((trimethylsilyl)ethynyl)phenyl)amino)ethan-1-ol (3.6 g, 15 mmol) was dissolved in anhydrous MeOH (50 mL) under N₂ atmosphere at room temperature. K_2CO_3 (552 mg, 4 mmol) was added into the reaction system and stirred for 30 minutes until the complete conversion of starting material. The reaction was quenched by H₂O and extracted with CH₂Cl₂ (30 mL × 3). The combined organic layer was dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure, the crude product was used for the next step directly without further purification.

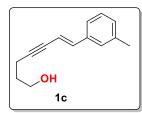
Step 4. The mixture of copper (I) iodide (57 mg, 2 mol %) and tetrakis(triphenylphosphine)palladium (174 mg, 1 mol %) were dissolved in triethylamine (4 mL) under N₂ atmosphere at 0 °C. the crude product 2-((2-ethynylphenyl)amino)ethan-1-ol and vinyl bromide (1.0 M in THF, 21 mL, 21 mmol) were added and the resulting mixture was stirred at 45 °C in an oil bath until the complete conversion of the starting material. The reaction mixture was cooled to room temperature and filtered. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/ethyl acetate = $5/1 \sim 3/1$) to afford **1w** (2.3 g, 80% yield).

b) Substrates Characterization


Hept-6-en-4-yn-1-ol (1a): The title compound was prepared according to the general

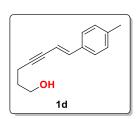
procedure A and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give yellow oil, 4.68 g, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 5.81-5.73 (m, 1H), 5.58-5.53 (m, 1H), 5.41-5.38 (m, 1H), 3.77 (t, J = 6.4 Hz,

2H), 2.46-2.42 (m, 2H), 1.83-1.76 (m, 2H), 1.50 (s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 126.0, 117.5, 90.2, 80.0, 61.9, 31.4, 16.1; HRMS (ESI) m/z: [M+H]⁺ calcd for C₇H₁₁O: 111.0804, found: 111.0802.


(E)-7-phenylhept-6-en-4-yn-1-ol (1b): The title compound was prepared according

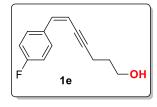
to the **general procedure A** and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give red oil, 1.6 g, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.24 (m, 5H), 6.85 (d, *J* = 16.4 Hz, 1H), 6.12 (d, *J* =

16.4 Hz, 1H), 3.79 (t, J = 6.0 Hz, 2H), 2.50 (t, J = 6.8 Hz, 2H), 1.86-1.79 (m, 2H), 1.65 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 136.6, 128.8, 128.5, 126.2, 108.7, 91.9, 80.4, 61.9, 31.5, 16.4; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₅O: 187.1117, found: 187.1118.


(E)-7-(m-tolyl)hept-6-en-4-yn-1-ol (1c): The title compound was prepared according

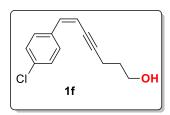
to the **general procedure A** and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give yellow oil, 1.58 g, 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.13 (m, 3H), 7.06-7.05 (m, 1H), 6.81 (d, *J* =

16.4 Hz, 1H), 6.09 (dt, J = 16.4 Hz, 2.4 Hz, 1H), 3.78-3.74 (m, 2H), 2.50-2.46 (m, 2H), 2.32 (s, 3H), 2.22 (s, 1H), 1.84-1.76 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 138.4, 136.5, 129.3, 128.7, 126.9, 123.4, 108.4, 91.8, 80.5, 62.0, 31.5, 21.5, 16.4; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₇O: 201.1274, found: 201.1275.


(*E*)-7-(*p*-tolyl)hept-6-en-4-yn-1-ol (1d): The title compound was prepared according to the general procedure A and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give yellow oil, 1.64 g, 82% yield. ¹H NMR (500

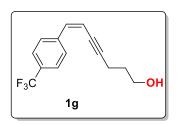
MHz, CDCl₃) δ 7.24 (d, J = 7.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 6.83 (d, J = 16.5 Hz, 1H), 6.06 (dt, J = 16.0 Hz, 2.0 Hz, 1H), 3.80 (t, J = 6.5 Hz, 2H), 2.52-2.49 (m, 2H), 2.33 (s, 3H), 1.85-1.80 (m, 2H), 1.58 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ

140.5, 138.5, 133.9, 129.5, 126.2, 107.6, 91.5, 80.6, 62.0, 31.6, 21.4, 16.4; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₇O: 201.1274, found: 201.1278.


(Z)-7-(4-fluorophenyl)hept-6-en-4-yn-1-ol (1e): The title compound was prepared

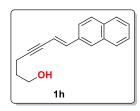
according to the **general procedure A** and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give red oil, 1.90 g, 93% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.81 (m, 2H), 7.05-7.00 (m, 2H), 6.50

(d, J = 11.6 Hz, 1H), 5.63 (dt, J = 11.6 Hz, 2.8 Hz, 1H), 3.77-3.76 (m, 2H), 2.57-2.53 (m, 2H), 1.98 (s, 1H), 1.87-1.80 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 163.4 (d, $J_{C-F} = 246.8$ Hz), 136.4, 132.9 (d, $J_{C-F} = 3.5$ Hz), 130.3 (d, $J_{C-F} = 7.8$ Hz), 115.3 (d, $J_{C-F} = 21.3$ Hz), 107.6 (d, $J_{C-F} = 2.4$ Hz), 96.7, 79.5, 61.7, 31.3, 16.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.5; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₄FO: 205.1023, found: 205.1023.


(Z)-7-(4-chlorophenyl)hept-6-en-4-yn-1-ol (1f): The title compound was prepared

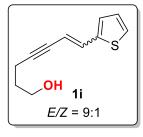
according to the **general procedure A** and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give yellow oil, 1.70 g, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.76 (m, 2H),

7.32-7.26 (m, 2H), 6.49 (d, J = 12.0 Hz, 1H), 5.67 (dt, J = 12.0 Hz, 2.4 Hz, 1H), 3.78-3.74 (m, 2H), 2.57-2.53 (m, 2H), 1.97 (t, J = 4.4 Hz, 1H), 1.87-1.80 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 136.3, 135.1, 133.7, 129.7, 128.4, 108.7, 97.5, 79.4, 61.6, 31.3, 16.5; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₄ClO: 221.0728, found: 221.0733.


(Z)-7-(4-(trifluoromethyl)phenyl)hept-6-en-4-yn-1-ol (1g): The title compound was prepared according to the general procedure A and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give red oil, 1.1 g, 87%

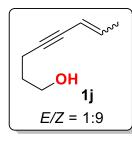
yield. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.4 Hz, 2H), 6.58 (d, J = 12.0 Hz, 1H), 5.79 (dt, J = 12.0 Hz, 2.4 Hz, 1H), 3.82-3.78 (m, 2H), 2.60-2.56 (m, 2H), 1.90-1.83 (m, 2H), 1.46 (s, 1H); ¹³C

NMR (100 MHz, CDCl₃) δ 140.0 (d, $J_{C-F} = 4.0$ Hz), 136.1, 129.4 (q, $J_{C-F} = 32.1$ Hz), 128.6, 125.2 (q, $J_{C-F} = 3.8$ Hz), 120.2 (q, $J_{C-F} = 270.4$ Hz), 110.8, 98.2, 79.3, 61.7, 31.1, 16.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₄F₃O: 255.0991, found: 255.0999.


(E)-7-(naphthalen-2-yl)hept-6-en-4-yn-1-ol (1h): The title compound was prepared

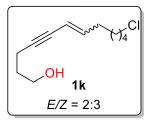
according to the **general procedure A** and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give yellow solid, 1.30 g, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.11-8.09 (m, 1H), 7.83-7.76 (m, 2H),

7.68-7.64 (m, 1H), 7.59-7.57 (m, 1H), 7.52-7.45 (m, 2H), 7.43-7.39 (m, 1H), 6.17 (dt, J = 16.0 Hz, 2.0 Hz, 1H), 3.81 (t, J = 6.0 Hz, 2H), 2.55-2.51 (m, 2H), 1.88-1.81 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 134.0, 133.7, 130.9, 128.8, 128.6, 126.4, 126.0, 125.6, 123.7, 123.3, 111.4, 91.8, 80.7, 61.8, 31.5, 16.3; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₇O: 237.1274, found: 237.1279.


7-(thiophen-2-yl)hept-6-en-4-yn-1-ol (1i): The title compound was prepared

according to the **general procedure A** and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give red oil, 2.70 g, 88% yield (E/Z = 9:1). ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.13 (m, 1H), 7.01-6.81 (m, 3H), 5.92 (dt, J = 16.0 Hz, 2.4 Hz, 0.90H), 5.50 (dt, J = 11.2 Hz, 2.4

Hz, 0.10H), 3.79 (t, J = 6.0 Hz, 0.20H), 3.74 (t, J = 6.0 Hz, 1.80H), 2.63-2.59 (m, 0.20H), 2.49-2.45 (m, 1.80H), 2.38 (s, 1H), 1.92-1.86 (m, 0.20H), 1.82-1.75 (m, 1.80H); ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 140.8, 133.2, 131.5, 129.1, 127.6, 126.5, 126.3, 126.3, 125.0, 107.9, 105.3, 100.0, 92.4, 80.0, 79.9, 61.6, 61.6, 31.4, 31.1, 16.7, 16.2; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₁₃OS: 193.0682, found: 193.0681.


Oct-6-en-4-yn-1-ol (1j): The title compound was prepared according to the general

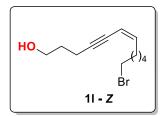
procedure A and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give yellow oil, 3.14 g, 84% yield (E/Z = 1:9). ¹H NMR (400 MHz, CDCl₃) δ 6.10-6.01 (m, 0.10H), 5.93-5.86 (m, 0.90H), 5.48-5.43 (m, 1H), 3.76-3.70 (m, 2H), 2.66 (s, 1H), 2.49-2.45 (m, 1.80H),

2.41-2.37 (m, 0.20H), 1.86-1.74 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 137.2, 110.9, 110.2, 94.0, 87.5, 79.7, 77.7, 61.5, 31.5, 31.4, 18.4, 16.1, 15.9, 15.7; HRMS (ESI) m/z: [M+H]⁺ calcd for C₈H₁₃O: 125.0961, found: 125.0968.

12-chlorododec-6-en-4-yn-1-ol (1k): The title compound was prepared according to

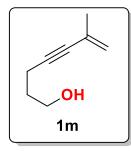
the **general procedure A** and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give colorless oil, 1.40 g, 65% yield (E/Z = 2:3). ¹H NMR (400 MHz, CDCl₃) δ 6.00 (dt, J = 15.6 Hz, 7.2 Hz, 0.40H),

5.78 (dt, J = 10.8 Hz, 7.2 Hz, 0.60H), 5.47-5.43 (m, 1H), 3.78-3.74 (m, 2H), 3.56-3.51 (m, 2H), 2.49-2.45 (m, 1.20H), 2.43-2.39 (m, 0.80H), 2.32-2.27 (m, 1.20H), 2.12-2.08 (m, 0.80H), 1.89 (s, 1H), 1.83-1.73 (m, 4H), 1.49-1.42 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 142.4, 110.1, 109.7, 93.7, 87.9, 79.8, 77.9, 61.9, 61.8, 45.1, 45.0, 32.8, 32.5, 31.6, 31.5, 29.8, 28.2, 28.1, 26.4, 26.4, 16.2, 16.0; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₂₀ClO: 215.1197, found: 215.1196


(E)-12-bromododec-6-en-4-yn-1-ol (11): The title compound was prepared according

to the **general procedure A** and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give colorless oil, 875 mg, 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.00 (dt, *J* = 16.0 Hz, 7.2 Hz,

1H), 5.48-5.43 (m, 1H), 3.76 (t, J = 6.0 Hz, 2H), 3.40 (t, J = 6.8 Hz, 2H), 2.44-2.40 (m, 2H), 2.13-2.08 (m, 2H), 1.89-1.82 (m, 2H), 1.81-1.75 (m, 2H), 1.66 (s, 1H), 1.49-1.39 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 110.1, 88.0, 79.8, 62.0, 33.8, 32.8, 32.7, 31.5, 28.1, 27.7, 16.1; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₂₀BrO: 259.0692, found: 259.0695.


(Z)-12-bromododec-6-en-4-yn-1-ol (11): The title compound was prepared according

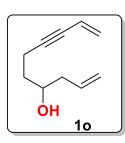
to the **general procedure A** and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give colorless oil, 875 mg, 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 5.85-5.78 (m, 1H), 5.47-5.43 (m, 1H), 3.77

(t, J = 6.4 Hz, 2H), 3.42 (t, J = 7.2 Hz, 2H), 2.50-2.46 (m, 2H), 2.32-2.27 (m, 2H), 1.92-1.87 (m, 2H), 1.85-1.77 (m, 3H), 1.51-1.42 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 109.7, 93.7, 77.9, 61.9, 34.0, 32.7, 31.6, 29.8, 28.0, 27.7, 16.2; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₂₀BrO: 259.0692, found: 259.0695.


6-methylhept-6-en-4-yn-1-ol (1m): The title compound was prepared according to

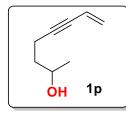
the **general procedure A** and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give yellow oil, 1.80 g, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 5.21-5.15 (m, 2H), 3.76 (t, *J* = 6.4 Hz, 2H), 2.43 (t, *J* = 7.2 Hz, 2H), 1.89 (s, 1H), 1.87 (d, *J* = 1.2 Hz, 3H), 1.82-1.76 (m,

2H); ¹³C NMR (100 MHz, CDCl₃) δ 127.2, 120.8, 88.5, 82.5, 61.9, 31.4, 23.9, 15.9; HRMS (ESI) m/z: [M+H]⁺ calcd for C₈H₁₃O: 125.0961, found: 125.0958.


1-phenylhept-6-en-4-yn-1-ol (1n): The title compound was prepared according to the

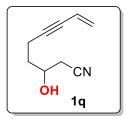
general procedure B and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give yellow oil, 1.50 g, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.33 (m, 4H), 7.30-7.26 (m, 1H), 5.83-5.74 (m, 1H), 5.54 (dd, *J* = 17.6 Hz, 2.4 Hz, 1H), 5.38 (dd, *J* = 10.8 Hz, 2.0 Hz,

1H), 4.86-4.82 (m, 1H), 2.49-2.43 (m, 1H), 2.40-2.36 (m, 1H), 2.07-2.06 (m, 1H), 2.04-1.97 (m, 1H), 1.96-1.89 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 128.7, 127.8, 126.0, 126.0, 117.6, 90.2, 80.2, 73.5, 37.8, 16.2; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₅O: 187.1117, found: 187.1119.


Deca-1,9-dien-7-yn-4-ol (10): The title compound was prepared according to the **general procedure B** and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give yellow oil, 1.80 g, 80% yield. ¹H NMR (400

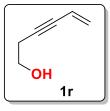
MHz, CDCl₃) δ 5.87-5.73 (m, 2H), 5.58-5.53 (m, 1H), 5.40-5.37 (m, 1H), 5.17-5.13 (m, 2H), 3.81-3.79 (m, 1H), 2.46 (t, *J* = 6.8 Hz, 2H), 2.34-2.29 (m, 1H), 2.23-2.17 (m, 1H), 1.85-1.84 (m, 1H), 1.73-1.70 (m, 1H), 1.68-1.65 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 134.6, 126.0, 118.5, 117.6, 90.4, 79.9, 69.8, 42.0, 35.4,

16.0; HRMS (ESI) m/z: $[M+H]^+$ calcd for C₁₀H₁₅O: 151.1117, found: 151.1117.


Oct-7-en-5-yn-2-ol (1p): The title compound was prepared according to the general

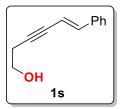
procedure B and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give yellow oil, 930 mg, 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 5.81-5.73 (m, 1H), 5.53 (dd, J = 17.2 Hz, 2.0 Hz, 1H), 5.37 (dd, J = 11.2

Hz, 2.4 Hz, 1H), 3.98-3.90 (m, 1H), 2.45-2.41 (m, 2H), 2.13 (s, 1H), 1.69-1.64 (m, 2H), 1.21 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 125.9, 117.5, 90.4, 79.9, 67.1, 37.6, 23.4, 16.0; HRMS (ESI) m/z: [M+H]⁺ calcd for C₈H₁₃O: 125.0961, found: 125.0957.


3-hydroxynon-8-en-6-ynenitrile (1q): The title compound was prepared according to

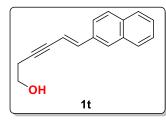
the **general procedure B** and purified by flash column chromatography (petroleum ether/ethyl acetate = $5/1 \sim 2/1$) to give yellow oil, 325 mg, 44% yield. ¹H NMR (400 MHz, CDCl₃) δ 5.80-5.72 (m, 1H), 5.60-5.55 (m, 1H), 5.45-5.41 (m, 1H),

4.18-4.13 (m, 1H), 2.65-2.56 (m, 3H), 2.53-2.48 (m, 2H), 1.83-1.78 (m, 2H); 13 C NMR (100 MHz, CDCl₃) δ 126.6, 117.6, 117.2, 88.9, 80.8, 66.9, 34.9, 26.2, 15.8; HRMS (ESI) m/z: [M+H]⁺ calcd for C₉H₁₂NO: 150.0913, found: 150.0910.


Hex-5-en-3-yn-1-ol (1r): The title compound was preared according to the general

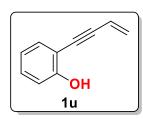
procedure A and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give yellow oil, 1.60 g, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 5.83-5.75 (m, 1H), 5.57 (dd, J = 17.6 Hz, 2.0 Hz, 1H), 5.42 (dd, J = 11.2 Hz, 2.0

Hz, 1H), 3.75-3.73 (m, 2H), 2.61-2.57 (m, 2H), 2.08 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 126.6, 117.3, 87.3, 81.2, 61.2, 23.8; HRMS (ESI) m/z: [M+H]⁺ calcd for C₆H₉O: 97.0648, found: 97.0647.


(E)-6-phenylhex-5-en-3-yn-1-ol (1s): The title compound was preared according to

the **general procedure A** and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give red oil, 1.30 g, 77% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.35 (m, 2H), 7.34-7.29 (m, 2H), 7.28-7.24 (m, 1H), 6.89 (d,

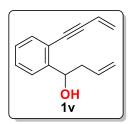
J = 16.0 Hz, 1H), 6.12 (dt, J = 16.4 Hz, 2.0 Hz, 1H), 3.80-3.75 (m, 2H), 2.67-2.63 (m, 2H), 1.92 (t, J = 6.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 141.1, 136.4, 128.8, 128.6, 126.3, 108.3, 88.9, 81.8, 61.3, 24.2; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₃O: 173.0961, found: 173.0960.


(E)-6-(naphthalen-2-yl)hex-5-en-3-yn-1-ol (1t): The title compound was preared

according to the **general procedure A** and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give yellow solid, 1.50 g, 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.11-8.09 (m, 1H),

7.84-7.78 (m, 2H), 7.72-7.68 (m, 1H), 7.60-7.58 (m, 1H), 7.53-7.40 (m, 3H), 6.18 (dt, J = 16.0 Hz, 2.0 Hz, 1H), 3.83-3.79 (m, 2H), 2.71-2.67 (m, 2H), 2.03 (t, J = 6.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 138.2, 133.9, 133.7, 130.9, 128.9, 128.7, 126.5, 126.1, 125.7, 123.7, 123.4, 111.0, 88.8, 82.0, 61.3, 24.1; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₅O: 223.1117, found: 223.1118.

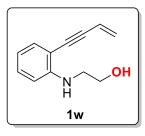
2-(but-3-en-1-yn-1-yl)phenol (1u): The title compound was preared according to the



general procedure F and purified by flash column chromatography (petroleum ether/ethyl acetate = $20/1 \sim 10/1$) to give yellow oil, 187 mg, 26% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.33 (m, 1H), 7.27-7.22 (m, 1H), 6.96-6.94 (m,

1H), 6.90-6.86 (m, 1H), 6.02 (dd, J = 17.2 Hz, 11.2 Hz, 1H), 5.80-5.76 (m, 2H), 5.59 (dd, J = 11.2 Hz, 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 156.6, 131.8, 130.7,

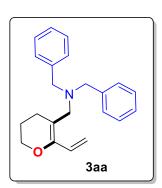
127.9, 120.5, 116.7, 114.8, 109.6, 95.2, 83.8; HRMS (ESI) m/z: $[M+H]^+$ calcd for C₁₀H₉O: 145.0653, found: 145.0664.


1-(2-(but-3-en-1-yl)phenyl)but-3-en-1-ol (1v): The title compound was preared

according to the **general procedure F** and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give yellow oil, 3.40 g, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.50 (m, 1H), 7.43-7.41 (m, 1H), 7.36-7.31 (m,

1H), 7.23-7.19 (m, 1H), 6.07-6.00 (m, 1H), 5.90-5.82 (m, 1H), 5.70 (dd, J = 17.6 Hz, 2.0 Hz, 1H), 5.54 (dd, J = 11.2 Hz, 2.0 Hz, 1H), 5.19-5.12 (m, 3H), 2.66-2.61 (m, 1H), 2.47-2.42 (m, 1H), 2.28 (d, J = 3.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 145.8, 134.8, 132.3, 128.9, 127.2, 127.2, 125.4, 120.5, 118.3, 117.1, 93.3, 87.6, 71.4, 42.9; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₅O: 199.1123, found: 199.1121.

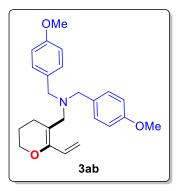
2-((2-(but-3-en-1-yn-1-yl)phenyl)amino)ethan-1-ol (1w): The title compound was



preared according to the **general procedure G** and purified by flash column chromatography (petroleum ether/ethyl acetate = $5/1 \sim 3/1$) to give yellow oil, 2.30 g, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.28 (m, 1H), 7.21-7.17 (m, 1H), 6.67-6.63 (m, 2H), 6.03 (dd, *J* = 17.2 Hz, 11.2 Hz, 1H), 5.69

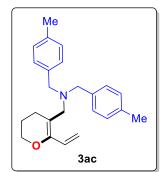
(dd, J = 17.6 Hz, 2.0 Hz, 1H), 5.52 (dd, J = 11.2 Hz, 2.0 Hz, 1H), 4.86 (s, 1H), 3.86-3.83 (m, 2H), 3.39-3.38 (m, 2H), 1.82 (t, J = 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 132.5, 130.1, 126.6, 117.2, 117.0, 109.9, 108.1, 94.2, 86.6, 61.4, 45.8; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₄NO: 188.1075, found: 188.1075.

5. Products Characterization


N,N-dibenzyl-1-(6-vinyl-3,4-dihydro-2H-pyran-5-yl)methanamine (3aa): The title

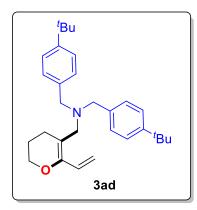
compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 77 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.27 (m, 8H), 7.22-7.19 (m, 2H), 6.60 (dd, *J* = 16.8 Hz, 10.8 Hz, 1H), 5.48 (dd, *J* = 16.4 Hz, 2.4 Hz, 1H), 5.03 (dd, *J* = 10.8 Hz,

2.0 Hz, 1H), 3.94 (t, J = 5.2 Hz, 2H), 3.49 (s, 4H), 3.03 (s, 2H), 2.20 (t, J = 6.8 Hz, 2H), 1.84-1.79 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 140.2, 128.9, 128.3, 128.3, 126.9, 113.1, 111.0, 65.7, 58.2, 54.8, 24.7, 22.8; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₆NO: 320.2009, found: 320.2014.


N,*N*-bis(4-methoxybenzyl)-1-(6-vinyl-3,4-dihydro-2*H*-pyran-5-yl)methanamine

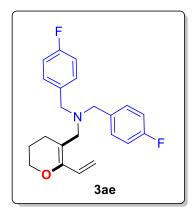
(3ab): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 77 mg, 68% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.24-7.23 (m, 4H), 6.85-6.82 (m, 4H), 6.60 (dd, *J* = 17.0 Hz, 11.0 Hz, 1H), 5.47 (dd, *J* = 16.5 Hz,

2.0 Hz, 1H), 5.03 (dd, J = 11.0 Hz, 2.0 Hz, 1H), 3.95 (t, J = 5.0 Hz, 2H), 3.79 (s, 6H), 3.41 (s, 4H), 3.00 (s, 2H), 2.17 (t, J = 6.5 Hz, 2H), 1.85-1.80 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 158.6, 147.8, 132.2, 130.0, 128.4, 113.6, 112.9, 111.3, 65.7, 57.3, 55.4, 54.5, 24.8, 22.8; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₃₀NO₃: 380.2220, found: 380.2229.


N,N-bis(4-methylbenzyl)-1-(6-vinyl-3,4-dihydro-2H-pyran-5-yl)methanamine

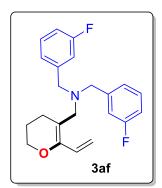
(3ac): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 68 mg, 65% yield. ¹H NMR (400

MHz, CDCl₃) δ 7.24-7.21 (m, 4H), 7.09 (d, J = 7.6 Hz, 4H), 6.60 (dd, J = 16.8 Hz, 10.8 Hz, 1H), 5.46 (dd, J = 16.8 Hz, 2.0 Hz, 1H), 5.02 (dd, J = 11.2 Hz, 2.0 Hz, 1H), 3.94 (t, J = 5.2 Hz, 2H), 3.44 (s, 4H), 3.01 (s, 2H), 2.32 (s, 6H), 2.20 (t, J = 6.8 Hz, 2H), 1.85-1.79 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 137.1, 136.3, 128.9, 128.8, 128.4, 112.9, 111.3, 65.7, 57.7, 54.6, 24.7, 22.8, 21.2; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₃₀NO: 348.2322, found: 348.2332.


N,N-bis(4-(tert-butyl)benzyl)-1-(6-vinyl-3,4-dihydro-2H-pyran-5-yl)methanamine

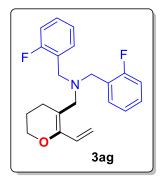
(3ad): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = 100/1 ~ 50/1) to give yellow oil, 103 mg, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.28 (m, 8H), 6.60 (dd, *J* = 16.8 Hz, 10.8 Hz, 1H), 5.46 (dd, *J* = 17.2 Hz, 2.0 Hz, 1H), 5.02 (dd, *J* = 10.8 Hz, 1.6 Hz, 1H), 3.94 (t,

J = 5.2 Hz, 2H), 3.47 (s, 4H), 3.05 (s, 2H), 2.25 (t, J = 6.4 Hz, 2H), 1.86-1.80 (m, 2H), 1.30 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 147.8, 137.2, 128.4, 125.1, 112.9, 111.4, 65.7, 57.7, 54.9, 34.6, 31.6, 24.7, 22.9; HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₀H₄₂NO: 432.3266, found: 432.3263.


N,N-bis(4-fluorobenzyl)-1-(6-vinyl-3,4-dihydro-2H-pyran-5-yl)methanamine

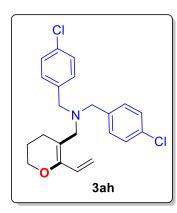
(3ae): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = 100/1 ~ 50/1) to give yellow oil, 78 mg, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.26 (m, 4H), 7.01-6.96 (m, 4H), 6.57 (dd, *J* = 17.2 Hz, 11.2 Hz, 1H), 5.49 (d, *J* = 16.4 Hz, 1H), 5.05 (d, *J* = 10.8 Hz, 1H), 3.96 (t, *J* =

4.8 Hz, 2H), 3.43 (s, 4H), 3.00 (s, 2H), 2.15 (t, J = 6.4 Hz, 2H), 1.86-1.80 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.2 (d, $J_{C-F} = 242.9$ Hz), 148.0, 135.6 (d, $J_{C-F} = 2.7$ Hz), 130.3 (d, $J_{C-F} = 7.8$ Hz), 128.1, 115.2 (d, $J_{C-F} = 21.1$ Hz), 113.4, 110.6, 65.7, 57.3, 54.6, 24.8, 22.7; ¹⁹F NMR (376 MHz, CDCl₃) -116.2; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₄NOF₂: 356.1821, found: 356.1823.


N,N-bis(3-fluorobenzyl)-1-(6-vinyl-3,4-dihydro-2H-pyran-5-yl)methanamine

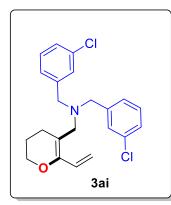
(3af): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 81 mg, 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.23 (m, 2H), 7.10-7.06 (m, 4H), 6.94-6.90 (m, 2H), 6.57 (dd, *J* = 16.8 Hz, 10.8 Hz, 1H), 5.50

(d, J = 16.8 Hz, 1H), 5.06 (d, J = 10.8 Hz, 1H), 3.96 (t, J = 4.8 Hz, 2H), 3.49 (s, 4H), 3.04 (s, 2H), 2.20 (t, J = 6.0 Hz, 2H), 1.86-1.83 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 164.1 (d, $J_{C-F} = 243.8$ Hz), 148.2, 142.7 (d, $J_{C-F} = 6.8$ Hz), 129.8 (d, $J_{C-F} = 8.1$ Hz), 128.1, 124.3 (d, $J_{C-F} = 2.5$ Hz), 115.5 (d, $J_{C-F} = 21.1$ Hz), 114.0 (d, $J_{C-F} = 21.2$ Hz), 113.6, 110.4, 65.7, 57.8, 54.9, 24.7, 22.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.7; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₄NOF₂: 356.1821, found: 356.1827.


N,N-bis(2-fluorobenzyl)-1-(6-vinyl-3,4-dihydro-2H-pyran-5-yl)methanamine

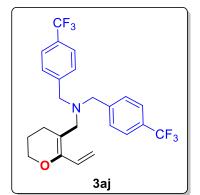
(3ag): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 84 mg, 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.42 (m, 2H), 7.22-7.16 (m, 2H), 7.11-7.07 (m, 2H), 7.01-6.97 (m, 2H), 6.60 (dd, *J* = 16.8 Hz,

10.8 Hz, 1H), 5.49 (dd, J = 16.8 Hz, 2.0 Hz, 1H), 5.05 (dd, J = 11.2 Hz, 2.4 Hz, 1H), 3.96 (t, J = 5.2 Hz, 2H), 3.58 (s, 4H), 3.09 (s, 2H), 2.17 (t, J = 6.8 Hz, 2H), 1.85-1.79 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.8 (d, $J_{C-F} = 244.3$ Hz), 148.0, 131.2 (d, $J_{C-F} = 4.5$ Hz), 128.5 (d, $J_{C-F} = 8.0$ Hz), 128.2, 126.7 (d, $J_{C-F} = 13.8$ Hz), 124.0 (d, $J_{C-F} = 3.6$ Hz), 115.4 (d, $J_{C-F} = 22$ Hz), 113.4, 110.9, 65.7, 55.0, 50.7 (d, $J_{C-F} = 2.2$ Hz), 24.5, 22.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -118.4; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₄NOF₂: 356.1821, found: 356.1828.


N,N-bis(4-chlorobenzyl)-1-(6-vinyl-3,4-dihydro-2H-pyran-5-yl)methanamine

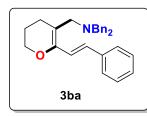
(3ah): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 97 mg, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.23 (m, 8H), 6.56 (dd, *J* = 16.8 Hz, 10.8 Hz, 1H), 5.49 (dd, *J* = 17.2 Hz, 2.0 Hz, 1H), 5.05 (dd, *J* = 10.8 Hz, 2.0 Hz, 1H), 3.95 (t, *J* = 4.8

Hz, 2H), 3.43 (s, 4H), 3.00 (s, 2H), 2.15 (t, J = 6.4 Hz, 2H), 1.85-1.81 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 138.4, 132.7, 130.1, 128.5, 128.1, 113.6, 110.4, 65.7, 57.5, 54.8, 24.8, 22.7; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₄NOCl₂: 388.1230, found: 388.1238.


N,N-bis(3-chlorobenzyl)-1-(6-vinyl-3,4-dihydro-2H-pyran-5-yl)methanamine

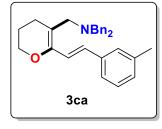
(3ai): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 96 mg, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.24 (s, 2H), 7.17-7.13 (m, 6H), 6.48 (dd, J = 16.8 Hz, 10.8 Hz, 1H), 5.43 (d, J = 17.2 Hz, 1H), 4.99 (d, J = 10.8 Hz, 1H), 3.88 (t, J = 4.8 Hz, 2H),

3.38 (s, 4H), 2.95 (s, 2H), 2.10 (t, J = 6.0 Hz, 2H), 1.79-1.74 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 148.3, 142.0, 134.3, 129.6, 128.8, 128.0, 127.2, 126.9, 113.7, 110.2, 65.7, 57.8, 54.9, 24.8, 22.7; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₄NOCl₂: 388.1230, found: 388.1234.


N,N-bis(4-(trifluoromethyl)benzyl)-1-(6-vinyl-3,4-dihydro-2H-pyran-5-yl)methan

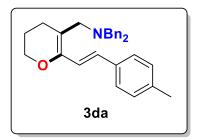
amine (3aj): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 87 mg, 64%

yield. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.0 Hz, 4H), 7.45 (d, *J* = 8.0 Hz, 4H), 6.58 (dd, *J* = 16.8 Hz, 11.2 Hz, 1H), 5.52 (dd, *J* = 16.8 Hz, 2.0 Hz, 1H), 5.08 (dd, *J* = 11.2 Hz, 2.0 Hz, 1H), 3.95 (t, *J* = 4.8 Hz, 2H), 3.56 (s, 4H), 3.06 (s, 2H), 2.19 (t, *J* = 6.4 Hz, 2H), 1.87-1.81 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.4, 144.0, 129.2 (q, *J*_{C-F} = 32.1 Hz), 128.9, 127.9, 125.3 (q, *J*_{C-F} = 3.7 Hz), 123.0, 113.9, 110.0, 65.7, 57.9, 55.1, 24.8, 22.7; ¹⁹F NMR (376 MHz, CDCl₃) -62.4; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₂₄NOF₆: 456.1757, found: 456.1764.


(E)-N,N-dibenzyl-1-(6-styryl-3,4-dihydro-2H-pyran-5-yl)methanamine (3ba): The

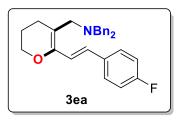
title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 114 mg, 96% yield. ¹H NMR (400 MHz, CDCl₃) δ

7.42-7.40 (m, 2H), 7.38-7.36 (m, 4H), 7.34-7.31 (m, 3H), 7.30-7.28 (m, 3H), 7.24-7.20 (m, 3H), 6.99 (d, J = 16.0 Hz, 1H), 6.85 (d, J = 15.6 Hz, 1H), 4.00 (t, J = 5.2 Hz, 2H), 3.54 (s, 4H), 3.14 (s, 2H), 2.25 (t, J = 6.4 Hz, 2H), 1.89-1.83 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 140.1, 137.8, 128.9, 128.7, 128.3, 127.6, 127.5, 126.9, 126.8, 120.2, 111.9, 65.8, 58.4, 55.1, 25.4, 22.9; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₃₀NO: 396.2322, found: 396.2327.


(E)-N,N-dibenzyl-1-(6-(3-methylstyryl)-3,4-dihydro-2H-pyran-5-yl)methanamine

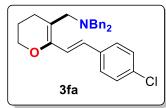
(3ca): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 113 mg, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.36 (m, 4H), 7.31-7.27 (m, 4H),

7.23-7.21 (m, 5H), 7.06-7.03 (m, 1H), 6.97 (d, J = 16.0 Hz, 1H), 6.82 (d, J = 15.6 Hz, 1H), 3.99 (t, J = 5.2 Hz, 2H), 3.55 (s, 4H), 3.14 (s, 2H), 2.37 (s, 3H), 2.25 (t, J = 6.8 Hz, 2H), 1.88-1.83 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 148.3, 140.1, 138.2, 137.7, 128.9, 128.6, 128.3, 127.7, 127.5, 126.9, 124.0, 119.9, 111.7, 65.8, 58.3, 55.1, 25.3, 22.9, 21.6; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₉H₃₂NO: 410.2478, found: 410.2479.


(E)-N,N-dibenzyl-1-(6-(4-methylstyryl)-3,4-dihydro-2H-pyran-5-yl)methanamine

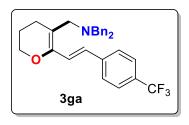
(3da): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = 100/1~ 50/1) to give yellow oil, 110 mg, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.28 (m, 4H),

7.25-7.20 (m, 6H), 7.17-7.13 (m, 2H), 7.07-7.05 (m, 2H), 6.87 (d, J = 15.6 Hz, 1H), 6.75 (d, J = 15.6 Hz, 1H), 3.92 (t, J = 4.8 Hz, 2H), 3.47 (s, 4H), 3.06 (s, 2H), 2.28 (s, 3H), 2.17 (t, J = 6.8 Hz, 2H), 1.81-1.75 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 140.2, 137.3, 135.0, 129.4, 128.9, 128.3, 127.5, 126.9, 126.7, 119.3, 111.4, 65.8, 58.4, 55.2, 25.4, 22.9, 21.4; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₉H₃₂NO: 410.2478, found: 410.2483.


(E)-N,N-dibenzyl-1-(6-(4-fluorostyryl)-3,4-dihydro-2H-pyran-5-yl)methanamine

(3ea): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 116 mg, 94% yield. ¹H NMR

(400 MHz, CDCl₃) δ 7.37-7.34 (m, 6H), 7.31-7.28 (m, 4H), 7.25-7.20 (m, 2H), 7.04-6.98 (m, 2H), 6.89 (d, J = 15.6 Hz, 1H), 6.80 (d, J = 15.6 Hz, 1H), 3.99 (t, J = 4.8 Hz, 2H), 3.54 (s, 4H), 3.13 (s, 2H), 2.25 (t, J = 6.4 Hz, 2H), 1.89-1.83 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.6 (d, $J_{C-F} = 245.1$ Hz), 148.1, 140.1, 134.0 (d, $J_{C-F} = 3.3$ Hz), 128.9, 128.3, 128.2 (d, $J_{C-F} = 8.0$ Hz), 126.9, 126.4, 120.0 (d, $J_{C-F} = 2.3$ Hz), 115.7 (d, $J_{C-F} = 21.7$ Hz), 111.9, 65.8, 58.4, 55.1, 25.5, 22.9; ¹⁹F NMR (376 MHz, CDCl₃) -114.7; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₂₉NOF: 414.2228, found: 414.2235.


(E)-N,N-dibenzyl-1-(6-(4-chlorostyryl)-3,4-dihydro-2H-pyran-5-yl)methanamine

(3fa): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim$

50/1) to give yellow oil, 120 mg, 93% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.35 (m, 4H), 7.33-7.27 (m, 8H), 7.24-7.20 (m, 2H), 6.94 (d, *J* = 16.0 Hz, 1H), 6.78 (d, *J* = 15.6 Hz, 1H), 3.99 (t, *J* = 4.4 Hz, 2H), 3.54 (s, 4H), 3.13 (s, 2H), 2.25 (t, *J* = 6.4 Hz, 2H), 1.88-1.82 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 140.0, 136.3 133.0, 128.9, 128.8, 128.3, 127.9, 127.0, 126.2, 120.7, 112.4, 65.8, 58.4, 55.1, 25.5, 22.8; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₂₉NOCl: 430.1932, found: 430.1937.

(E)-N,N-dibenzyl-1-(6-(4-(trifluoromethyl)styryl)-3,4-dihydro-2H-pyran-5-yl)met

hanamine (3ga): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 129 mg, 93% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.57-7.55 (m, 2H), 7.48-7.46 (m, 2H), 7.37-7.35 (m, 4H), 7.31-7.28 (m, 4H), 7.25-7.20 (m, 2H), 7.05 (d, J = 15.6 Hz, 1H), 6.85 (d, J = 15.6 Hz, 1H), 4.00 (t, J = 4.8 Hz, 2H), 3.55 (s, 4H), 3.14 (s, 2H), 2.26 (t, J = 6.4 Hz, 2H), 1.89-1.83 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 141.3, 139.9, 129.0, 128.6 (q, $J_{C-F} = 31.9$ Hz), 128.4, 127.0, 126.8, 126.0, 125.6 (q, $J_{C-F} = 3.8$ Hz), 123.1, 122.5, 113.6, 65.8, 58.4, 55.1, 25.6, 22.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.3; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₉H₂₉NOF₃: 464.2196, found: 464.2201.

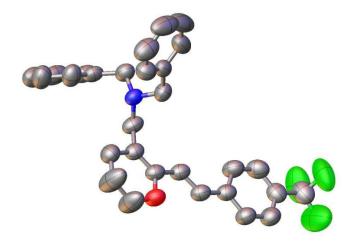
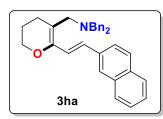
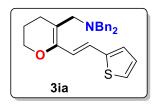
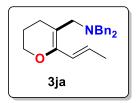



Figure S1. The ORTEP drawing of product 3ga.


(E)-N,N-dibenzyl-1-(6-(2-(naphthalen-2-yl)vinyl)-3,4-dihydro-2H-pyran-5-yl)met hanamine (3ha): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl

acetate = 100/1 ~ 50/1) to give yellow oil, 127 mg, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.4 Hz, 1H), 7.76 (d, *J* = 7.6 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.59-7.54 (m, 2H), 7.45-7.39 (m, 3H), 7.28 (d, *J* = 8.0 Hz, 1H),

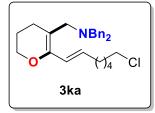
4H), 7.23-7.17 (m, 4H), 7.15-7.12 (m, 2H), 6.96 (d, J = 15.2 Hz, 1H), 3.99 (t, J = 4.8 Hz, 2H), 3.47 (s, 4H), 3.08 (s, 2H), 2.21 (t, J = 6.8 Hz, 2H), 1.86-1.80 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 140.2, 135.6, 133.9, 131.6, 128.9, 128.6, 128.3, 127.9, 126.9, 126.1, 125.9, 125.7, 124.6, 124.3, 123.6, 123.1, 112.1, 65.9, 58.4, 55.2, 25.4, 22.9; HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₂H₃₂NO: 446.2478, found: 446.2485.


(E)-N,N-dibenzyl-1-(6-(2-(thiophen-2-yl)vinyl)-3,4-dihydro-2H-pyran-5-yl)metha

namine (3ia): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 115 mg, 96% yield. ¹H NMR (500

MHz, CDCl₃) δ 7.36 (d, J = 7.5 Hz, 4H), 7.31-7.28 (m, 4H), 7.23-7.20 (m, 2H), 7.16 (d, J = 4.5 Hz, 1H), 7.00-6.96 (m, 3H), 6.85 (d, J = 15.5 Hz, 1H), 3.96 (t, J = 5.0 Hz, 2H), 3.53 (s, 4H), 3.09 (s, 2H), 2.22 (t, J = 6.5 Hz, 2H), 1.86-1.81 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 147.8, 143.3, 140.1, 128.9, 128.3, 127.7, 126.9, 126.1, 124.2, 120.8, 119.8, 111.9, 65.8, 58.3, 55.1, 25.3, 22.8; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₂₈NOS: 402.1886, found: 402.1891.

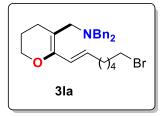
(E)-N,N-dibenzyl-1-(6-(prop-1-en-1-yl)-3,4-dihydro-2H-pyran-5-yl)methanamine



(3ja): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 83 mg, 83% yield. ¹H NMR (400 MHz,

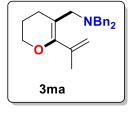
CDCl₃) δ 7.37-7.33 (m, 4H), 7.31-7.27 (m, 4H), 7.25-7.19 (m, 2H), 6.27 (dd, J = 15.2 Hz, 1.6 Hz, 1H), 6.04-5.95 (m, 1H), 3.92 (t, J = 4.8 Hz, 2H), 3.50 (s, 4H), 3.02 (s, 2H), 2.18 (t, J = 6.8 Hz, 2H), 1.84-1.78 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 147.8,

140.3, 128.9, 128.2, 126.8, 125.1, 123.0, 108.3, 65.7, 58.2, 54.8, 24.7, 22.9, 18.4; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₈NO: 334.2165, found: 334.2166.


(*E*)-*N*,*N*-dibenzyl-1-(6-(7-chlorohept-1-en-1-yl)-3,4-dihydro-2*H*-pyran-5-yl)metha namine (3ka): The title compound was prepared according to the general procedure

and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 90 mg, 71% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.34 (m, 4H), 7.31-7.27 (m, 4H), 7.25-7.19 (m, 2H), 6.26 (d, *J* = 15.2 Hz,

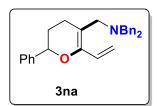
1H), 5.99-5.92 (m, 1H), 3.93 (t, J = 4.8 Hz, 2H), 3.55-3.51 (m, 2H), 3.50-3.47 (m, 4H), 3.02 (s, 2H), 2.19-2.11 (m, 4H), 1.84-1.75 (m, 4H), 1.51-1.39 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 140.3, 129.8, 128.9, 128.3, 126.8, 122.0, 108.7, 65.7, 58.2, 54.9, 45.2, 32.7, 32.7, 28.8, 26.6, 24.8, 22.9; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₃₅NOCl: 424.2402, found: 424.2405.


(E)-N,N-dibenzyl-1-(6-(7-bromohept-1-en-1-yl)-3,4-dihydro-2H-pyran-5-yl)meth

anamine (3la): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 84 mg, 60% yield. ¹H NMR (400

MHz, CDCl₃) δ 7.36-7.35 (m, 4H), 7.31-7.28 (m, 4H), 7.23-7.20 (m, 2H), 6.26 (d, *J* = 15.2 Hz, 1H), 5.99-5.92 (m, 1H), 3.93 (t, *J* = 5.2 Hz, 2H), 3.50 (s, 4H), 3.41 (t, *J* = 7.2 Hz, 2H), 3.02 (s, 2H), 2.20-2.11 (m, 4H), 1.91-1.79 (m, 4H), 1.50-1.40 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 147.8, 140.3, 129.8, 128.9, 128.3, 126.9, 122.1, 108.8, 65.8, 58.2, 54.9, 34.0, 32.9, 32.7, 28.7, 27.9, 24.8, 22.9; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₃₅NOBr: 468.1897, found: 468.1904.

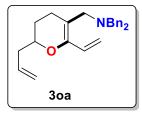
N,N-dibenzyl-1-(6-(prop-1-en-2-yl)-3,4-dihydro-2H-pyran-5-yl)methanamine



(3ma): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 66 mg, 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* =

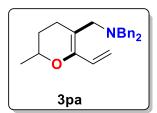
7.2 Hz, 4H), 7.31-7.28 (m, 4H), 7.23-7.19 (m, 2H), 5.11-5.10 (m, 1H), 4.86 (d, *J* = 1.2

Hz 1H), 3.92 (t, J = 4.8 Hz, 2H), 3.46 (s, 4H), 3.02 (s, 2H), 2.19 (t, J = 6.4 Hz, 2H), 1.85-1.80 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 152.4, 140.5, 139.7, 128.7, 128.3, 126.8, 117.3, 106.1, 66.1, 58.0, 55.9, 23.4, 22.9, 21.7; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₈NO: 334.2165, found: 334.2173.


N,N-dibenzyl-1-(2-phenyl-6-vinyl-3,4-dihydro-2H-pyran-5-yl)methanamine (3na):

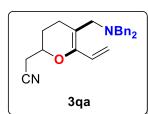
The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 70 mg, 59% yield. ¹H NMR (400 MHz, CDCl₃) δ

7.37-7.29 (m, 11H), 7.27-7.19 (m, 4H), 6.66 (dd, J = 16.8 Hz, 10.8 Hz, 1H), 5.60 (dd, J = 17.2 Hz, 2.4 Hz, 1H), 5.08 (dd, J = 10.8 Hz, 2.0 Hz, 1H), 4.78 (dd, J = 9.6 Hz, 2.4 Hz, 1H), 3.51 (s, 4H), 3.08 (s, 2H), 2.38-2.20 (m, 2H), 2.12-2.04 (m, 1H), 1.91-1.81 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 142.4, 140.1, 128.9, 128.4, 128.3, 128.1, 127.5, 126.9, 125.8, 113.6, 110.9, 76.4, 58.3, 54.7, 30.1, 25.0; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₃₀NO: 396.2322, found: 396.2327.


1-(2-allyl-6-vinyl-3,4-dihydro-2*H*-pyran-5-yl)-*N*,*N*-dibenzylmethanamine (30a):

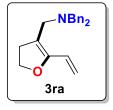
The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 60 mg, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d,

J = 6.8 Hz, 4H), 7.31-7.27 (m, 4H), 7.24-7.19 (m, 2H), 6.59 (dd, J = 16.8 Hz, 10.8 Hz, 1H), 5.93-5.83 (m, 1H), 5.52 (dd, J = 16.8 Hz, 2.0 Hz, 1H), 5.12-5.04 (m, 3H), 3.77-3.71 (m, 1H), 3.49 (s, 4H), 3.04 (s, 2H), 2.47-2.40 (m, 1H), 2.31-2.21 (m, 3H), 1.89-1.83 (m, 1H), 1.57-1.47 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 140.2, 134.7, 128.9, 128.3, 128.2, 126.9, 117.1, 113.3, 110.7, 74.4, 58.2, 54.6, 39.8, 27.4, 24.9; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₃₀NO: 360.2322, found: 360.2327.


N,N-dibenzyl-1-(2-methyl-6-vinyl-3,4-dihydro-2*H*-pyran-5-yl)methanamine (3pa): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 68 mg, 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.34 (m, 4H),

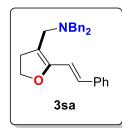
7.31-7.27 (m, 4H), 7.23-7.19 (m, 2H), 6.69-6.60 (m, 1H), 5.52 (dd, J = 16.8 Hz, 2.0 Hz, 1H), 5.07-5.01 (m, 1H), 3.88-3.80 (m, 1H), 3.49 (s, 4H), 3.04 (s, 2H), 2.24-2.19 (m, 2H), 1.87-1.81 (m, 1H), 1.63-1.46 (m, 1H), 1.31-1.28 (m,

3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 140.2, 128.9, 128.3, 128.3, 126.9, 113.1, 110.5, 71.2, 58.1, 54.6, 29.6, 25.1, 21.1; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₈NO: 334.2165, found: 334.2172.


2-(5-((dibenzylamino)methyl)-6-vinyl-3,4-dihydro-2H-pyran-2-yl)acetonitrile

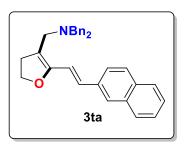
(**3qa**): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $20/1 \sim 10/1$) to give yellow oil, 32 mg, 30% yield. ¹H NMR (400 MHz,

CDCl₃) δ 7.35-7.28 (m, 8H), 7.24-7.20 (m, 2H), 6.56 (dd, *J* = 16.8 Hz, 10.8 Hz, 1H), 5.55 (dd, *J* = 16.8 Hz, 1.6 Hz, 1H), 5.09 (dd, *J* = 11.2 Hz, 1.6 Hz, 1H), 4.00-3.93 (m, 1H), 3.50 (s, 4H), 3.05 (s, 2H), 2.68-2.56 (m, 2H), 2.28-2.25 (m, 2H), 2.04-1.94 (m, 1H), 1.69-1.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.9, 139.9, 128.8, 128.3, 127.3, 127.0, 117.0, 114.2, 110.8, 70.1, 58.4, 54.4, 27.1, 24.1, 23.9; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₂₇N₂O: 359.2118, found: 359.2123.


N,*N*-dibenzyl-1-(2-vinyl-4,5-dihydrofuran-3-yl)methanamine (3ra): The title

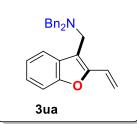
compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 67 mg, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (m, 4H), 7.32-7.28 (m, 4H),

7.24-7.20 (m, 2H), 6.32 (dd, J = 17.2 Hz, 11.2 Hz, 1H), 5.45 (d, J = 17.2 Hz, 1H), 5.15 (d, J = 11.2 Hz, 1H), 4.28 (t, J = 9.2 Hz, 2H), 3.53 (s, 4H), 3.13 (s, 2H), 2.80 (t, J = 9.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 139.9, 128.7, 128.3, 126.9, 123.6, 114.9, 112.0, 68.3, 58.2, 50.0, 33.9; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₄NO: 306.1852, found: 306.1857.


(E)-N,N-dibenzyl-1-(2-styryl-4,5-dihydrofuran-3-yl)methanamine (3sa): The title

compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 99 mg, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.37 (m, 6H), 7.34-7.28 (m, 6H), 7.25-7.21 (m, 3H), 6.81 (d, *J* = 16.0 Hz, 1H), 6.67 (d, *J* =

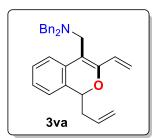
16.0 Hz, 1H), 4.33 (t, J = 9.2 Hz, 2H), 3.58 (s, 4H), 3.24 (s, 2H), 2.85 (t, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.3, 139.9, 137.2, 129.3, 128.8, 128.7, 128.4, 127.8, 127.0, 126.8, 115.0, 112.8, 68.4, 58.3, 50.1, 34.3; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₂₈NO: 382.2165, found: 382.2174.


(E)-N,N-dibenzyl-1-(2-(2-(naphthalen-2-yl)vinyl)-4,5-dihydrofuran-3-yl)methana

mine (3ta): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim$ 50/1) to give yellow oil, 119 mg, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.20-8.18 (m, 1H), 7.85-7.83 (m,

1H), 7.77 (d, J = 8.0 Hz, 1H), 7.64-7.59 (m, 2H), 7.52-7.45 (m, 3H), 7.39-7.37 (m, 4H), 7.32-7.28 (m, 4H), 7.25-7.20 (m, 2H), 6.76 (d, J = 15.6 Hz, 1H), 4.39 (t, J = 9.2 Hz, 2H), 3.59 (s, 4H), 3.26 (s, 2H), 2.89 (t, J = 9.2 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 151.6, 139.9, 134.8, 133.9, 131.4, 128.8, 128.6, 128.4, 128.2, 127.0, 126.2, 126.0, 125.7, 124.0, 123.5, 117.8, 113.1, 68.5, 58.4, 50.2, 34.3; HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₁H₃₀NO: 432.2322, found: 432.2322.

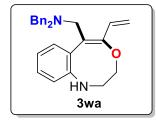
N,N-dibenzyl-1-(2-vinylbenzofuran-3-yl)methanamine (3ua): The title compound was prepared according to the general procedure and purified



was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 77 mg, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.62 (m, 1H), 7.40-7.28 (m, 9H), 7.26-7.18 (m, 4H), 6.72 (dd, *J* = 17.2 Hz, 11.2 Hz,

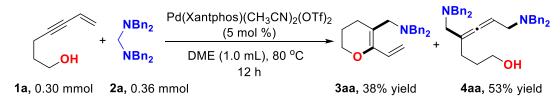
1H), 5.93 (dd, *J* = 17.2 Hz, 1.6 Hz, 1H), 5.36 (dd, *J* = 11.2 Hz, 1.2 Hz, 1H), 3.64 (s, 2H), 3.54 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 152.2, 139.5, 129.8, 129.2,

128.3, 127.1, 124.9, 123.5, 122.6, 120.9, 115.4, 115.1, 110.9, 58.6, 47.6; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₂₄NO: 354.1858, found: 354.1862.

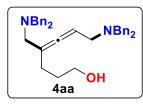

1-(1-allyl-3-vinyl-1H-isochromen-4-yl)-N,N-dibenzylmethanamine (3va): The title

compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $100/1 \sim 50/1$) to give yellow oil, 58 mg, 48% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.19 (m, 8H), 7.15-7.11 (m, 3H), 7.07-7.05 (m, 2H), 6.90-6.88 (m, 1H),

6.71-6.64 (m, 1H), 5.83-5.73 (m, 2H), 5.21-5.18 (m, 1H), 4.96-4.90 (m, 3H), 3.50-3.38 (m, 6H), 2.60-2.52 (m, 1H), 2.35-2.28 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 139.6, 134.0, 132.8, 131.6, 129.5, 128.3, 128.2, 127.5, 127.1, 126.5, 123.7, 123.6, 117.7, 117.2, 111.4, 76.6, 58.3, 49.6, 38.5; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₉H₃₀NO: 408.2327, found: 408.2330.


(E)-N,N-dibenzyl-1-(5-vinyl-2,3-dihydro-1H-benzo[e][1,4]oxazocin-6-yl)methana

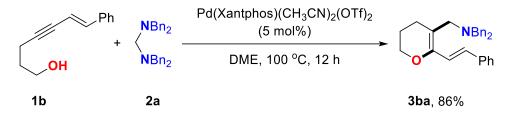
mine (3wa): The title compound was prepared according to the general procedure and purified by flash column chromatography (petroleum ether/ethyl acetate = $10/1 \sim 5/1$) to give yellow oil, 81 mg, 68% yield. ¹H NMR (400 MHz,


CDCl₃) δ 7.79-7.77 (m, 1H), 7.33-7.31 (m, 5H), 7.29-7.24 (m, 5H), 7.20-7.16 (m, 3H), 7.15-7.10 (m, 1H), 6.72 (dd, *J* = 17.6 Hz, 11.6 Hz, 1H), 5.78 (dd, *J* = 17.6 Hz, 1.6 Hz, 1H), 5.47 (dd, *J* = 11.6 Hz, 1.6 Hz, 1H), 4.26 (t, *J* = 5.6 Hz, 2H), 3.87 (t, *J* = 5.6 Hz, 2H), 3.76 (s, 2H), 3.55 (s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 140.0, 136.9, 136.7, 129.3, 129.1, 128.1, 126.8, 125.9, 122.3, 120.7, 120.1, 119.7, 111.7, 109.3, 62.1, 58.8, 49.4, 46.0; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₂₉N₂O: 397.2280, found: 397.2280.

Procedure for the synthesis of 3aa and 4aa

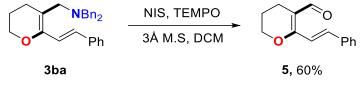
Aminal **2a** (0.36 mmol), Pd(Xantphos)(CH₃CN)₂(OTf)₂ (16.0 mg, 5 mol %), enynol **1a** (0.30 mmol) and DME (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N₂ atmosphere. The reaction mixture was stirred at 80 °C in an oil bath for 12 hours and then cooled to room temperature. The solvent was removed under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 10/1 to 5/1) to give the **3aa** (36 mg, 38% yield) and **4aa** as colorless oil (82 mg, 53% yield).

7-(dibenzylamino)-4-((dibenzylamino)methyl)hepta-4,5-dien-1-ol (4aa): ¹H NMR

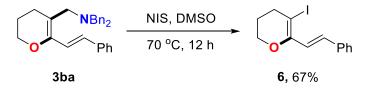


(400 MHz, CDCl₃) δ 7.36-7.33 (m, 8H), 7.31-7.26 (m, 8H), 7.24-7.20 (m, 4H), 5.23-5.19 (m, 1H), 3.66-3.49 (m, 10H), 3.12-2.97 (m, 2H), 2.96-2.92 (m, 2H), 2.13-2.09 (m, 2H), 1.57-1.50 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 204.0,

139.6, 139.6, 129.0, 128.9, 128.3, 127.0, 127.0, 101.6, 88.5, 62.5, 58.1, 57.7, 56.7, 52.9, 30.6, 26.5; HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{36}H_{41}N_2O$: 517.3219, found: 517.3222.

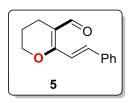

6. Synthetic Transformation of Products

Gram-scale synthesis of 3aa



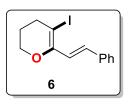
N,*N*,*N'*,*N'*-tetrabenzylmethanediamine **2a** (4.87 g, 12 mmol), Pd(Xantphos)(CH₃CN)₂(OTf)₂ (525 mg, 0.5 mmol), (*E*)-7-phenylhept-6-en-4-yn-1-ol **1b** (1.86 g, 10 mmol) and DME (30 mL) were added to a 100 mL flame-dried Young-type tube under N₂ atmosphere. The reaction mixture was stirred at 100 °C for 12 hours in an oil bath and then cooled to room temperature. The solvent was removed under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 500/1 to 100/1) to afford the desired product **3ba** (3.44 g, 86% yield).

Synthetic transformation of product³


The (*E*)-7-phenylhept-6-en-4-yn-1-ol **3ba** (118 mg, 0.30 mmol), NIS (202 mg, 0.90 mmol), TEMPO (94 mg, 0.60 mmol) and activated powdered 3 Å molecular sieves (0.45 g) were stirred with dry dichloromethane (6.0 mL) under N₂ atmosphere at room temperature for 4 hours. The reaction mixture was diluted with dichloromethane (15 mL), washed with saturated sodium thiosulfate solution (15 mL), and dried (Na₂SO₄). The solvent was removed under reduced pressure, the crude product was purified by flash chromatography on silica gels (petroleum ether/ethyl acetate = 10/1) directly to give **5** (38 mg, 60%).

The (*E*)-7-phenylhept-6-en-4-yn-1-ol **3ba** (118 mg, 0.30 mmol) and NIS (67 mg, 0.30 mmol), were stirred with dry DMSO (2.0 mL) under N₂ atmosphere at 70 °C for 12 hours in an oil bath. The reaction was quenched by H₂O and extracted with Et₂O (20 mL \times 3). The combined organic layer was dried over anhydrous Na₂SO₄. After

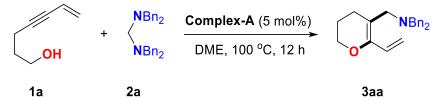
evaporation of the solvent under reduced pressure, the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 100/1) to afford substrate **6** (63 mg, 67% yield).


(E)-6-styryl-3,4-dihydro-2H-pyran-5-carbaldehyde (5): ¹H NMR (400 MHz,

CDCl₃) δ 10.16 (s, 1H), 7.51-7.49 (m, 2H), 7.40-7.31 (m, 4H), 7.29-7.26 (m, 1H), 4.23 (t, *J* = 4.8 Hz, 2H), 2.39 (t, *J* = 6.4 Hz, 2H), 1.95-1.90 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 188.4, 165.7, 135.9, 135.7, 129.4, 129.0, 127.5, 116.8, 115.8, 67.5, 21.1,

18.8; HRMS (ESI) m/z: $[M+H]^+$ calcd for C₁₄H₁₅O₂: 215.1072, found: 215.1071.

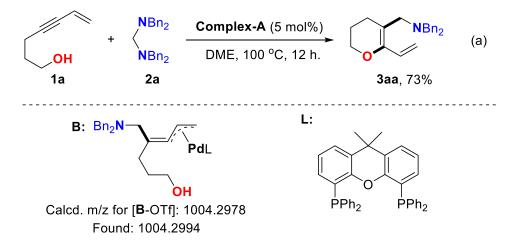
(*E*)-5-iodo-6-styryl-3,4-dihydro-2*H*-pyran (6): ¹H NMR (400 MHz, CDCl₃) δ 7.46


(d, J = 1.2 Hz, 2H), 7.44-7.31 (m, 2H), 7.27-7.22 (m, 1H), 7.02 (d, J = 16.0 Hz, 1H), 6.89 (d, J = 15.6 Hz, 1H), 4.20 (t, J = 5.2 Hz, 2H), 2.70 (t, J = 6.4 Hz, 2H), 2.00-1.94 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 149.8, 136.8, 131.6, 128.7, 128.1, 127.1,

125.1, 75.1, 66.3, 36.4, 25.8; HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₄IO: 313.0089, found: 313.0082.

7. Mechanistic Experiments

To gain insights into the possible mechanism of this reaction, some mechanism experiments were conducted. The Xantphos-ligated palladium-complex-A was synthesized according to our previous report procedure in gram scale. With the Xantphos-ligated palladium-complex-A in hand, a series of control experiments were conducted.


The catalytic reaction of enynol 1a and aminal 2a by complex A

N,N,N',N'-tetrabenzylmethanediamine **2a** (146 mg, 0.36 mmol), hept-6-en-4-yn-1-ol **1a** (33.0 mg, 0.30 mmol), [Pd(Xantphos)(CH₂NBn₂)]OTf (15.6 mg, 0.015 mmol) and DME (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N₂ atmosphere. The reaction mixture was stirred at 100 °C for 12 hours in an oil bath and then cooled to room temperature. The solvent was removed under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 200/1 to 50/1) to give the desired product **3aa** as a colorless oil (73 mg, 76%).

HRMS-analysis of the catalytic reaction system

In order to provide a proof-of-concept for the proposed reaction mechanism, the mother liquid of the catalytic reaction was characterized by HRMS. Palladium complex **B** (Figure S2) was detected in the mother liquid. The result indicated that the catalytic reaction does occur according to the reaction mechanism proposed above.

A mixture of *N*,*N*,*N'*,*N'*-tetrabenzylmethanediamine **2a** (146 mg, 0.36 mmol), hept-6-en-4-yn-1-ol **1a** (33.0 mg, 0.30 mmol), [Pd(Xantphos)(CH₂NBn₂)]OTf (15.6

mg, 0.015 mmol) and DME (1.0 mL) were added to a 25 mL flame-dried Young-type tube in the glove box. The reaction mixture was stirred at 100 $^{\circ}$ C for 30 minutes. After cooled to room temperature, some reaction mixture was taken and injected into HRMS (ESI). The HRMS (ESI) analysis of the reaction mixture showed a peck at m/z 1004.2994, which corresponds to the mass of [**B**-OTf]⁺.

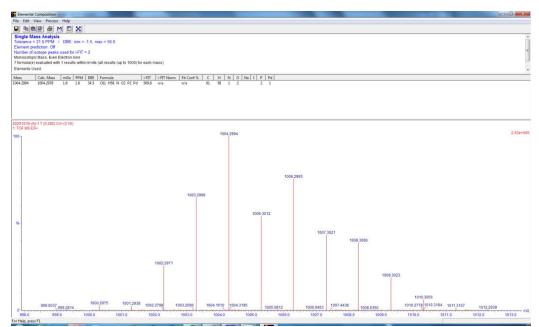
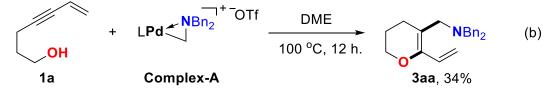
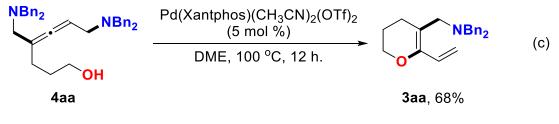
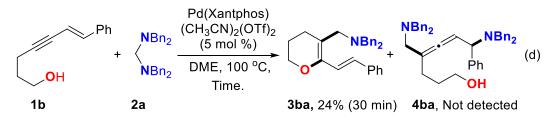
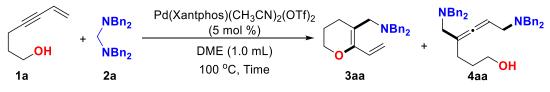




Figure S2. Observed HRMS date for palladium complex B Stoichiometric reaction of enynol 1a and complex A


The hept-6-en-4-yn-1-ol **1a** (22 mg, 0.20 mmol), $[Pd(Xantphos)(CH_2NBn_2)]OTf$ (208 mg, 0.20 mmol) and DME (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N₂ atmosphere. The mixture was stirred at 100 °C for 12 hours, then cooled to room temperature. The solvent was removed under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 200/1 to 50/1) to give the desired product **3aa** as a colorless oil (21 mg, 34%).

Intermediate 4aa was demonstrated

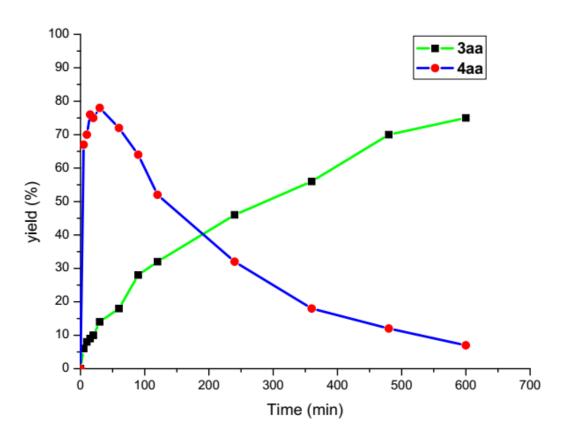
The **4aa** (155 mg, 0.3 mmol), Pd(Xantphos)(CH₃CN)₂(OTf)₂ (16 mg, 0.015 mmol) and DME (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N₂ atmosphere. The mixture was stirred at 100 °C for 12 hours, then cooled to room temperature. The solvent was removed under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 200/1 to 50/1) to give the desired product **3aa** as a colorless oil (65 mg, 68%).

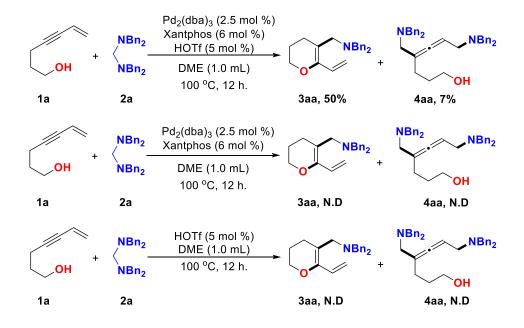

Intermediate 4ba was ruled out

A mixture of N,N,N',N'-tetrabenzylmethanediamine **2a** (146 mg, 0.36 mmol), **1b** (54 mg, 0.30 mmol), Pd(Xantphos)(CH₃CN)₂(OTf)₂ (16.0 mg, 5 mol %), and DME (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N₂ atmosphere. The mixture was stirred at 100 °C. The **4ba** was monitored at different moments by TLC. The result show that **4ba** was not detected, which ruled out the possibility of **4ba** as an intermediate.

Experiments for monitoring

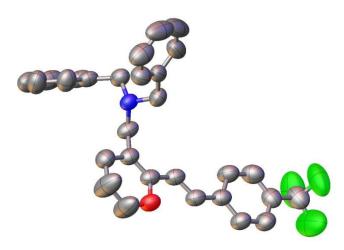
Parallel experiments: N,N,N',N'-tetrabenzylmethanediamine **2a** (146 mg, 0.36 mmol), hept-6-en-4-yn-1-ol **1a** (33.0 mg, 0.30 mmol), Pd(Xantphos)(CH₃CN)₂(OTf)₂ (16.0 mg, 5 mol %), and DME (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N₂ atmosphere. The reaction mixture was stirred at 100 °C. The yields of **3aa** and **4aa** were determined at different moments using Cl₂CHCHCl₂ as internal standard by ¹H NMR analysis. As shown in **Figure S3**




Figure S3. Reaction profile for the standard reaction

Control Experiments with Lewis acids and Bronsted acids

N,*N*,*N'*,*N'*-tetrabenzylmethanediamine **2a** (146 mg, 0.36 mmol), Lewis acid (0.015 mmol, 5 mol %), or Bronsted acid (5 mol%) enynol **1a** (33 mg, 0.30 mmol) and DME (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N₂ atmosphere. The reaction mixture was stirred at the designed temperature for 12 hours and then cooled to room temperature. The desired product **3aa** cannot be obtained by using Lewis acids, which ruled out the possibility that palladium functioned as a Lewis acid. Moreover, the HOTf alone can not catalyze the desired reaction at all.


OH 1a	NBn2 Lewis acid NBn2 (5 mol %) NBn2 DME (1.0 mL) 2a 100 °C, 12 h	NBn ₂ + 3aa	NBn ₂ NBn ₂ NBn ₂ OH 4aa
entry	Lewis acid	Yield/% 3aa	Yield/% 4aa
1	AgOTf	N.D	N.D
2	Zn(OTf) ₂	N.D	N.D
3	Cu(OTf) ₂	N.D	N.D
4	$Fe(OTf)_3$	N.D	N.D
5	Sc(OTf) ₃	N.D	N.D
6	AI(OTf) ₃	N.D	N.D

^aReaction conditions: **1a** (0.3 mmol), **2a** (0.36 mmol), Lewis acid (5 mol %), DME (1.0 mL), 12 h, isolated yield.

8. X-ray Single Crystal Data for Compound 3ga

Sample preparation: Compound **3ga** (30 mg) was dissolved in anhydrous CH_2Cl_2 (1.0 mL) in a 5 mL sample vial, and CH_3OH (3.0 mL) was added carefully to form a two-phase interface. The resulting mixture was left at -20 °C under airtight conditions until the white crystals precipitated.

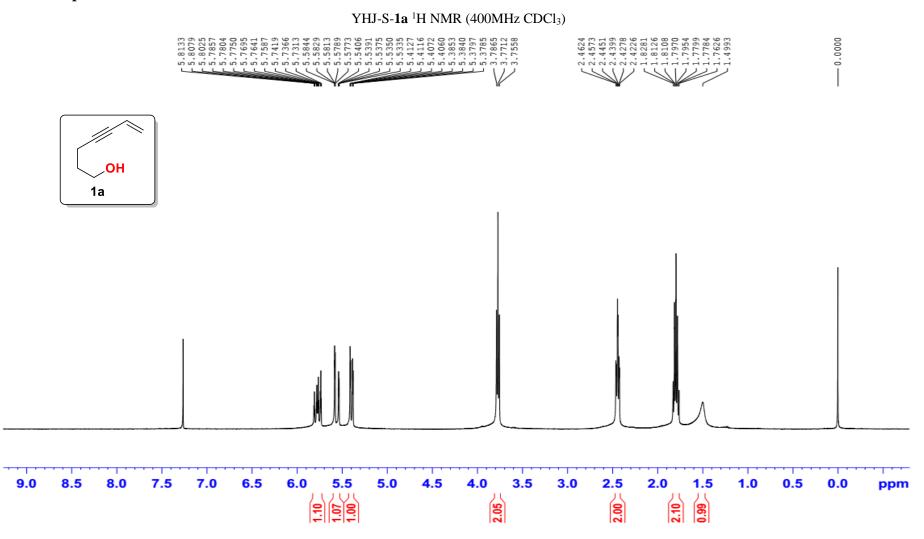
CCDC 2048261 (3ga)

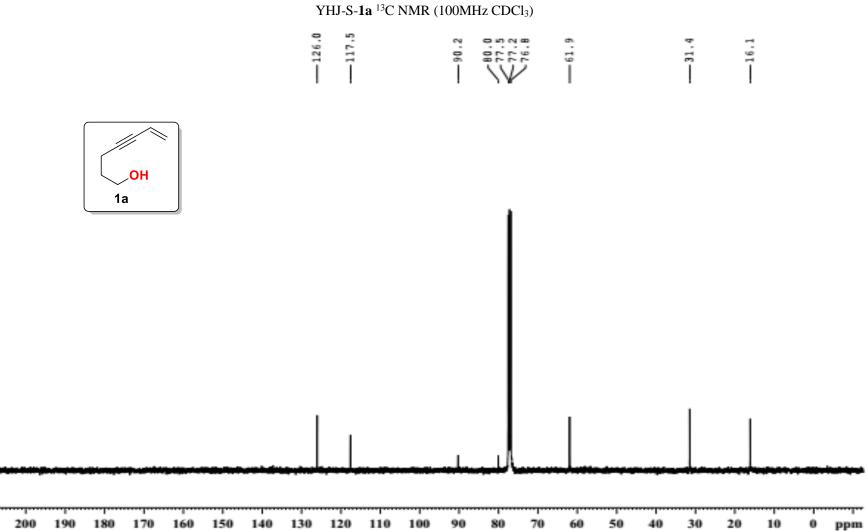
The ellipsoid contour percent probability lever is 50%

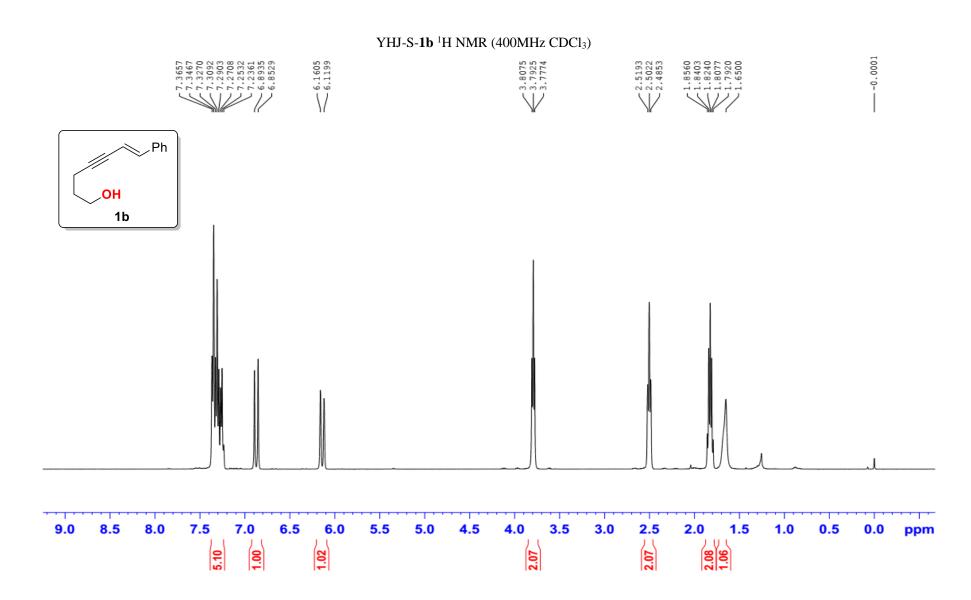
Crystal data and structure refinement for 3ga			
Identification code	YHJ-X200901-CF3		
Empirical formula	$C_{29}H_{26}F_3NO$		
Formula weight	461.51		
Temperature/K	293(2)		
Crystal system	triclinic		
Space group	P-1		
a/Å	9.5127(3)		
b/Å	12.4644(5)		
c/Å	12.5617(7)		
$\alpha/$ °	108.394(4)		
β/°	111.688(4)		
γ/°	96.626(3)		
Volume/Å ³	1267.02(11)		
Z	2		
$\rho_{calc}g/cm^3$	1.210		
μ/mm^{-1}	0.725		
F(000)	484.0		
Crystal size/mm ³	0.3 imes 0.2 imes 0.15		
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)		

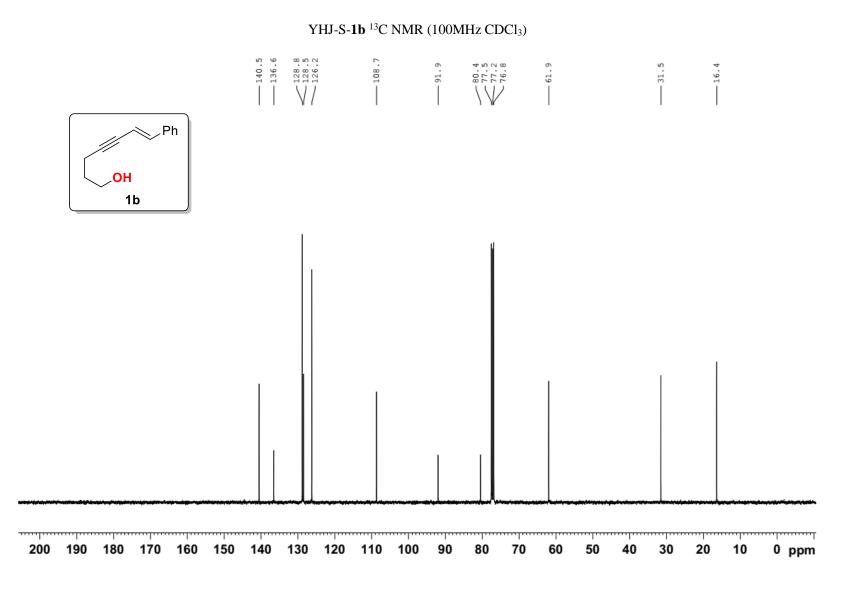
2 Θ range for data collection/ $^{\circ}$ 7.748 to 140.158 Index ranges $-11 \le h \le 8, -14 \le k \le 15, -15 \le l \le 14$ Reflections collected 8460 Independent reflections 4672 [$R_{int} = 0.0159$, $R_{sigma} = 0.0208$] Data/restraints/parameters 4672/1/307 Goodness-of-fit on F² 1.056 $R_1 = 0.0688, wR_2 = 0.2117$ Final R indexes $[I \ge 2\sigma(I)]$ Final R indexes [all data] $R_1 = 0.0826, wR_2 = 0.2311$ Largest diff. peak/hole / e Å $^{-3}$ 0.30/-0.27

9. References

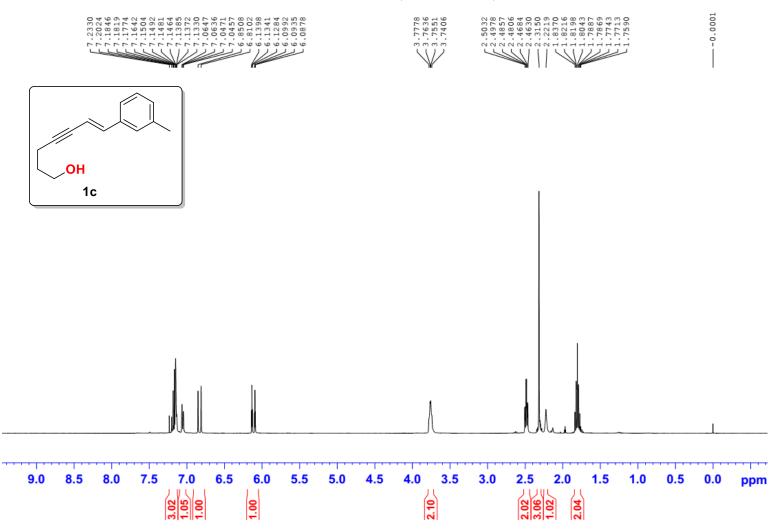

1. (a) Heaney, H.; Papageorgiou, G.; Wilkins, R. F. Tetrahedron 1997, 53, 2941-2958;

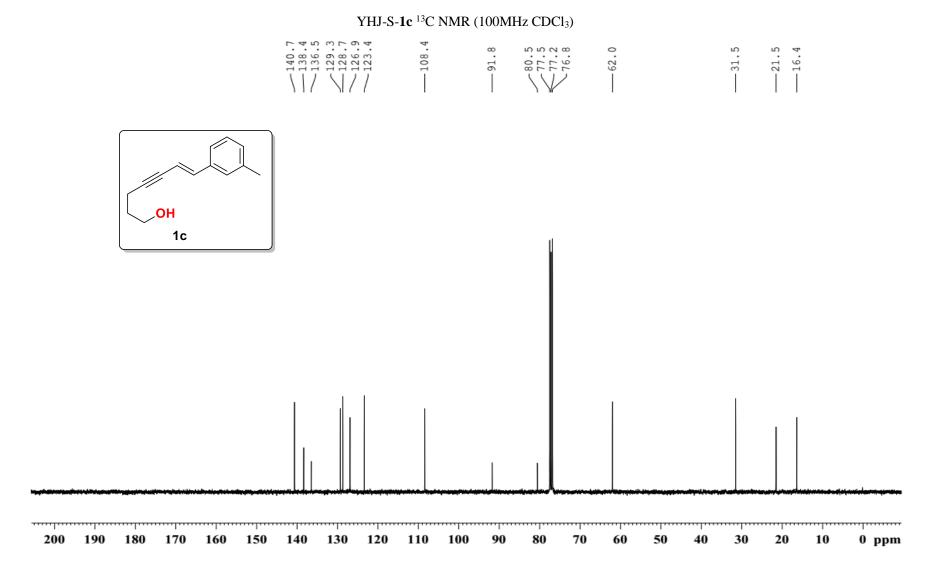

(b) Rosenau, T.; Potthast, A.; Kosma, P. Tetrahedron 2004, 60, 301-306.

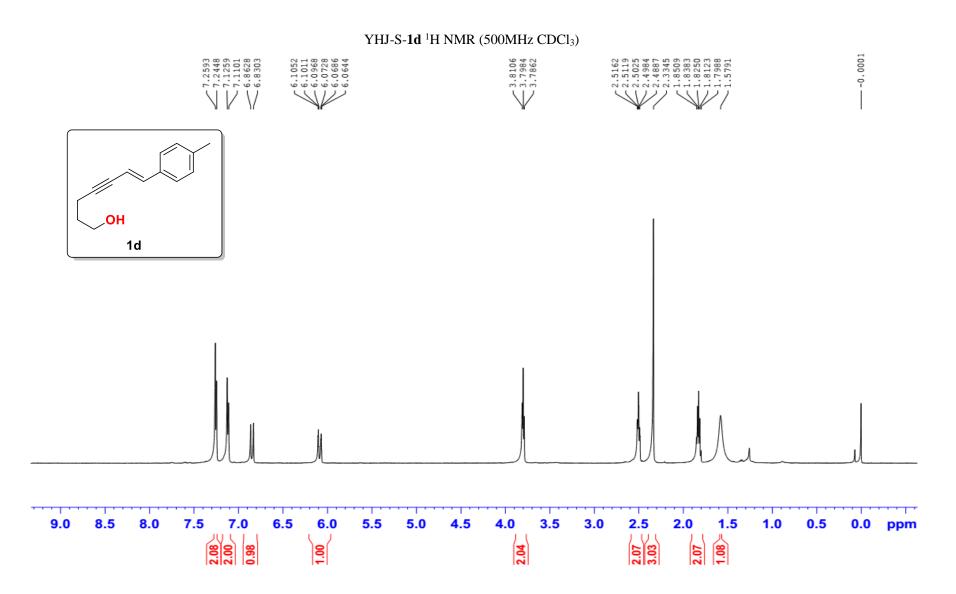

2. (a) Yoshida, K.; Shida, H.; Takahashi, H.; Yanagisawa, A. *Chem. Eur. J.* **2011**, *17*, 344-349; (b) Zhang, Y.; Yu, B.; Gao, B.; Zhang, T.; Huang, H. *Org. Lett.* **2019**, *21*, 535-539; (c) Yin, H.; Jin, M.; Chen, W.; Chen, C.; Zheng, L.; Wei, P.; Han, S. *Tetrahedron Lett.* **2012**, *53*, 12651270; (d) Feng, X.; Zhang, H.; Lu, W.; Yamamoto, Y.; Almansour, A. I.; Arumugam, N.; Kumar, R. S.; Bao, M. *Synthesis* **2017**, *49*, 2727-2732.

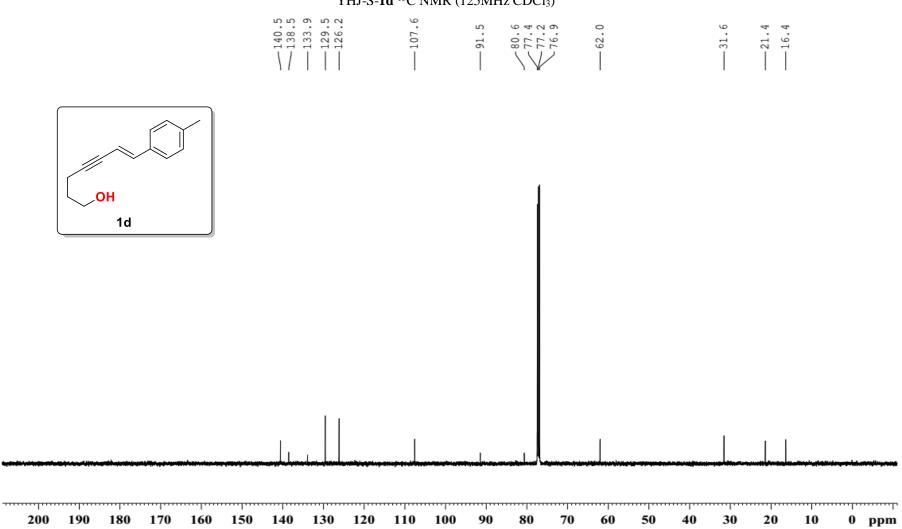

3. Grayson, E. J.; Davis, B. G. Org. Lett. 2005, 7, 2361-2364.

10. NMR Spectra of Materials and Products

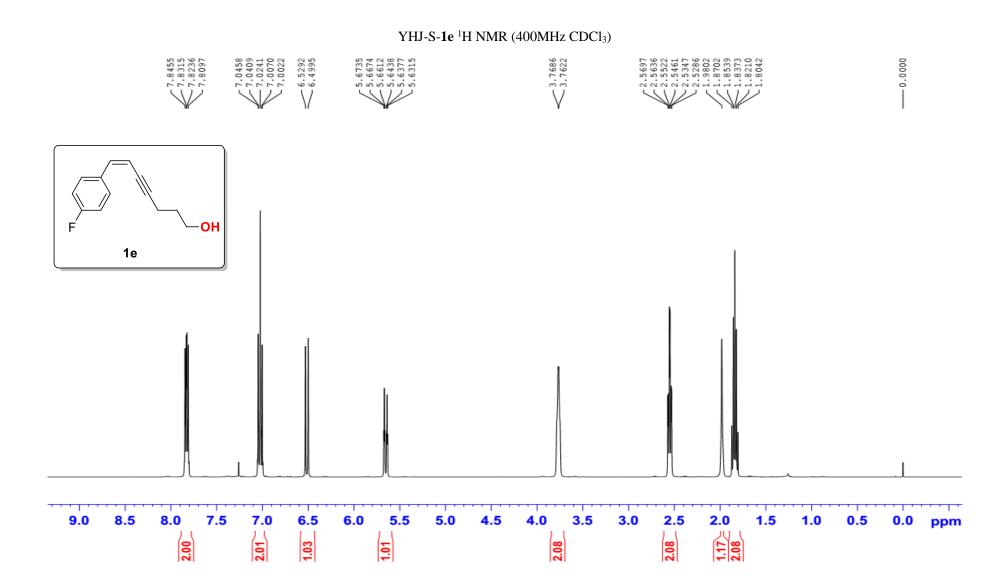


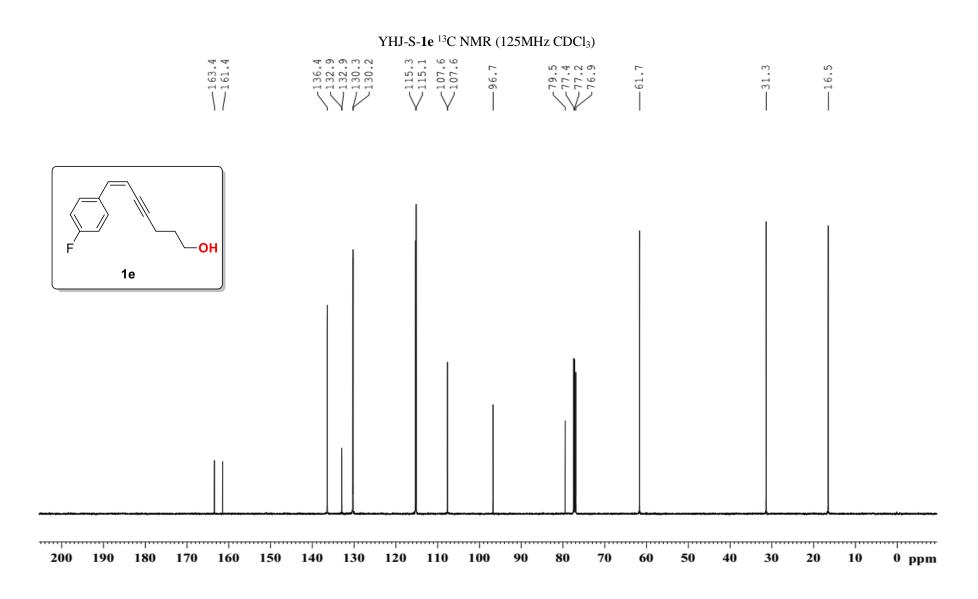


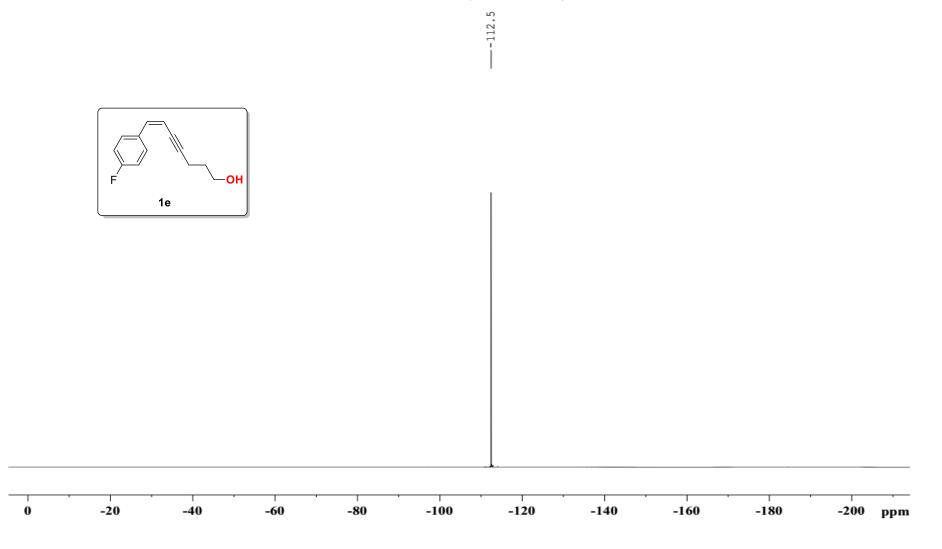


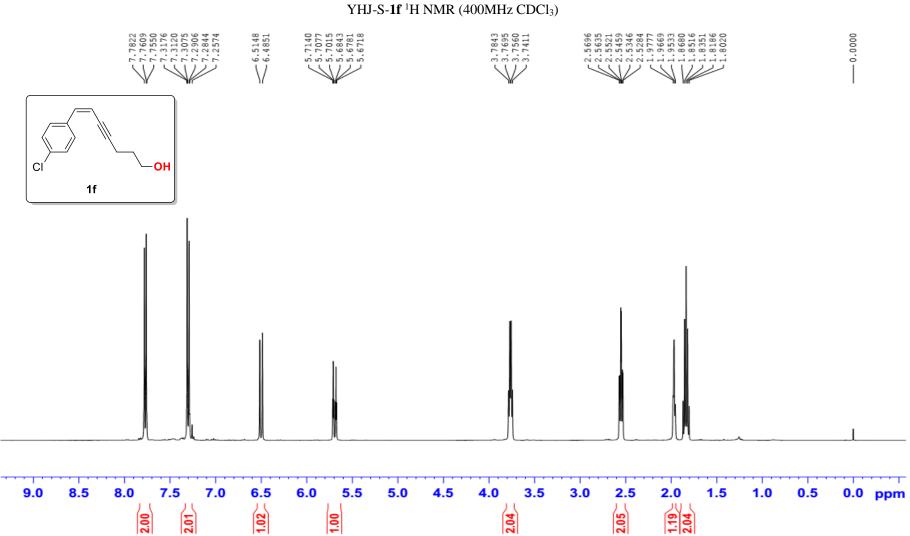


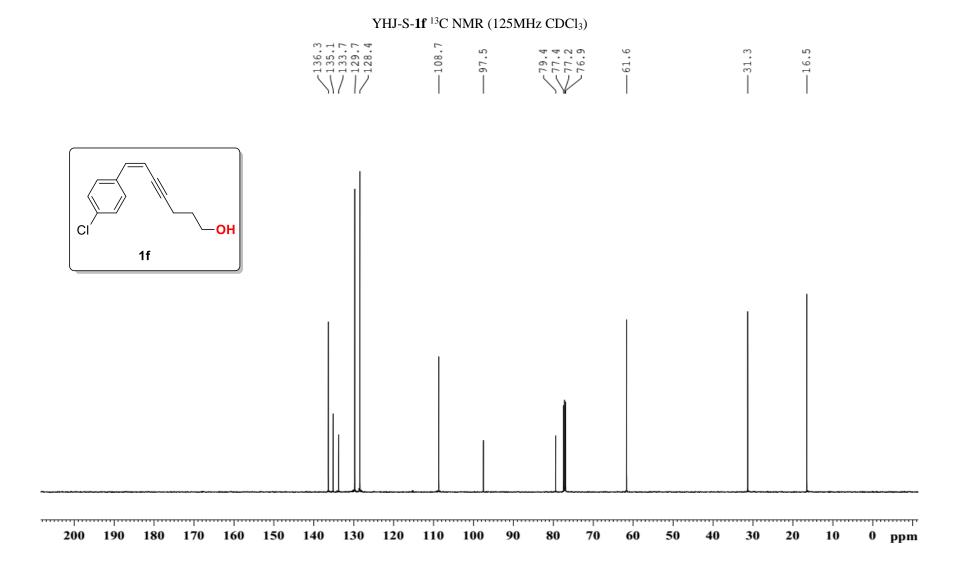
YHJ-S-1c¹H NMR (400MHz CDCl₃)

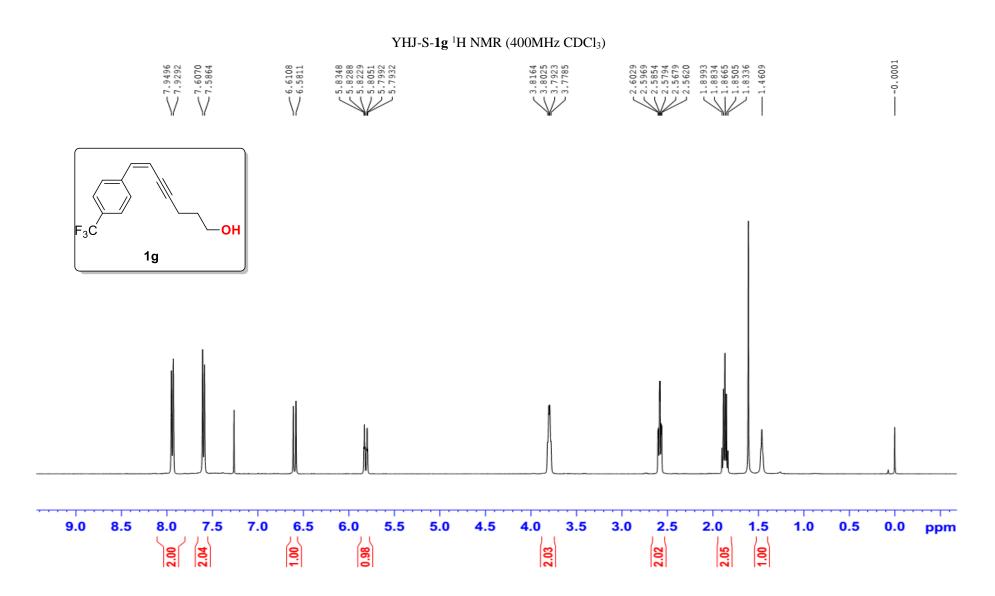


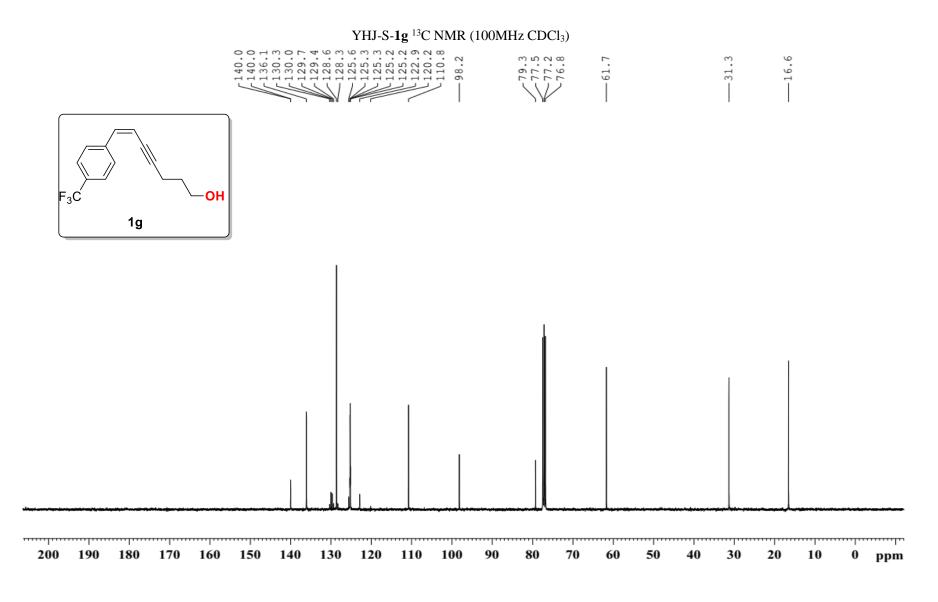


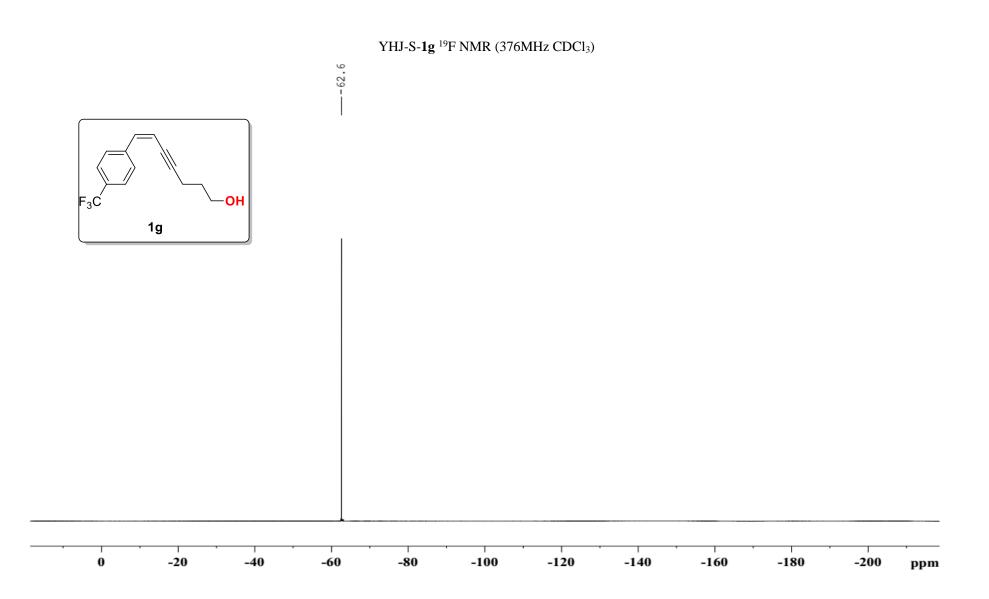


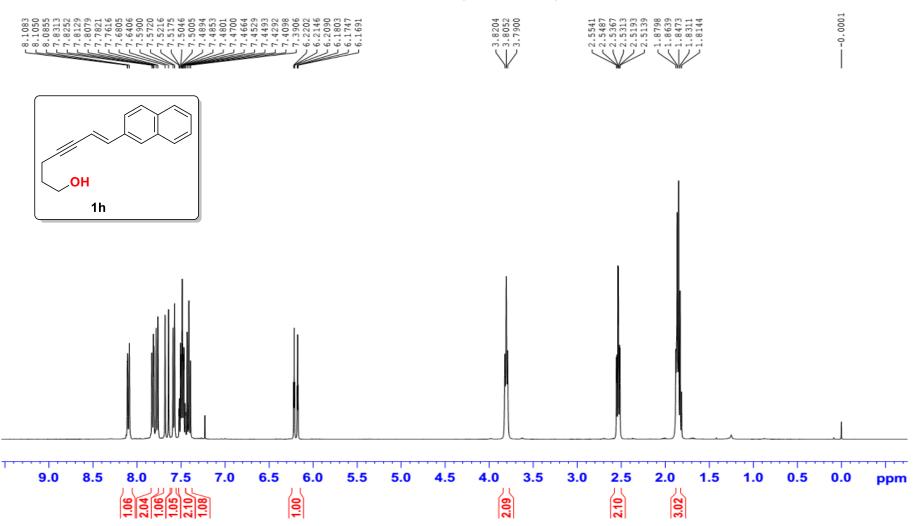

YHJ-S-1d ¹³C NMR (125MHz CDCl₃)

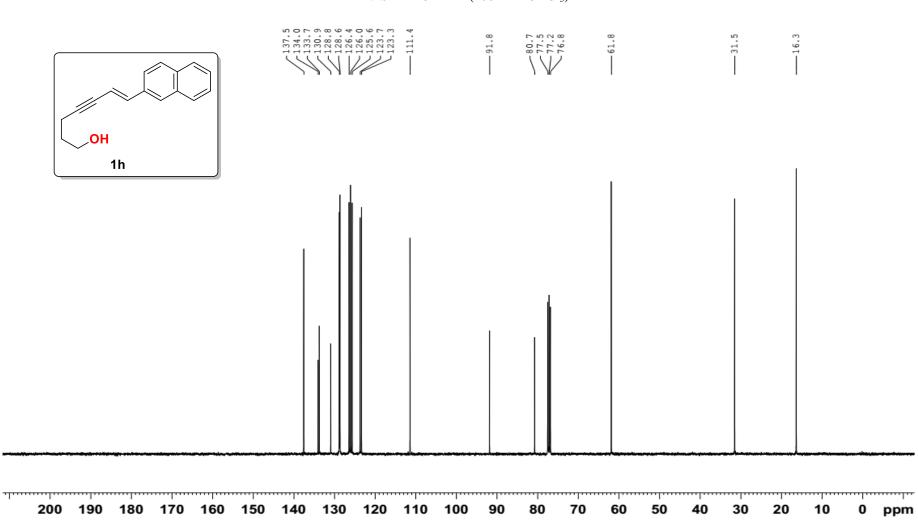


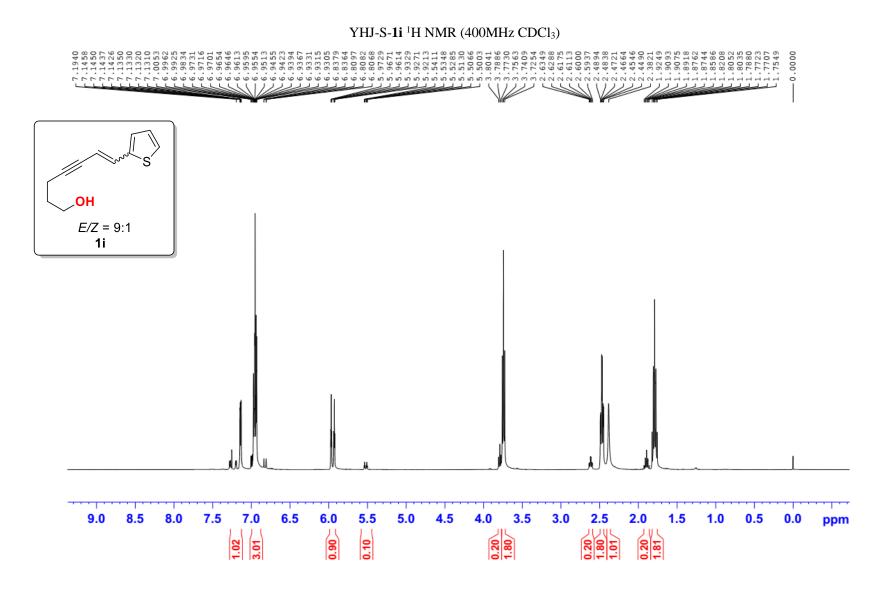


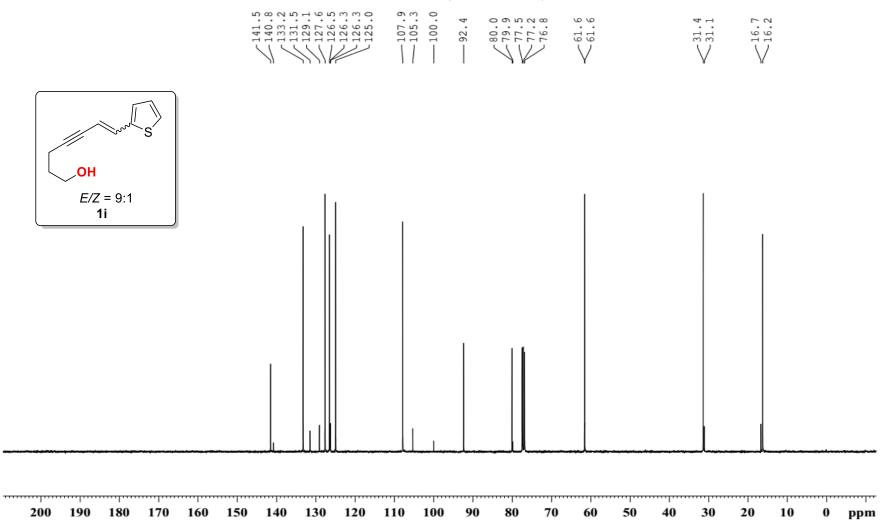

YHJ-S-1e¹⁹F NMR (376MHz CDCl₃)

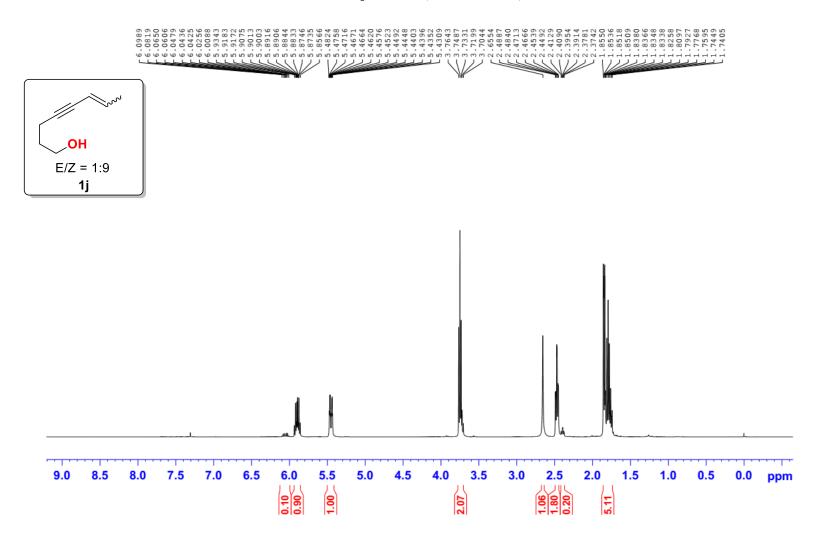


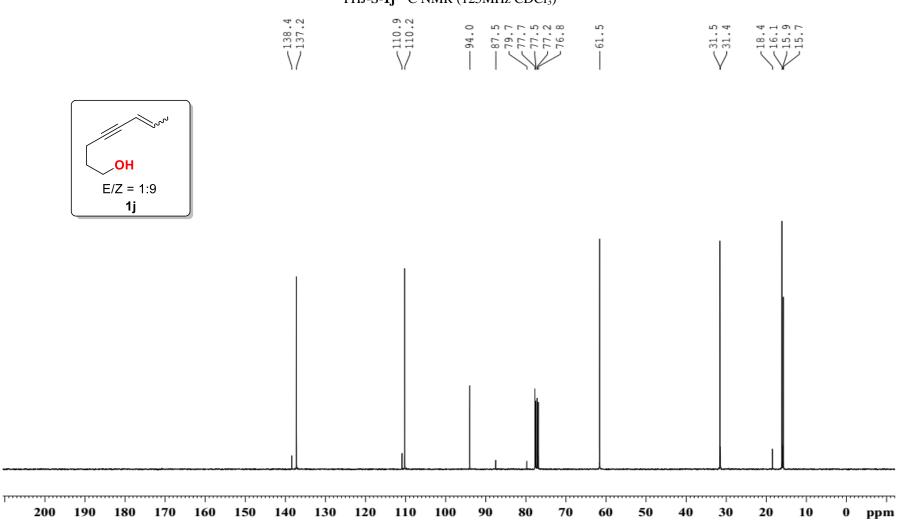


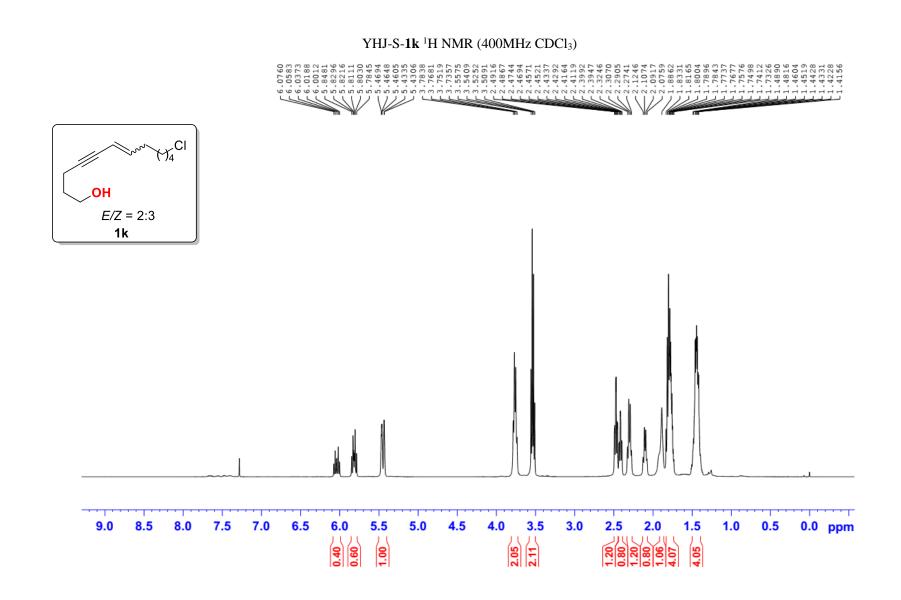


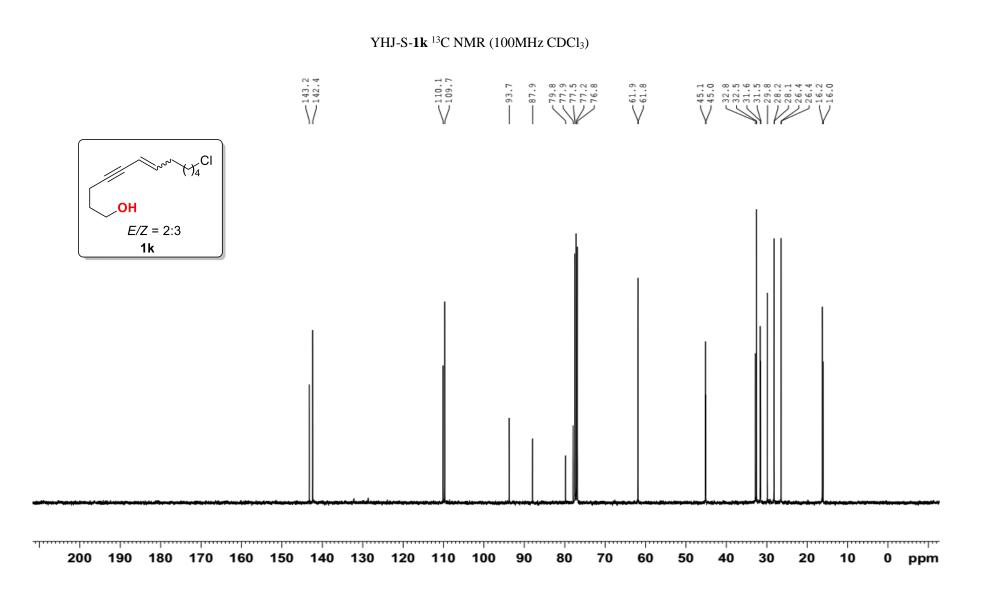


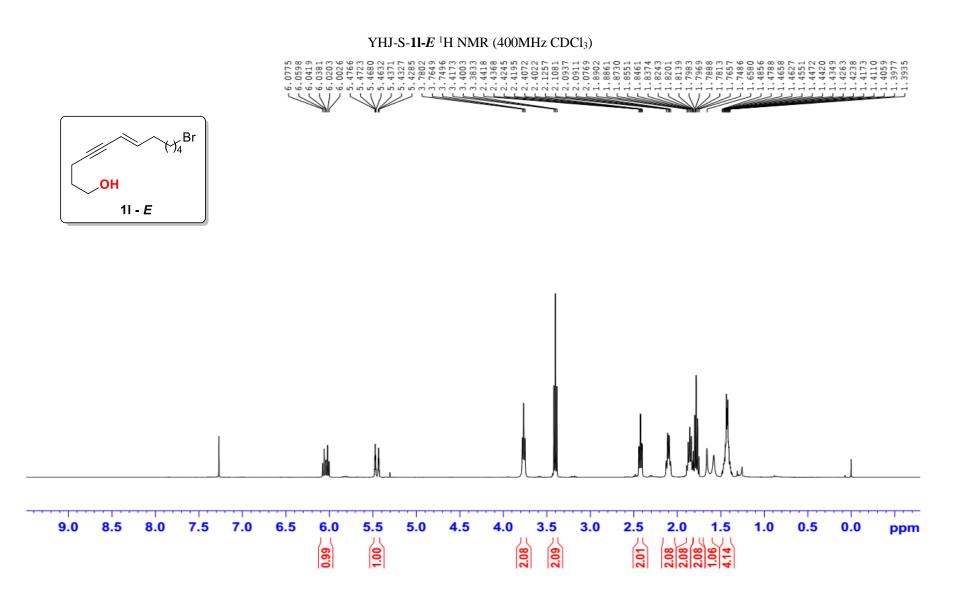

YHJ-S-1h ¹H NMR (400MHz CDCl₃)

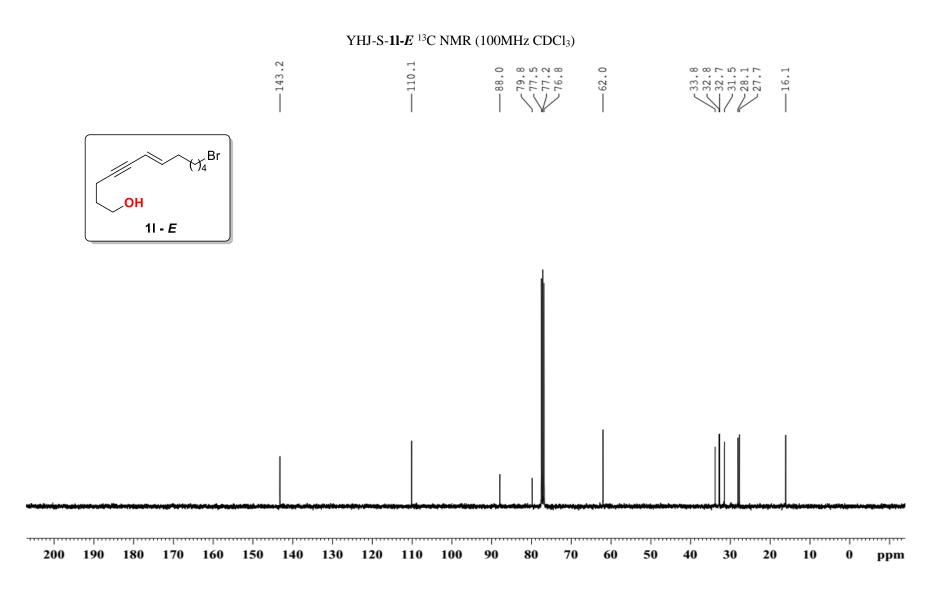

YHJ-S-1h¹³C NMR (100MHz CDCl₃)



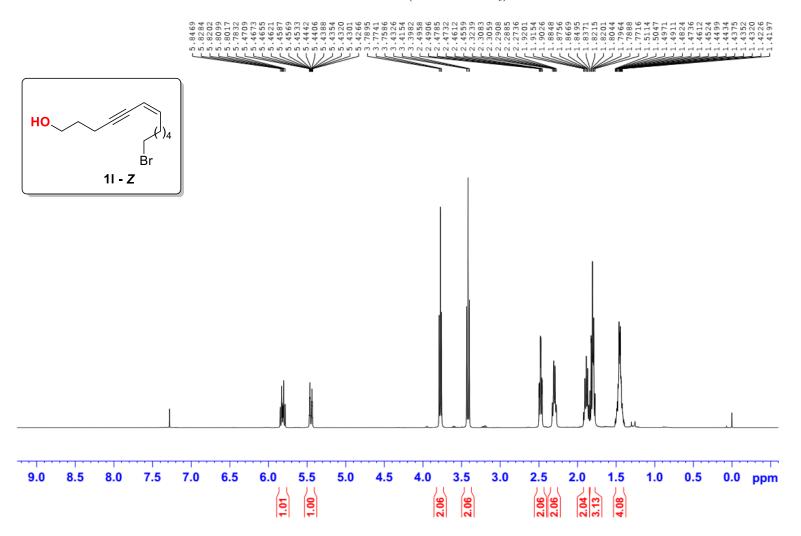

YHJ-S-1i¹³C NMR (100MHz CDCl₃)

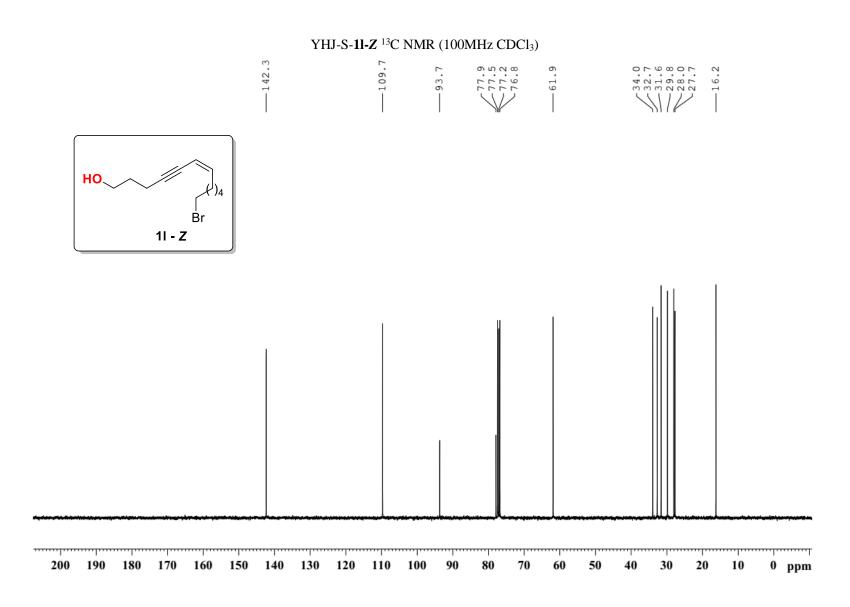

YHJ-S-1j¹H NMR (400MHz CDCl₃)

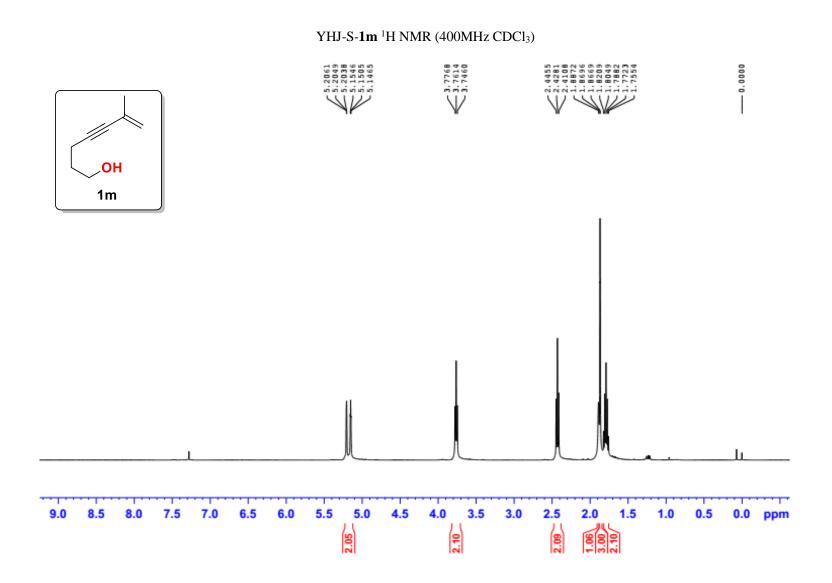


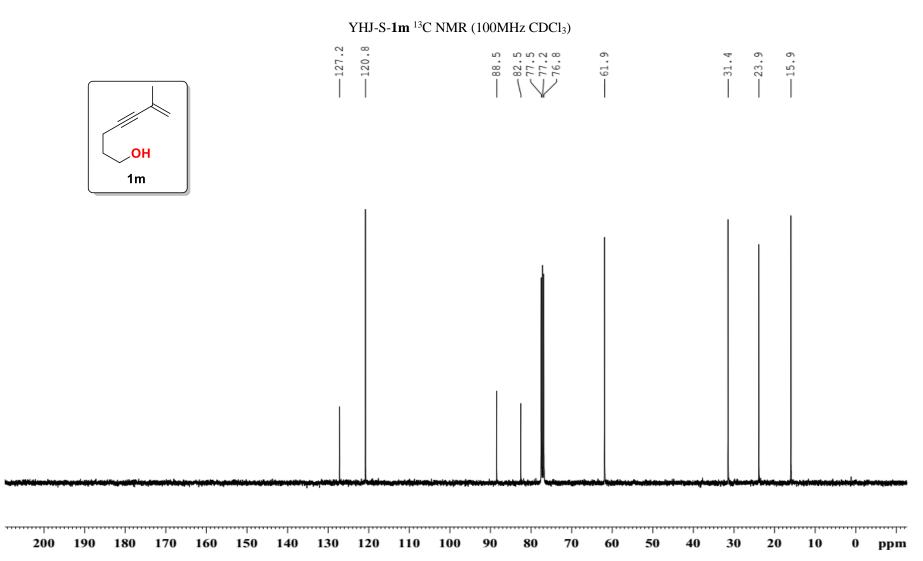


YHJ-S-1j¹³C NMR (125MHz CDCl₃)

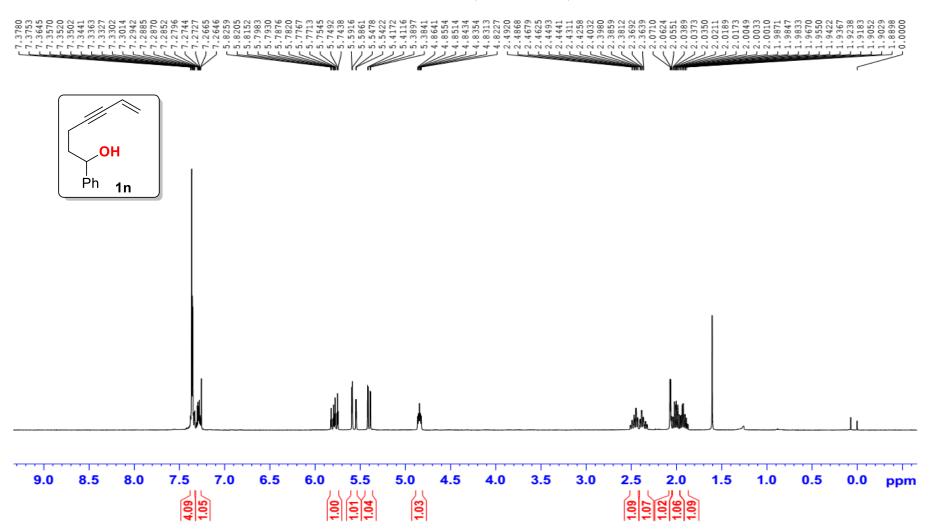


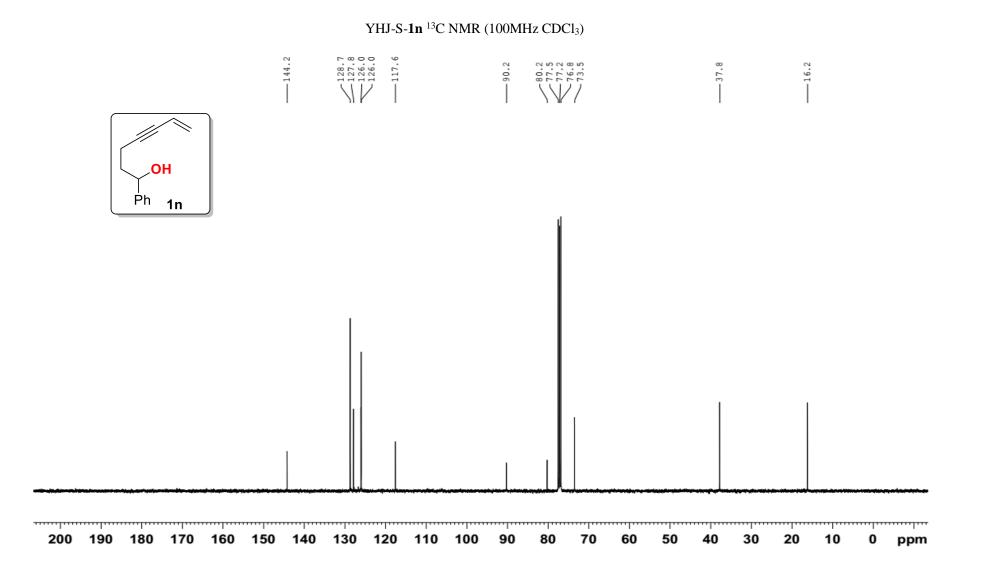


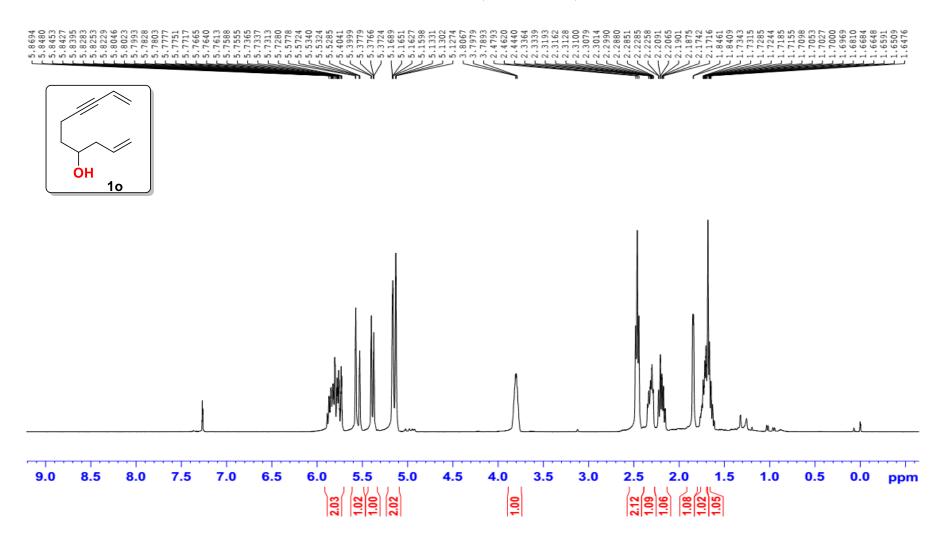


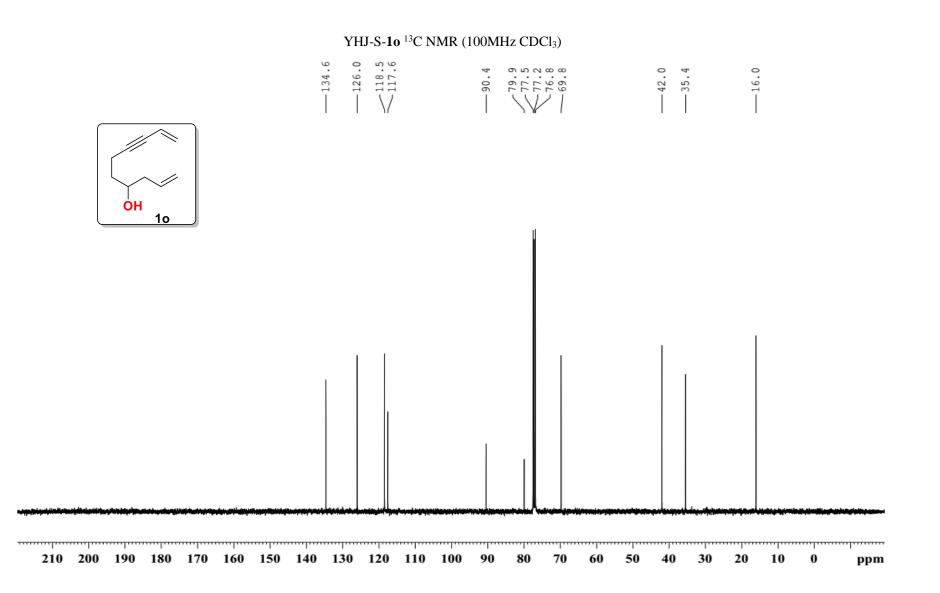


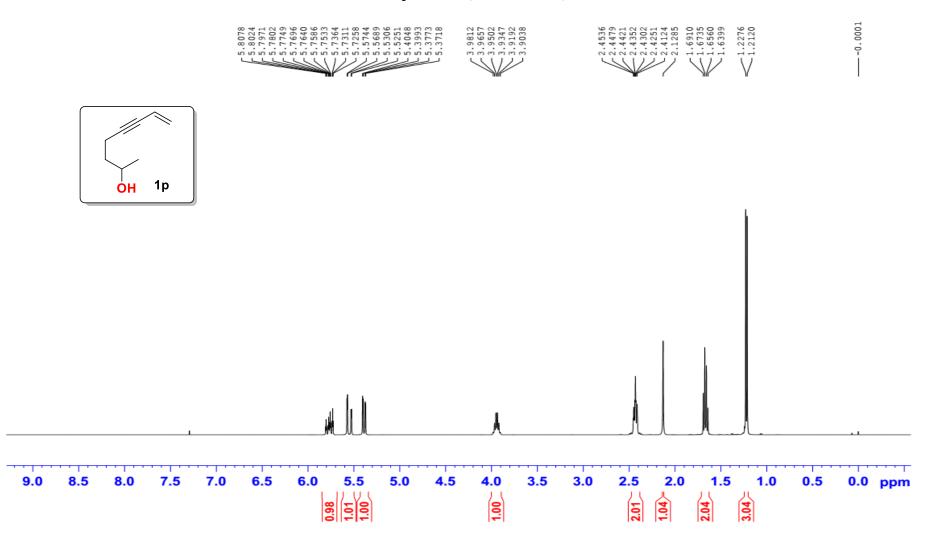
YHJ-S-11-Z¹H NMR (400MHz CDCl₃)

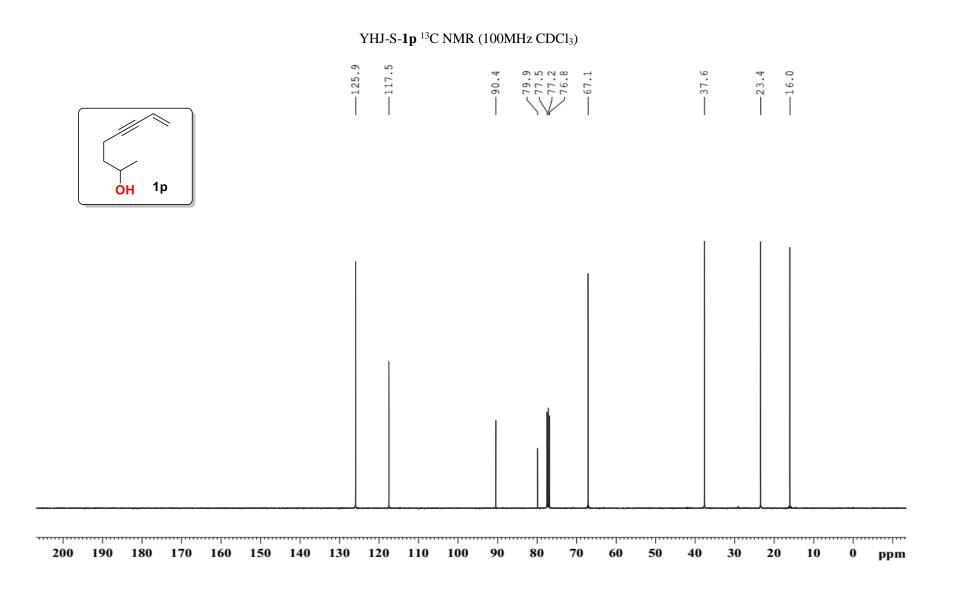


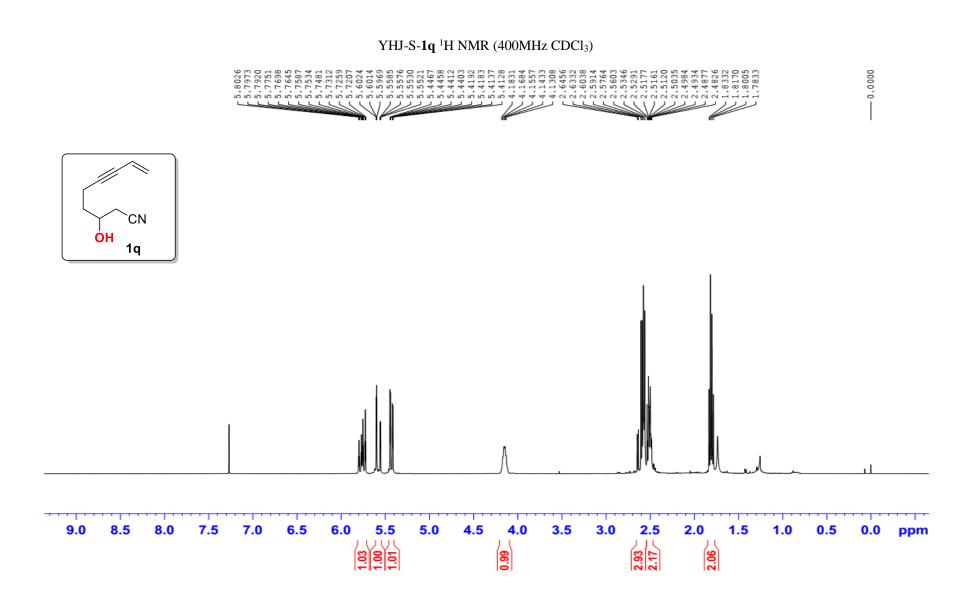


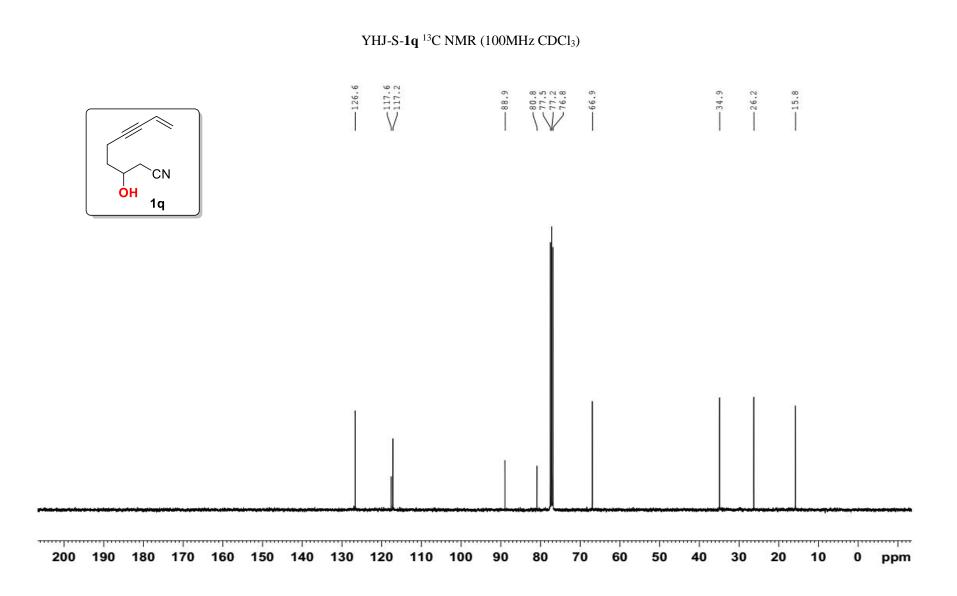



YHJ-S-1n ¹H NMR (400MHz CDCl₃)

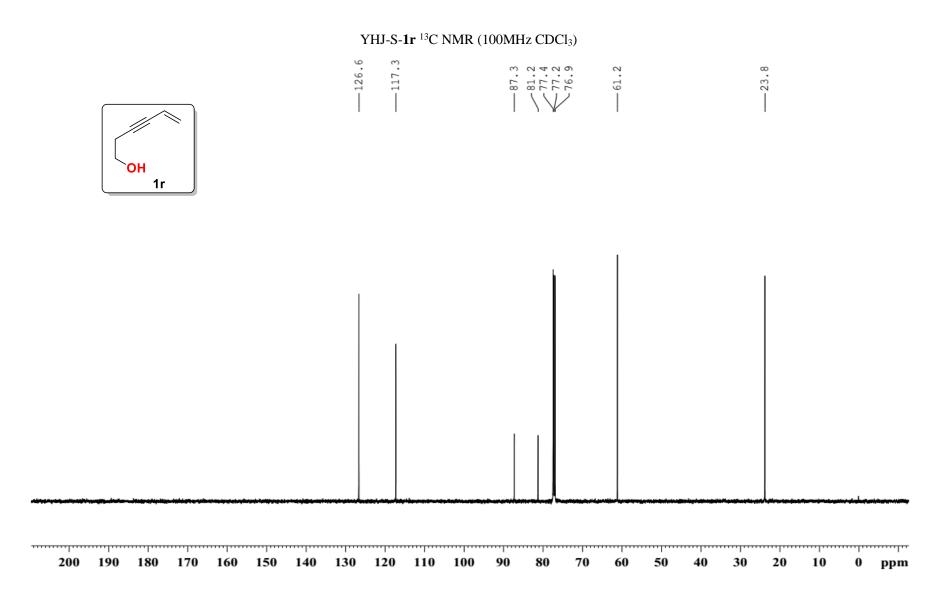


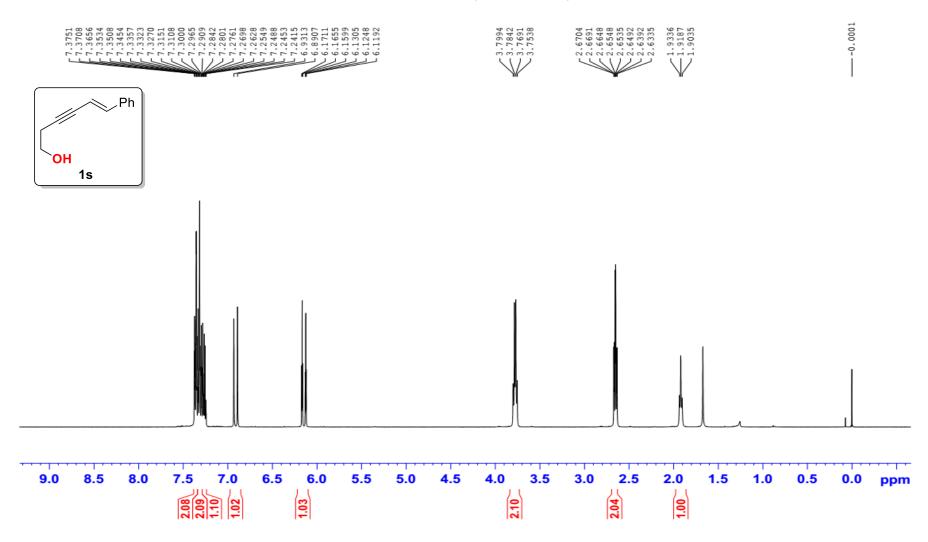

YHJ-S-10¹H NMR (400MHz CDCl₃)



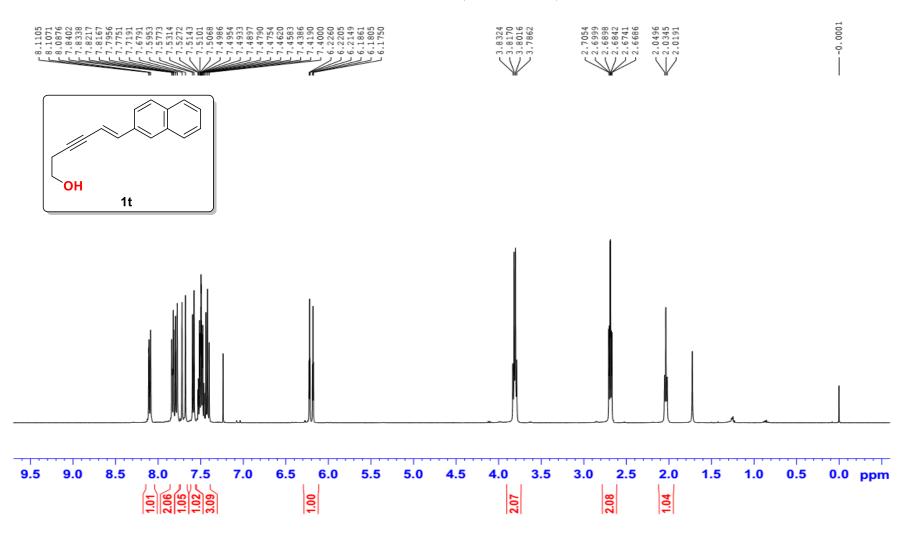


YHJ-S-1p¹H NMR (400MHz CDCl₃)

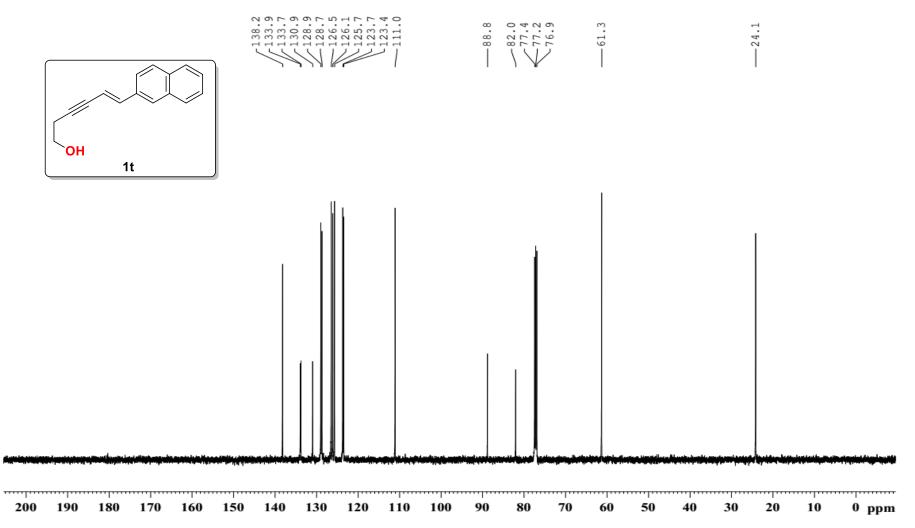




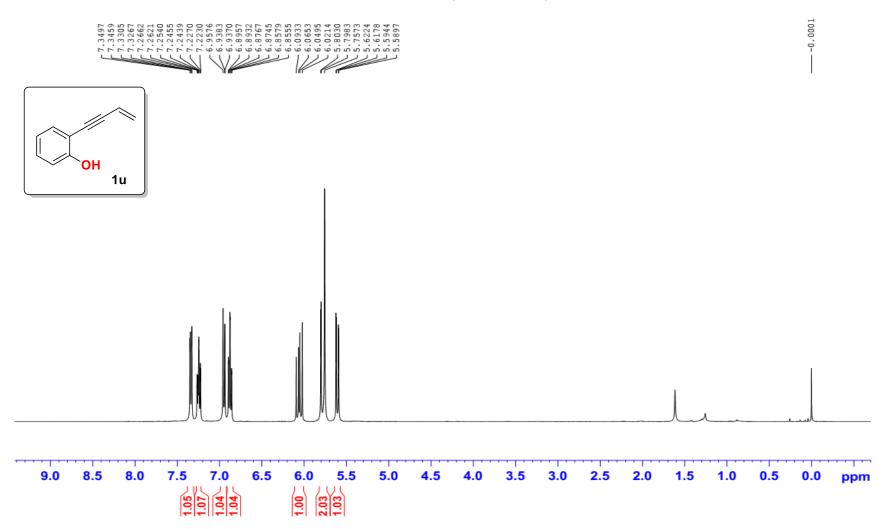
YHJ-S-1r¹H NMR (400MHz CDCl₃) --0.0001 < 3.7451 3.73192.6063 2.5907 2.5907 2.5751 2.5751 2.5709 2.5709 ОН 1r 7.0 6.5 5.5 9.0 8.5 8.0 7.5 6.0 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm 1.02 1.02 1.02 2.10 5.10 1.02

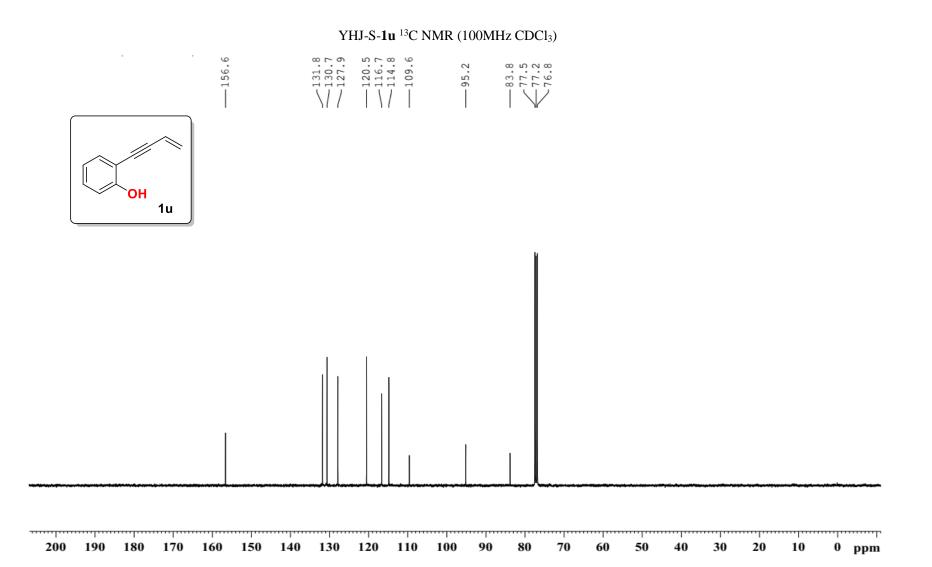

S84

YHJ-S-1s ¹H NMR (400MHz CDCl₃)

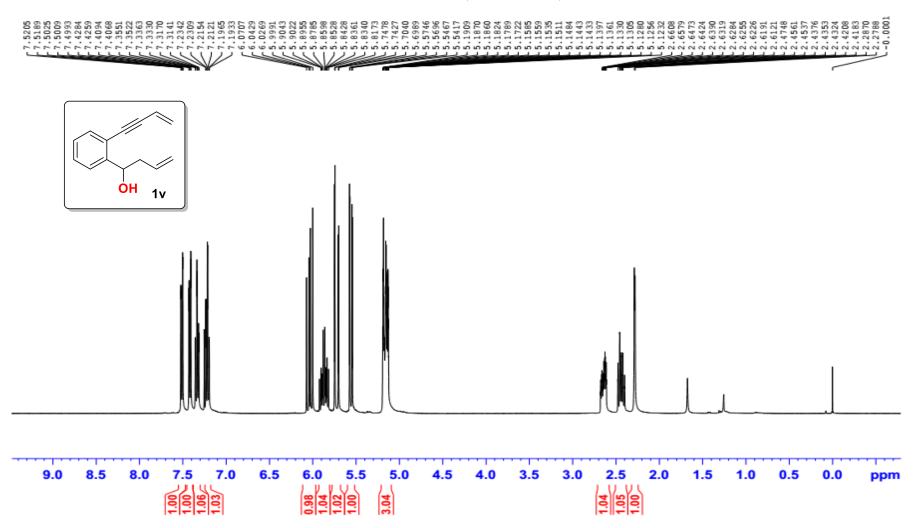


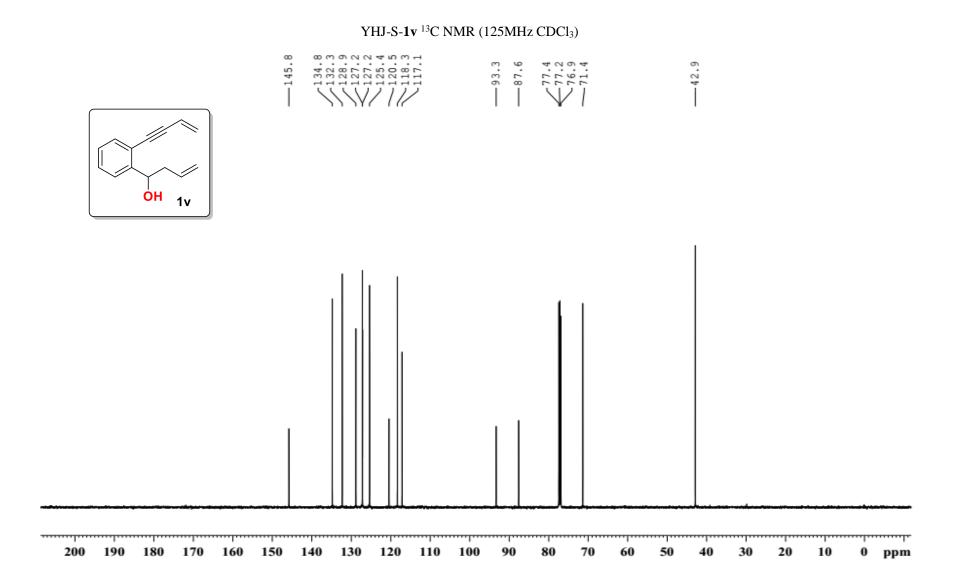
YHJ-S-1s¹³C NMR (125MHz CDCl₃) -141.1-136.4 -128.8-128.6-128.6-126.3-108.3 -88.9-81.877.477.276.9-24.2 61.3 ∠Ph OH 1s 200 190 180 170 160 150 140 130 120 110 100 90 80 70 50 40 30 20 10 60 0 ppm

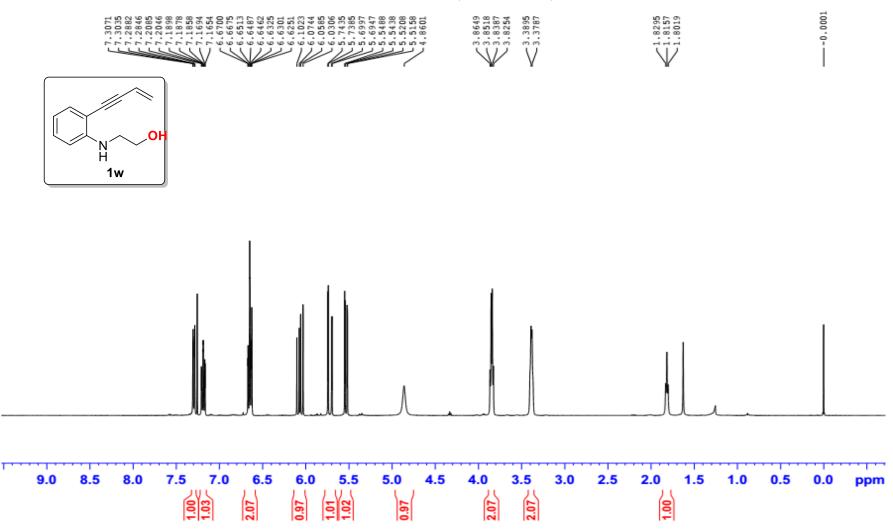

YHJ-S-1t ¹H NMR (400MHz CDCl₃)

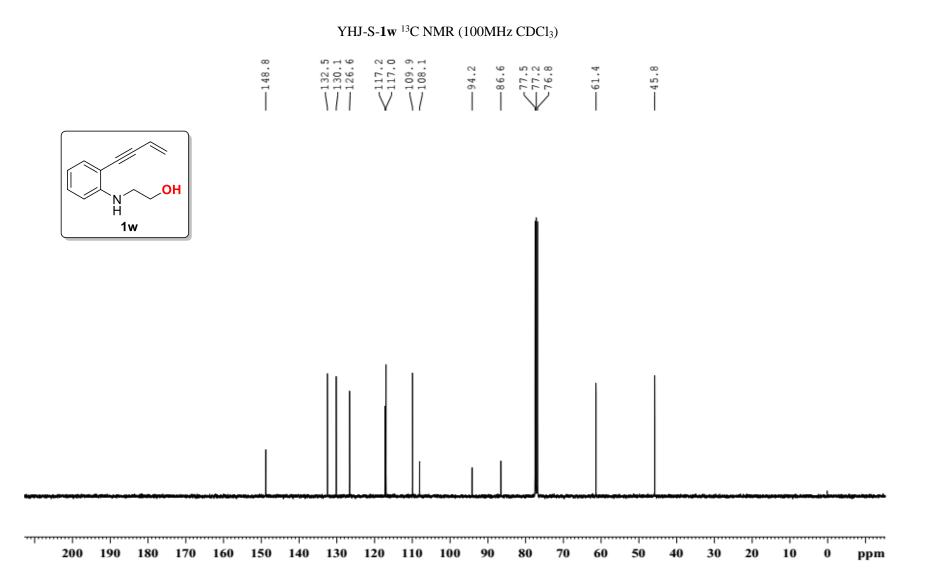


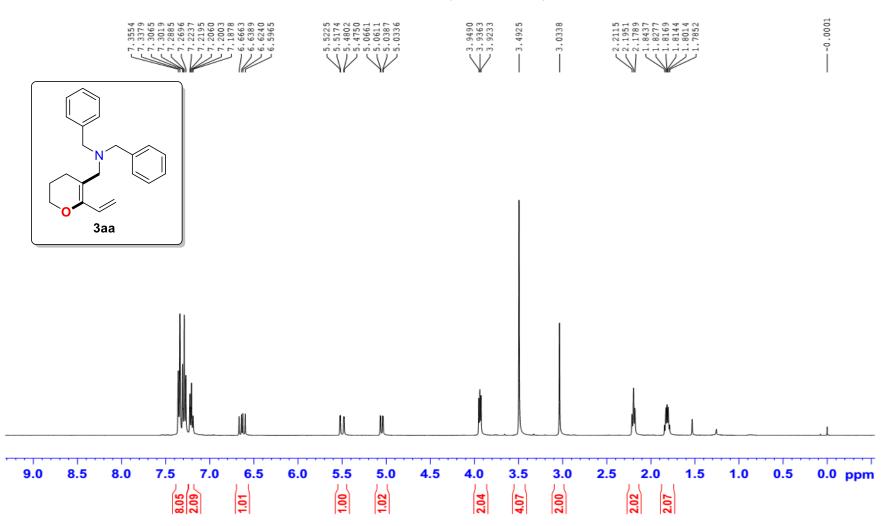
YHJ-S-1t¹³C NMR (125MHz CDCl₃)



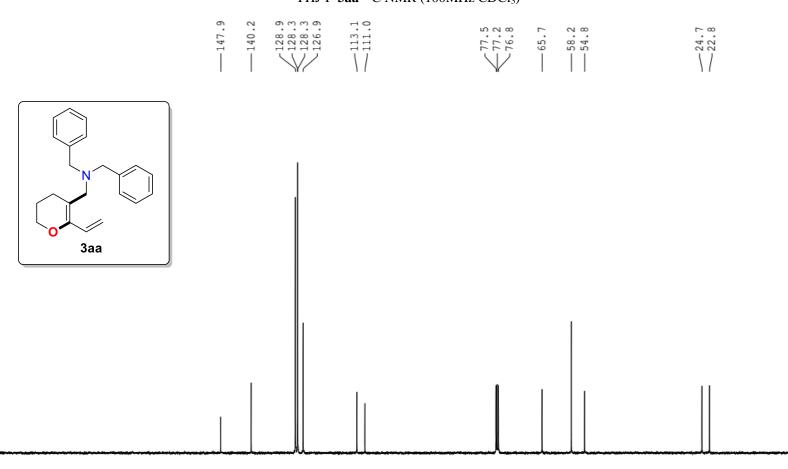

YHJ-S-1u¹H NMR (400MHz CDCl₃)




YHJ-S-1v¹H NMR (400MHz CDCl₃)

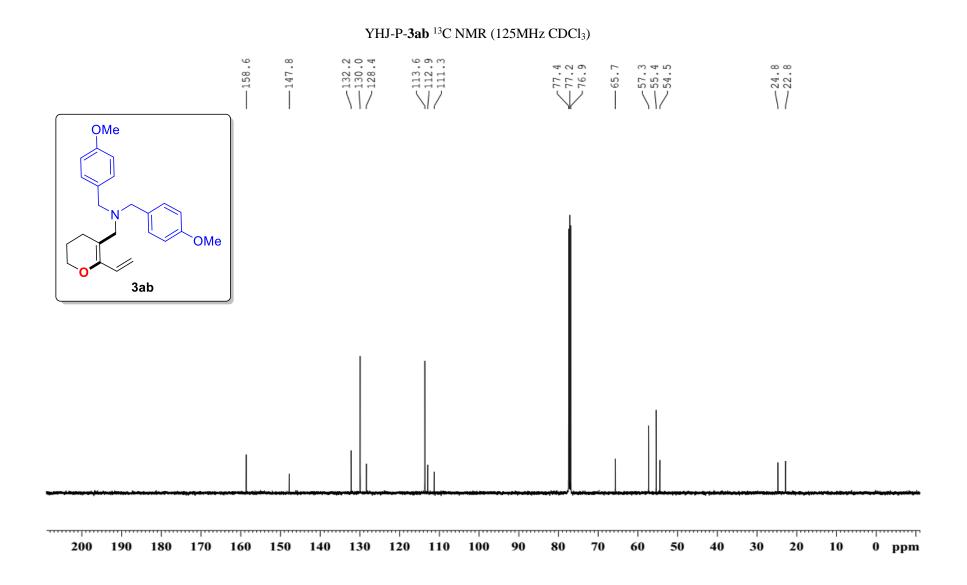


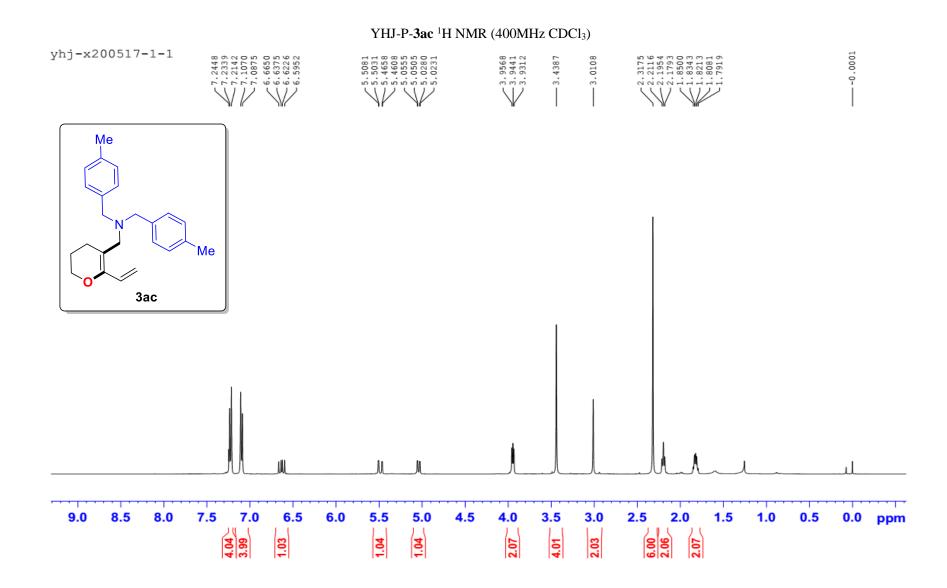
YHJ-S-1w¹H NMR (400MHz CDCl₃)

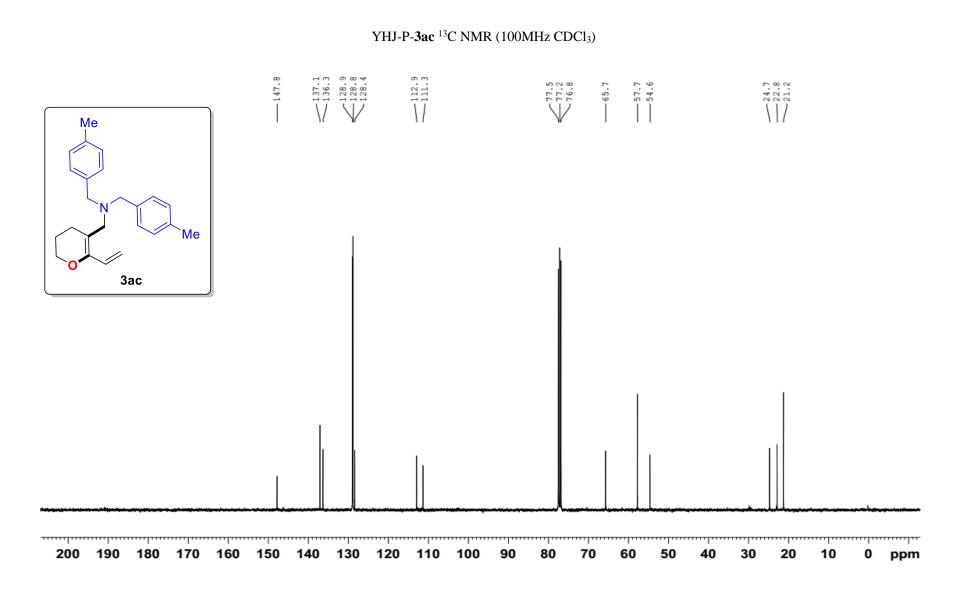


YHJ-P-3aa ¹³C NMR (100MHz CDCl₃)

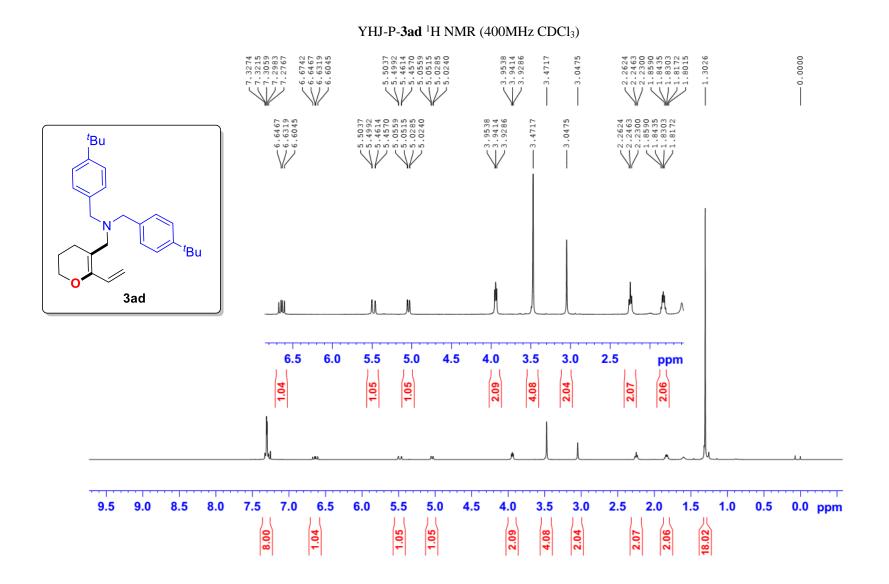
..... 200 190 180 170 160 150 140 130 120 110 100 90 80 70 50 40 30 20 10 60 0 ppm

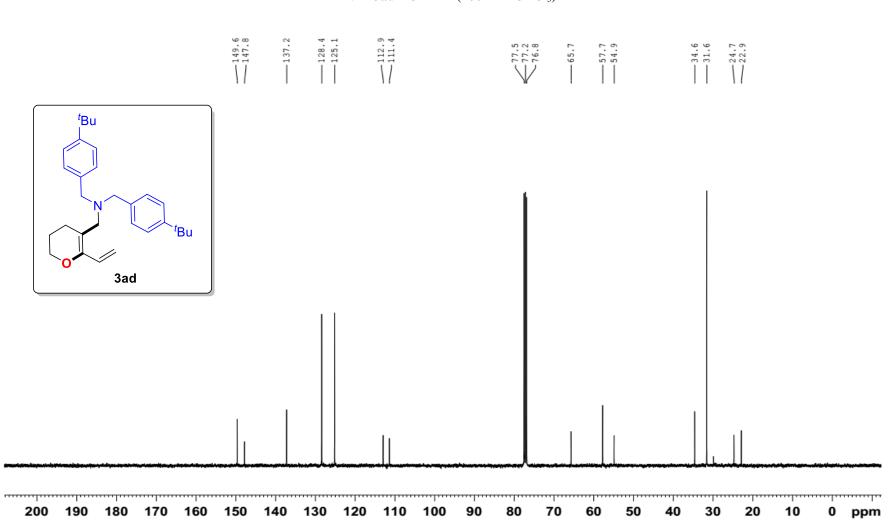

.......

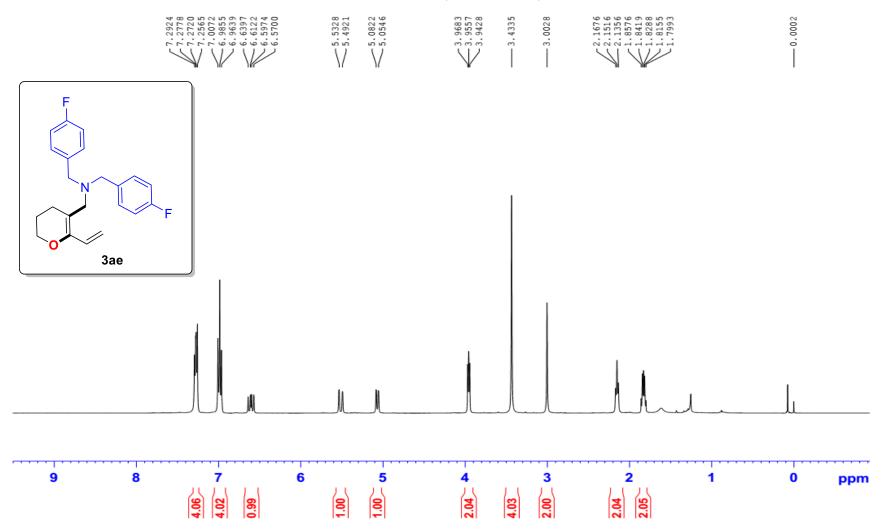

......

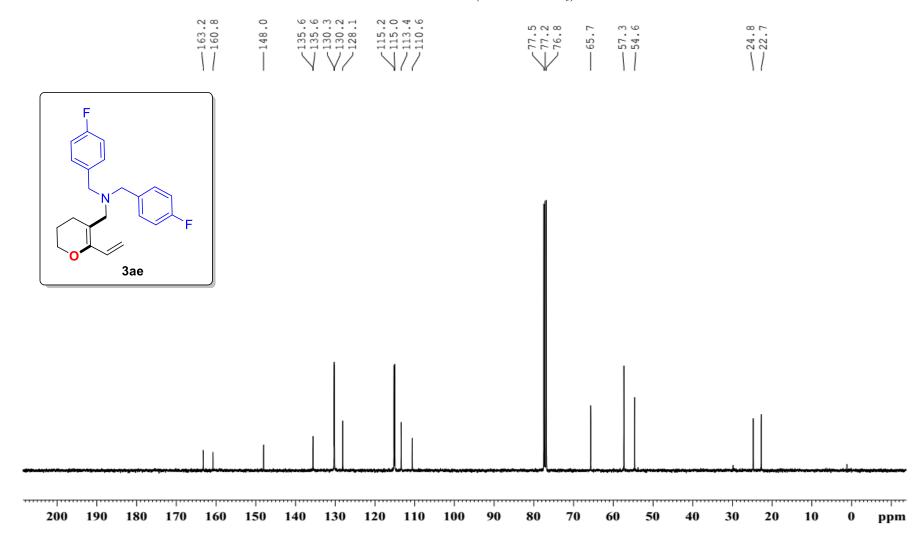

...........

......

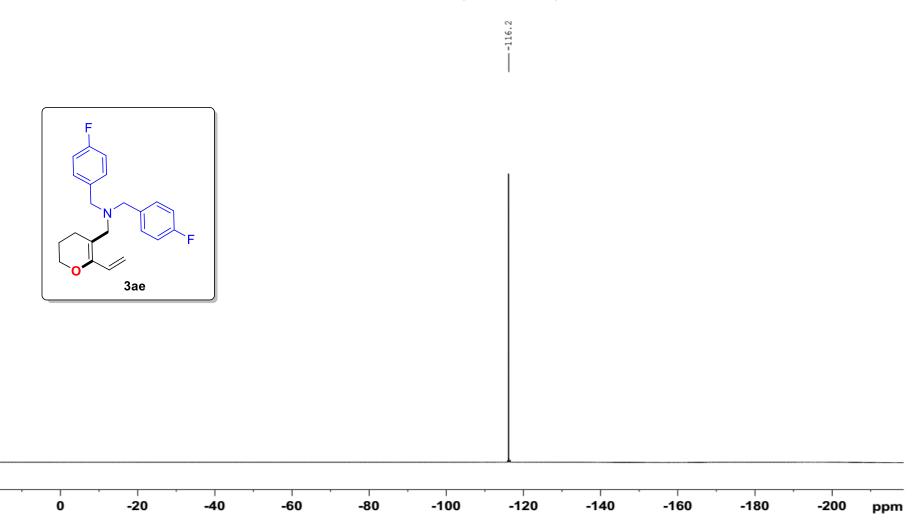

YHJ-P-3ab ¹H NMR (500MHz CDCl₃) -0.0001 $\overbrace{}^{3.9619}_{3.9519}$ 2445 2273 8515 8515 88215 88289 88289 65134 65134 65136 65136 65136 65136 65136 65136 1837 1708 1578 8480 8353 8353 8143 8014 4715 4674 0537 0537 0537 0537 0318 0318 0318 --3.4074 5054 Ŀ. VV VV 50 OMe `OMe 3ab **T** • • • Т Т 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm 4.00 6.08 6.08 4.00 1:00 ē 4.03 201 2.03

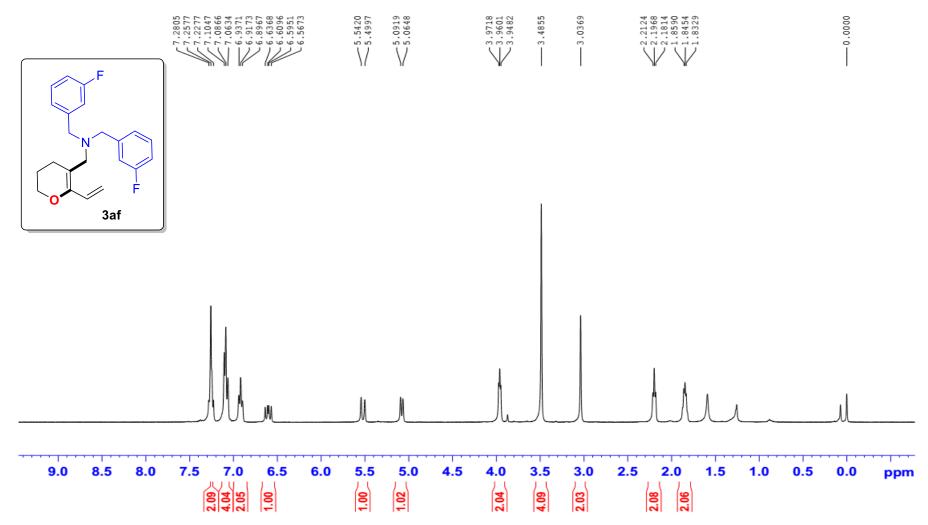


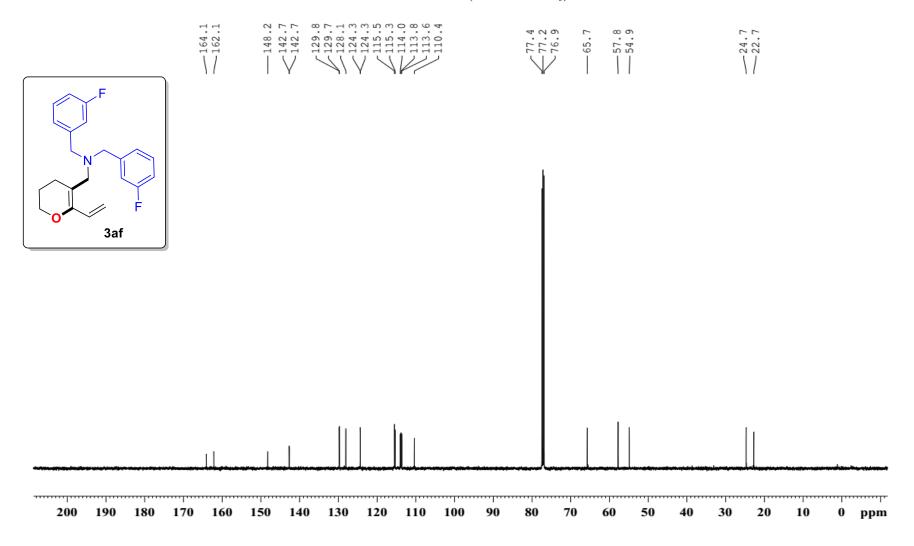

S100

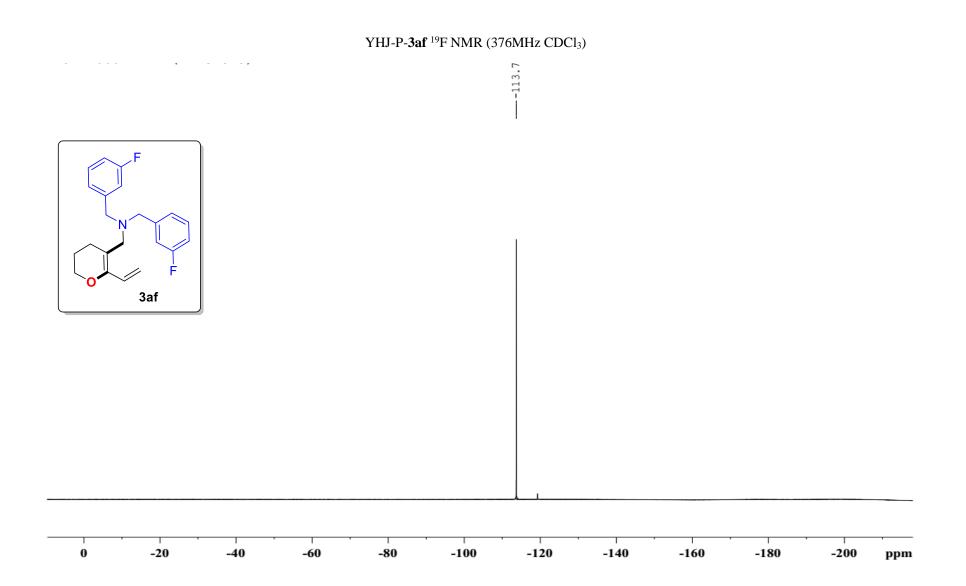


YHJ-P-**3ad** ¹³C NMR (100MHz CDCl₃)

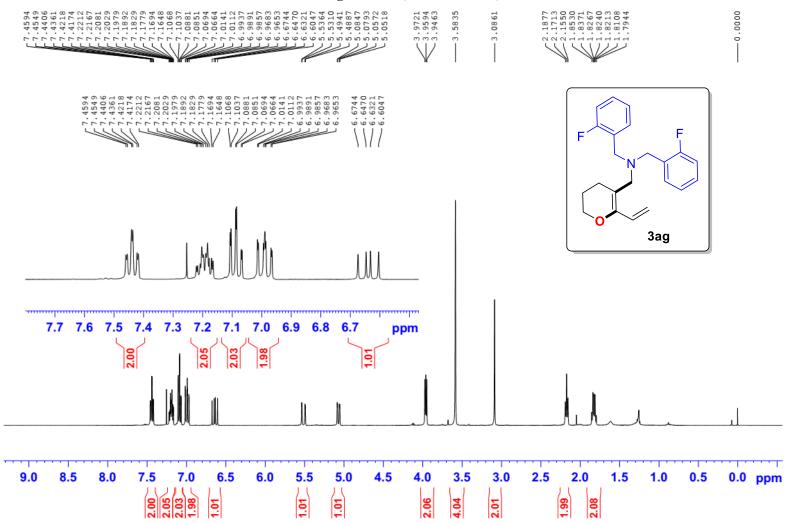

YHJ-P-**3ae** ¹H NMR (400MHz CDCl₃)


YHJ-P-3ae ¹³C NMR (100MHz CDCl₃)

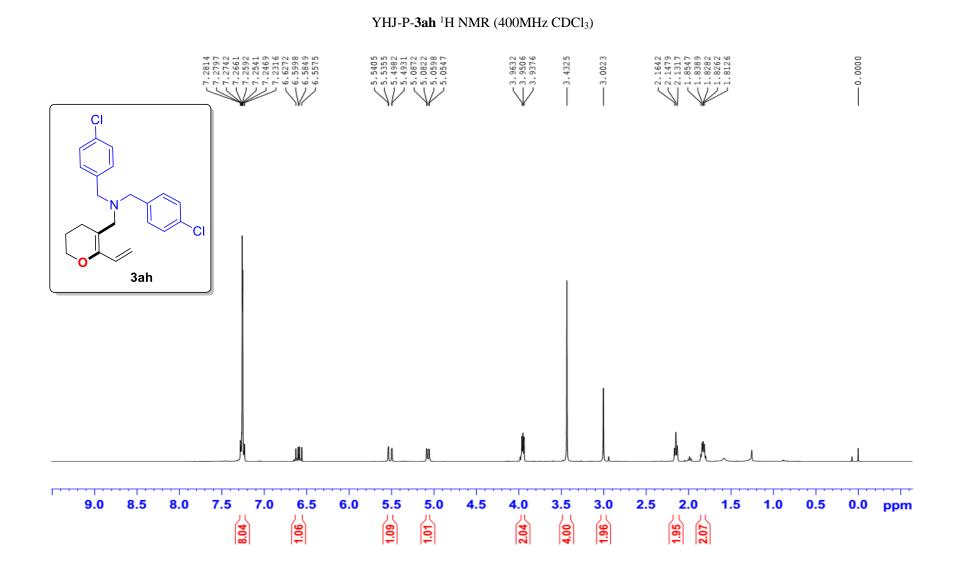

YHJ-P-3ae ¹⁹F NMR (376MHz CDCl₃)

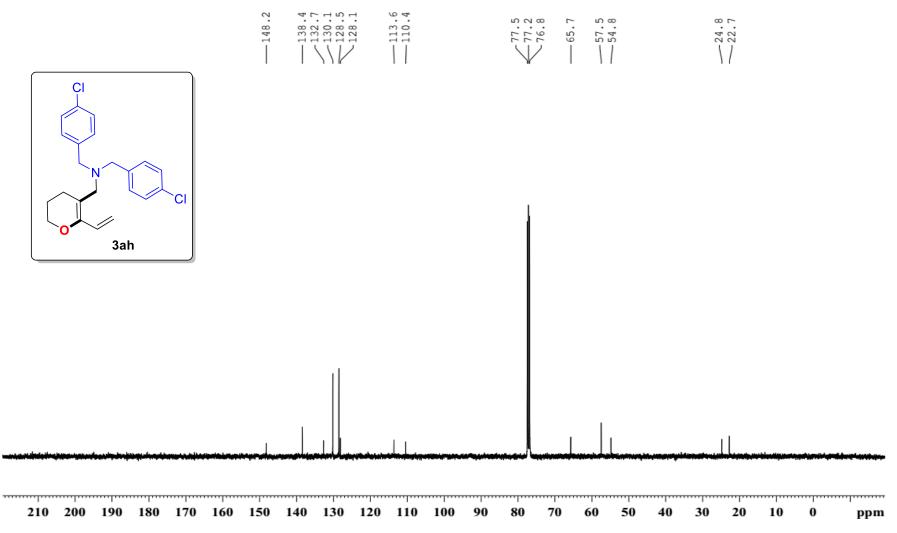


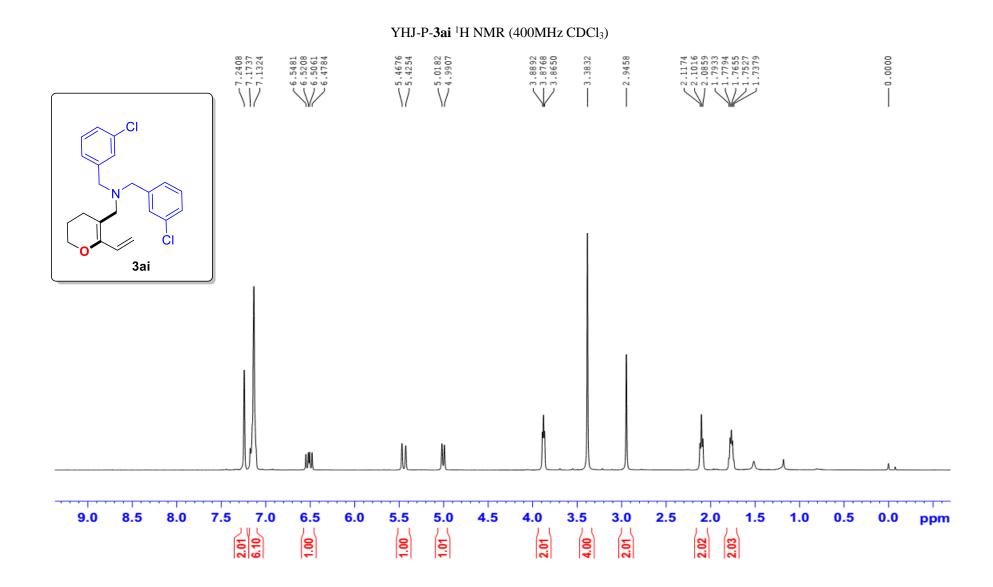
YHJ-P-**3af** ¹H NMR (400MHz CDCl₃)

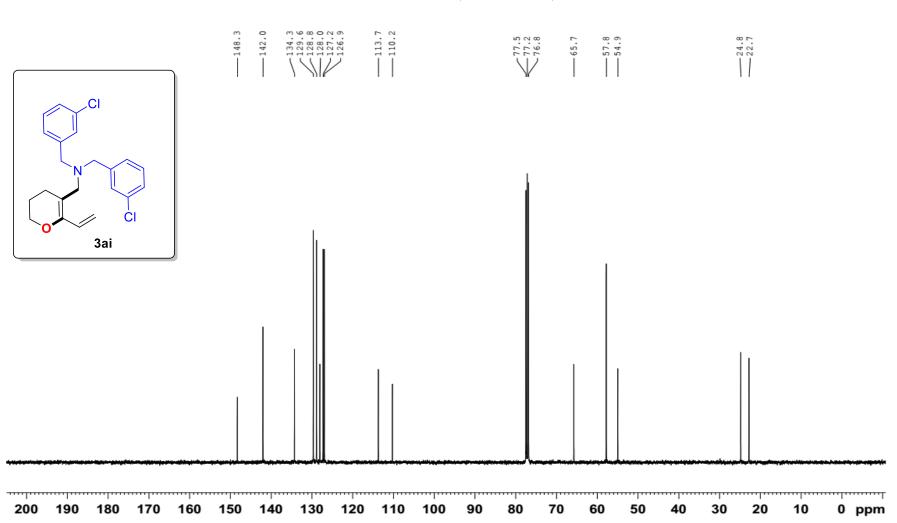


YHJ-P-3af ¹³C NMR (125MHz CDCl₃)

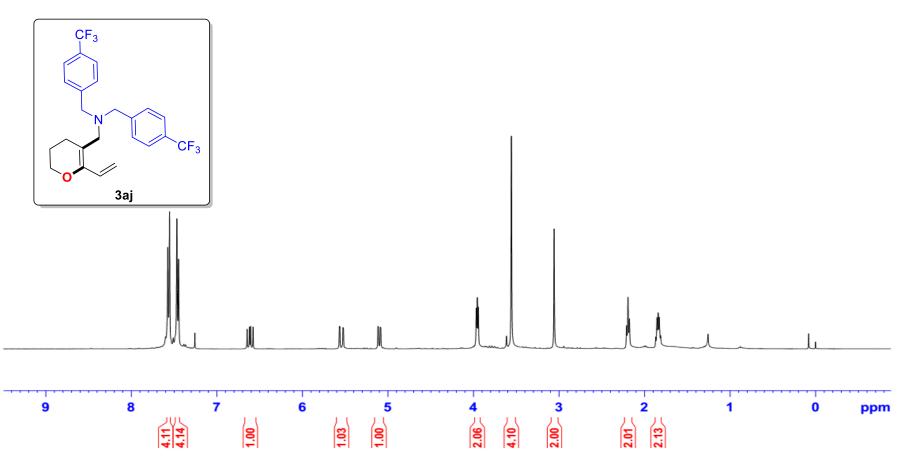

YHJ-P-3ag ¹H NMR (400MHz CDCl₃)

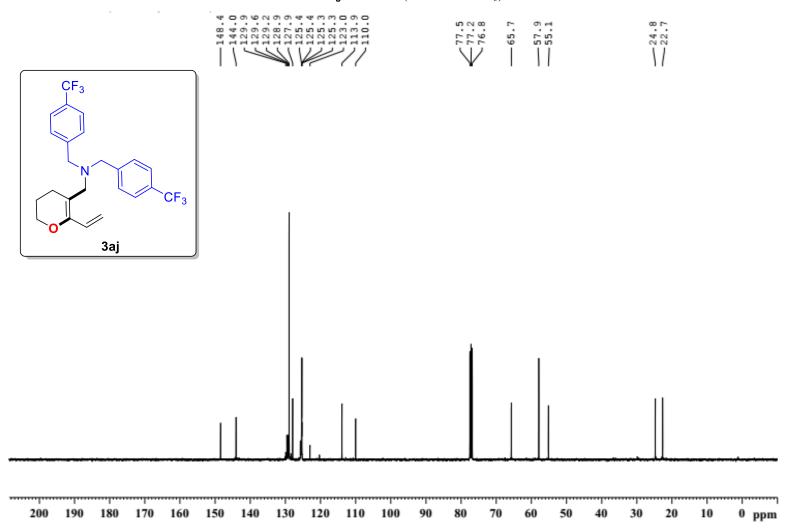

131.2 131.1 131.1 128.5 -162.8-160.3-148.0 $< 55.0 \\ 50.7 \\ 50.7 \\ 50.7 \\$ _____24.5 _____22.8 $\frac{77.5}{77.2}$ -65.7 F F 3ag ****** 80 200 190 180 170 160 150 140 130 120 110 100 90 70 30 20 10 0 ppm 60 50 40

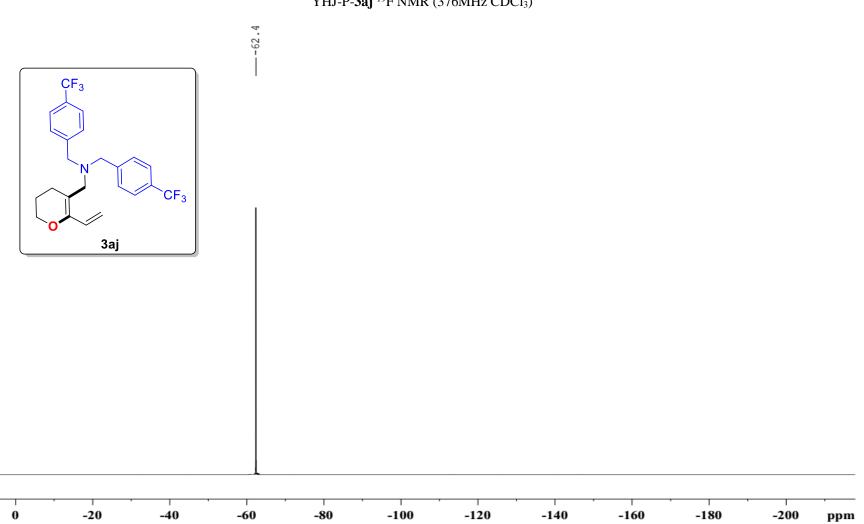

YHJ-P-3ag ¹³C NMR (100MHz CDCl₃)


YHJ-P-3ag¹⁹F NMR (376MHz CDCl₃) F F 3ag -60 0 -20 -140 -80 -100 -180 -120 -160 -200 -40 ppm

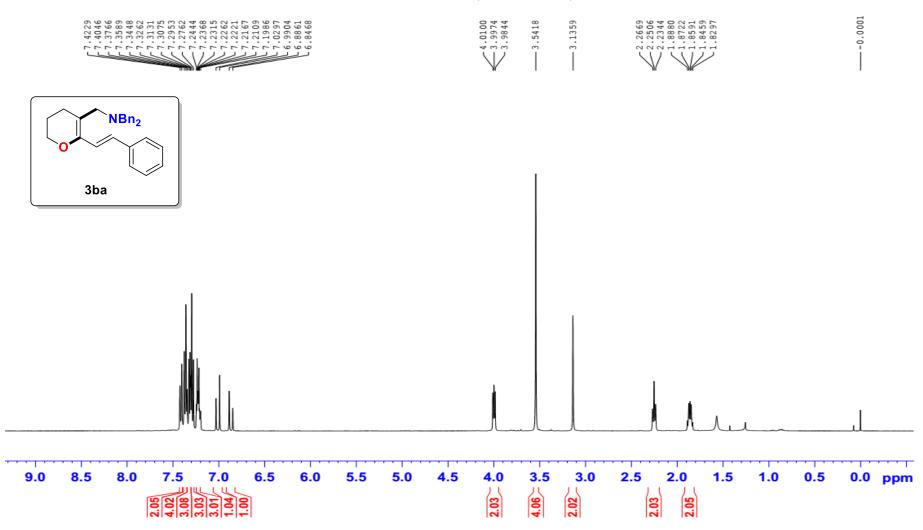
YHJ-P-3ah ¹³C NMR (100MHz CDCl₃)

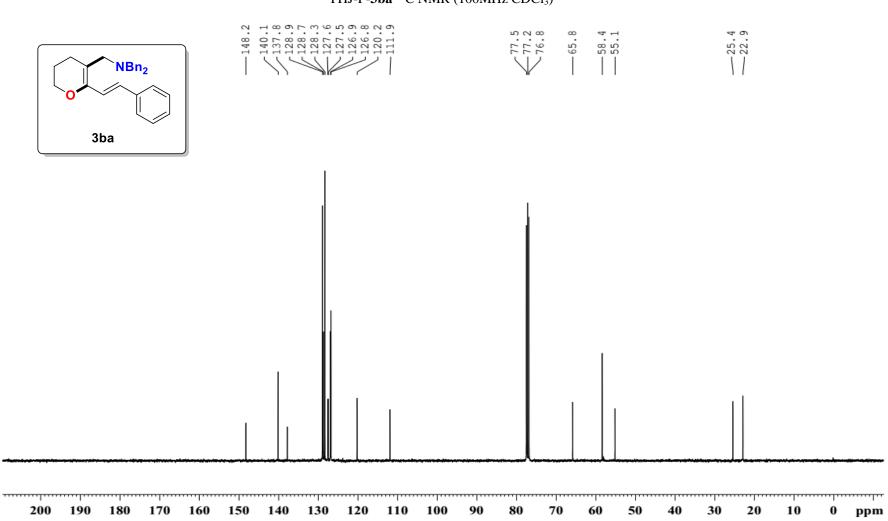



YHJ-P-3ai ¹³C NMR (125MHz CDCl₃)

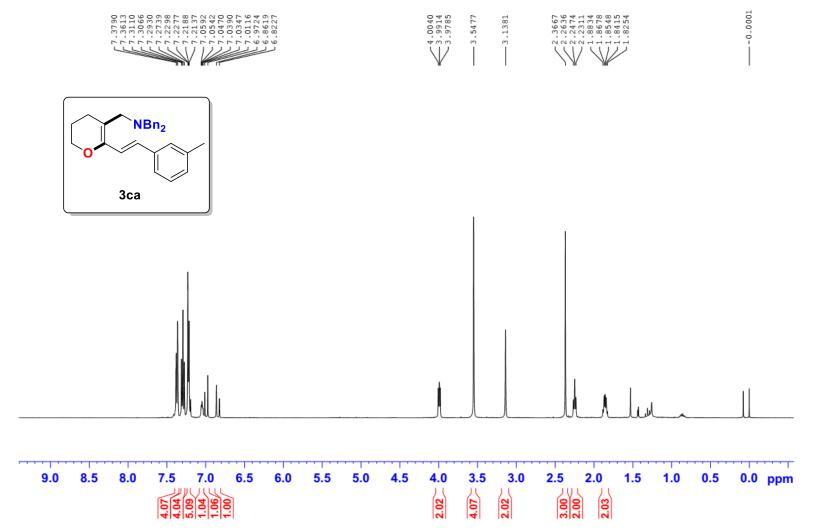

YHJ-P-**3aj** ¹H NMR (400MHz CDCl₃)

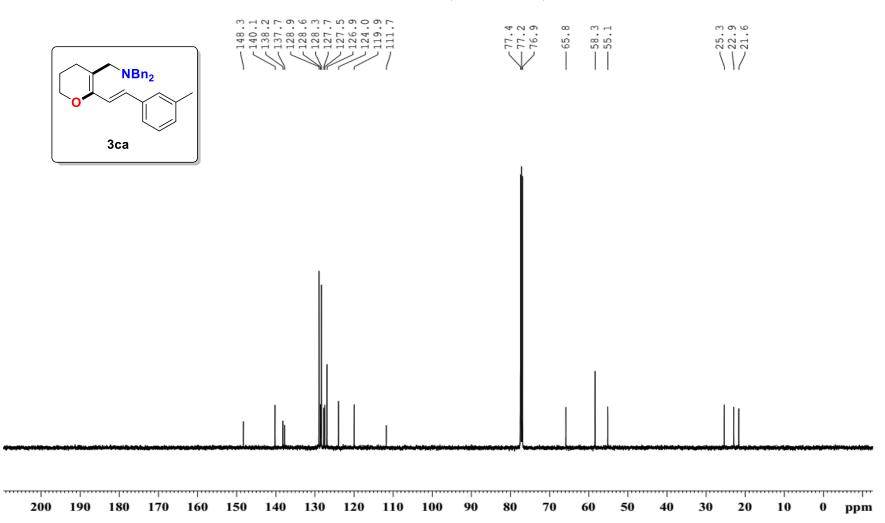
7.5732 7.5529 7.4674 7.4473	6.6458 6.6183 6.6035 6.5761	5.5668 5.55246 5.52468 5.1155 5.03113 5.0338	3.9546 3.9546 3.9417	3.5560	3.0563	2.2086 2.1925 2.1763 2.1763 2.1763 1.8587 1.8587 1.8268 1.8268 1.8107	0003
VV	\searrow	VV VV	\forall				


YHJ-P-3aj ¹³C NMR (100MHz CDCl₃)

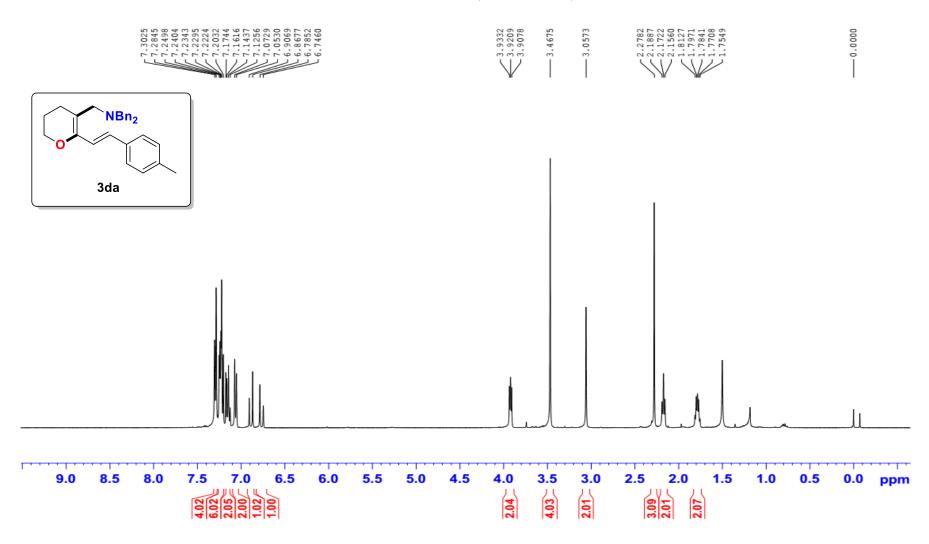


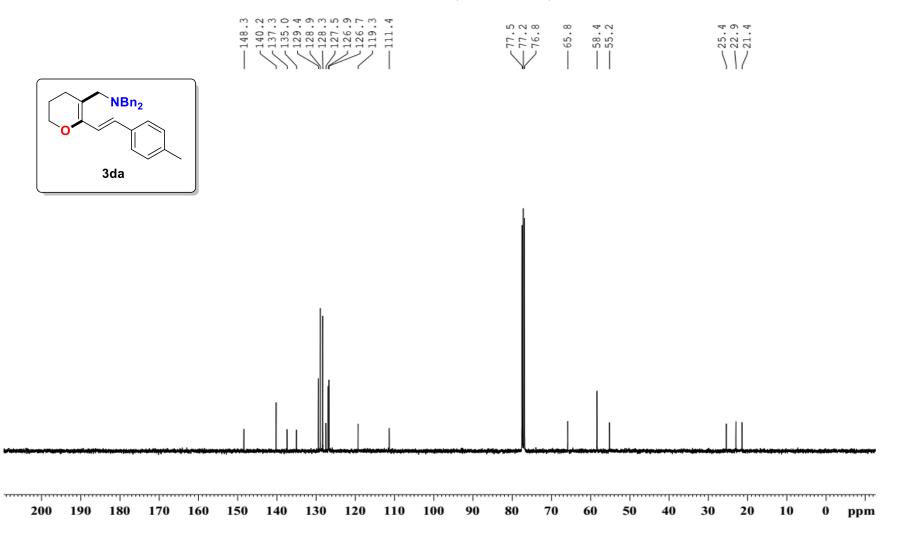
YHJ-P-**3aj** ¹⁹F NMR (376MHz CDCl₃)

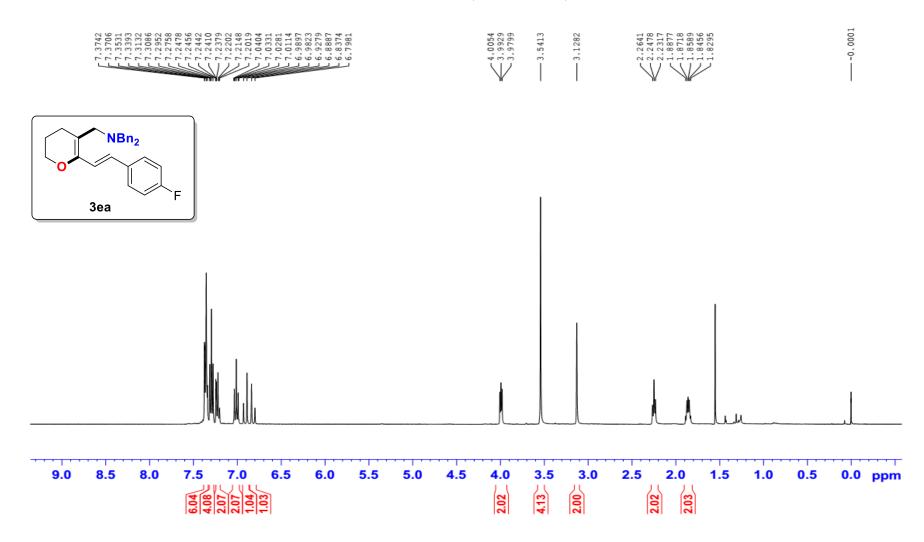

YHJ-P-**3ba** ¹H NMR (400MHz CDCl₃)



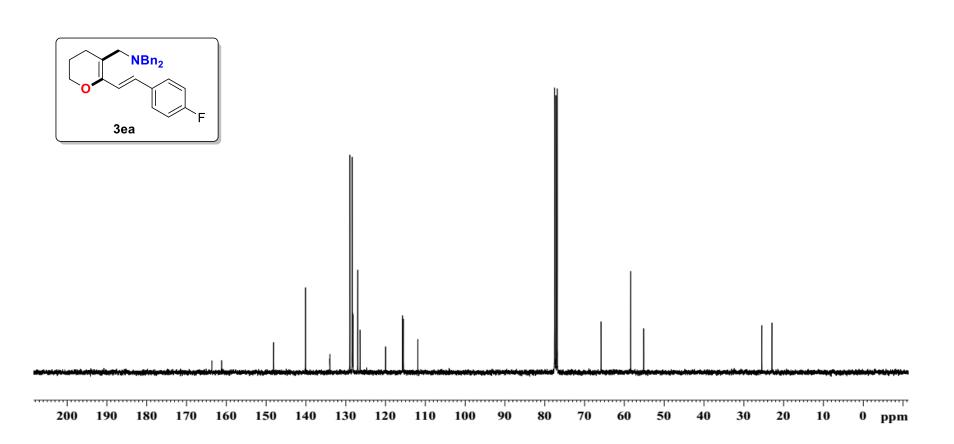
YHJ-P-3ba ¹³C NMR (100MHz CDCl₃)

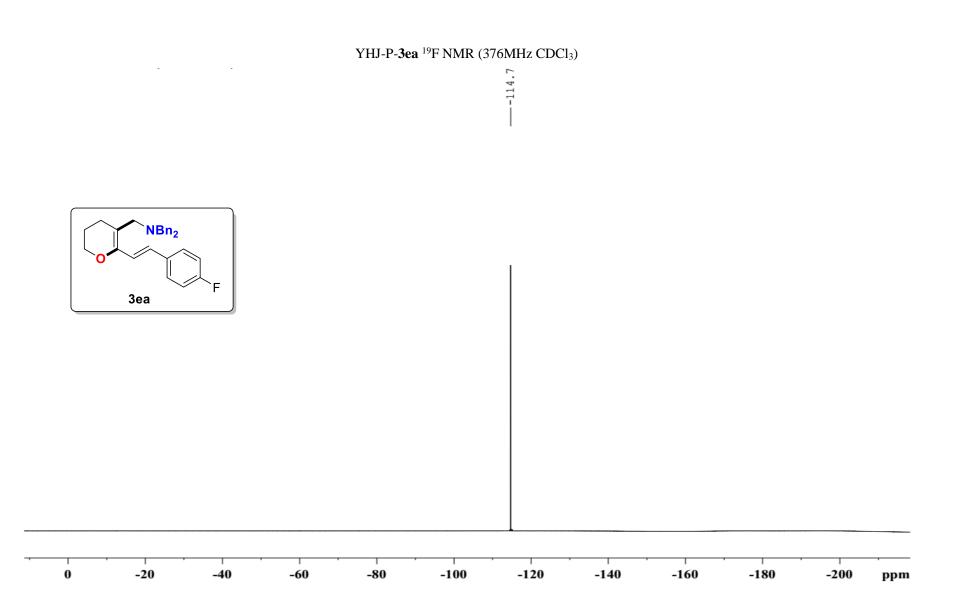

YHJ-P-3ca¹H NMR (400MHz CDCl₃)

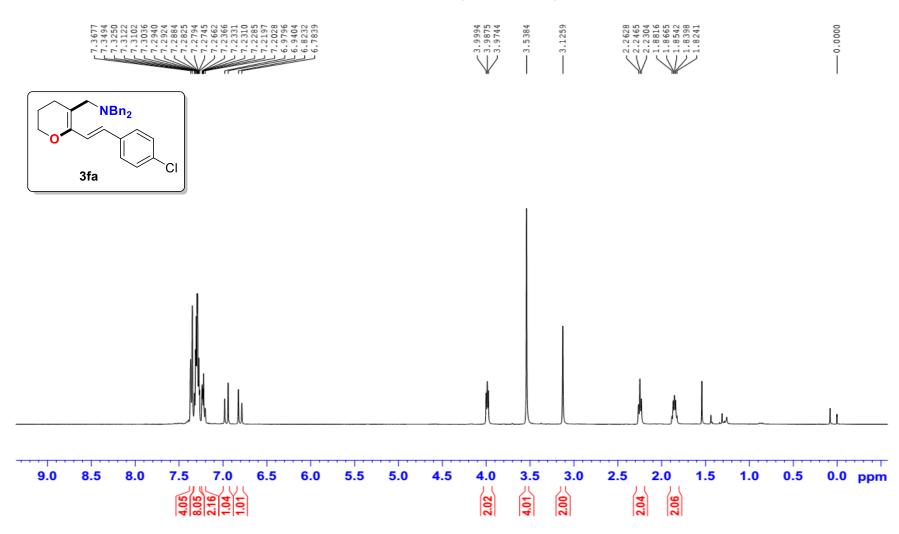

YHJ-P-3ca ¹³C NMR (125MHz CDCl₃)


YHJ-P-3da ¹H NMR (400MHz CDCl₃)

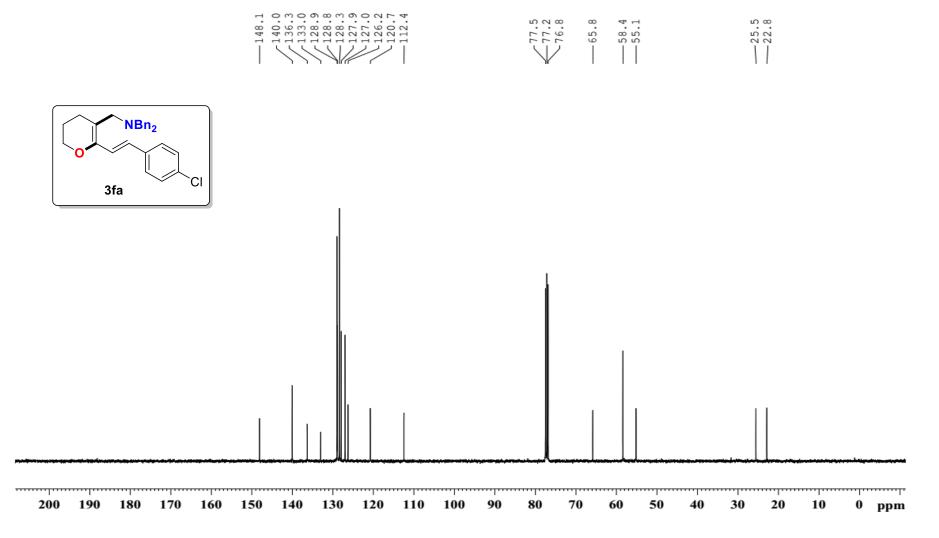
YHJ-P-3da ¹³C NMR (100MHz CDCl₃)

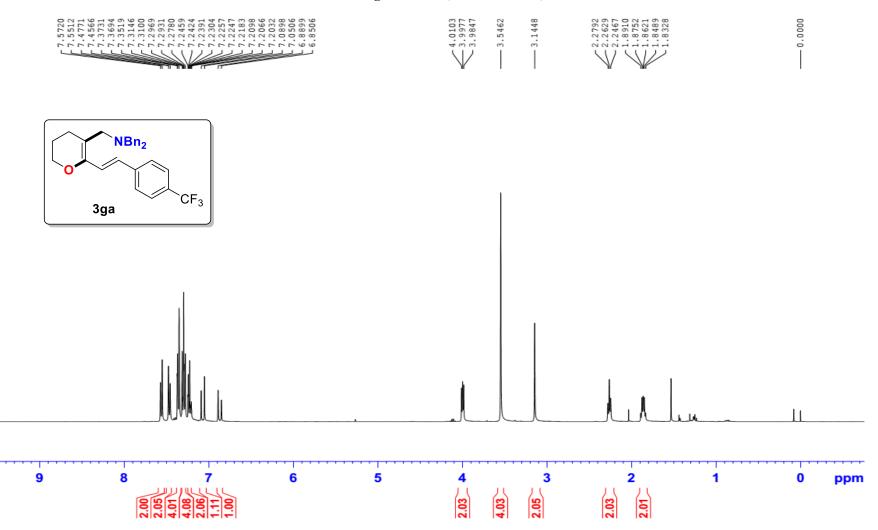


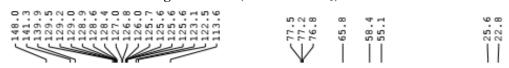

YHJ-P-3ea ¹H NMR (400MHz CDCl₃)

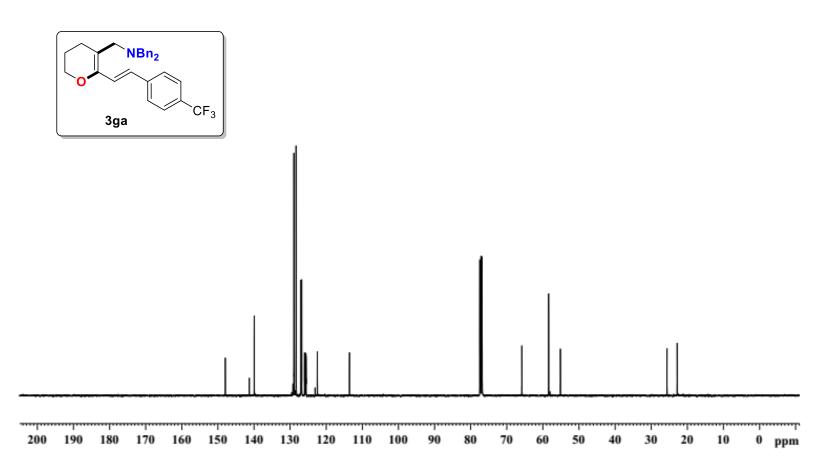

YHJ-P-3ea ¹³C NMR (100MHz CDCl₃)

19	HHO000000000000000				
		ω /2 Ω	80	1 7	ഗര
сч	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•		
00	4400000000000000	FF 9	ഹ	രഗ	5 Cl
-			9	പറ	2 2
\setminus [\vee			11

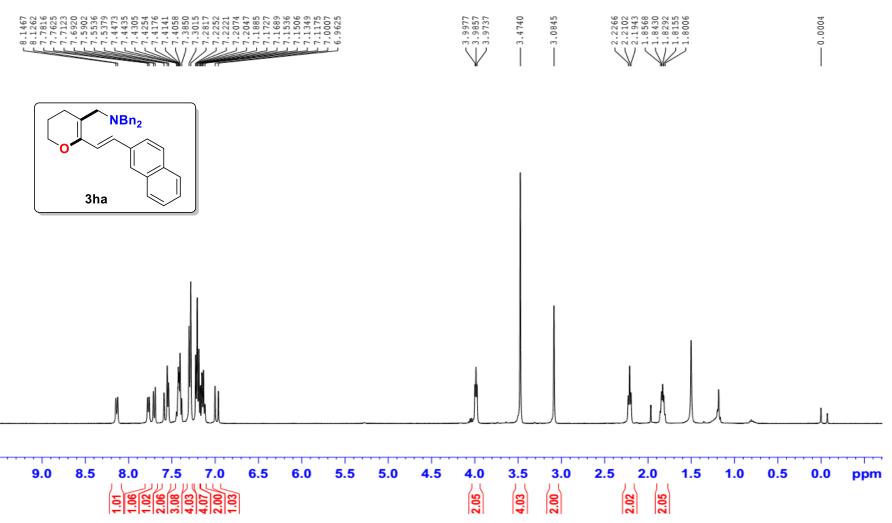


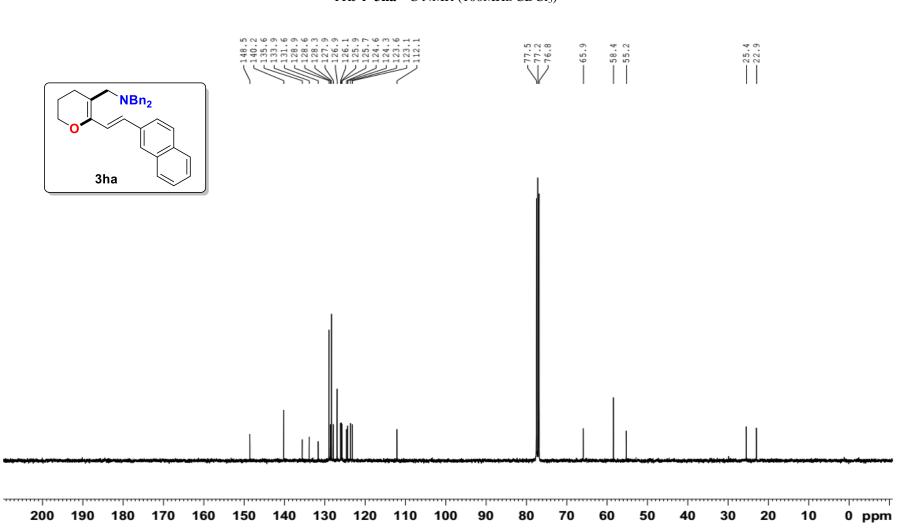

YHJ-P-3fa¹H NMR (400MHz CDCl₃)

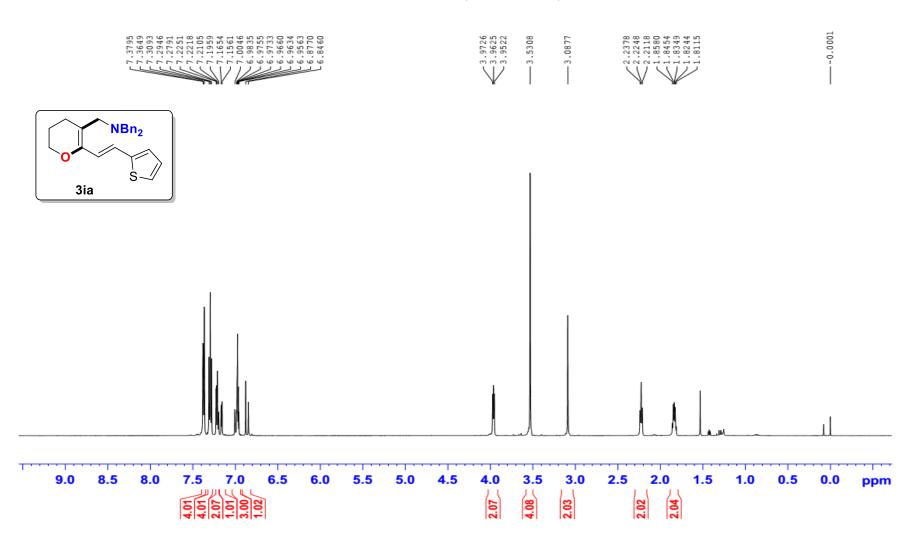

YHJ-P-3fa ¹³C NMR (100MHz CDCl₃)

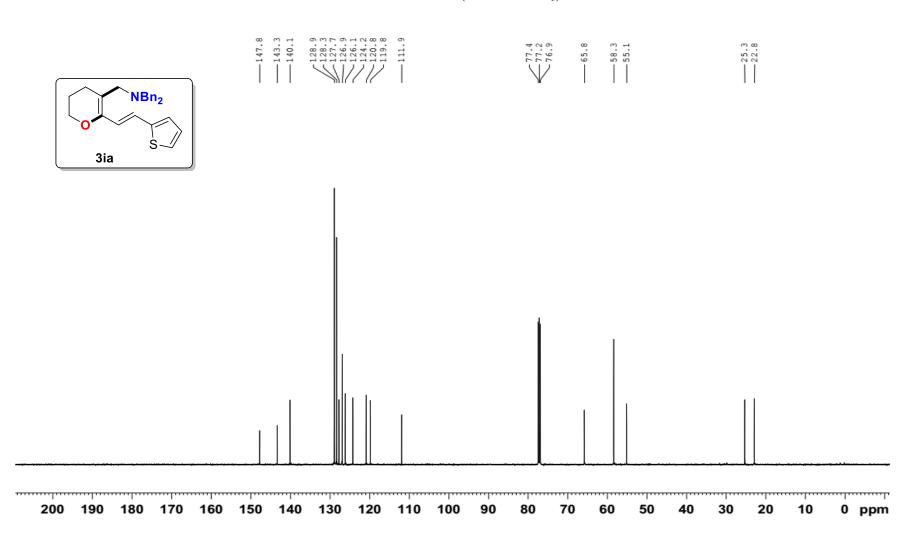


YHJ-P-3ga ¹H NMR (400MHz CDCl₃)

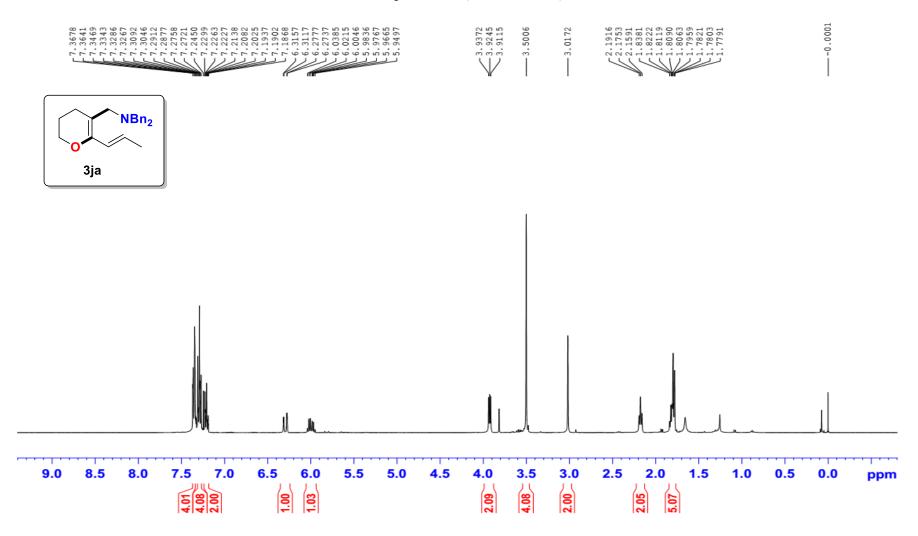

YHJ-P-3ga ¹³C NMR (100MHz CDCl₃)

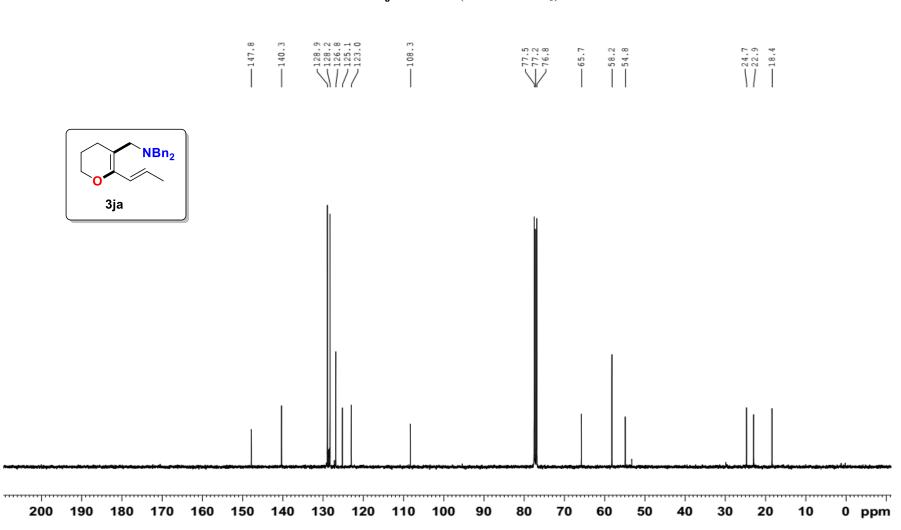



YHJ-P-3ha ¹H NMR (400MHz CDCl₃)

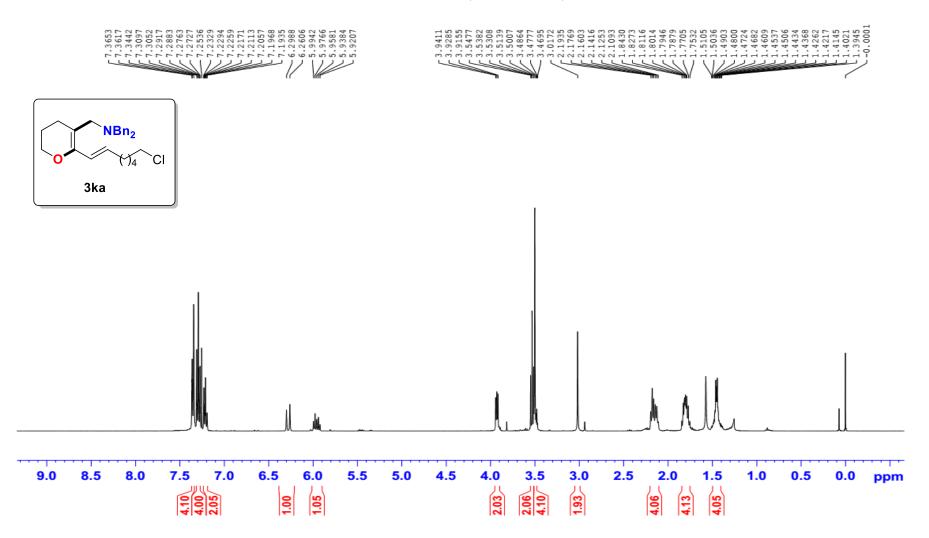


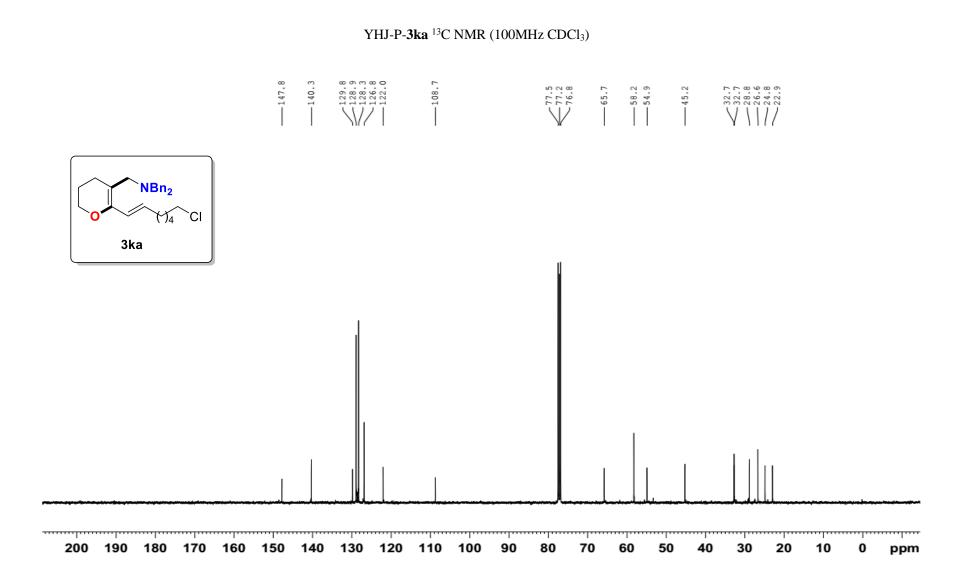
YHJ-P-**3ha** ¹³C NMR (100MHz CDCl₃)

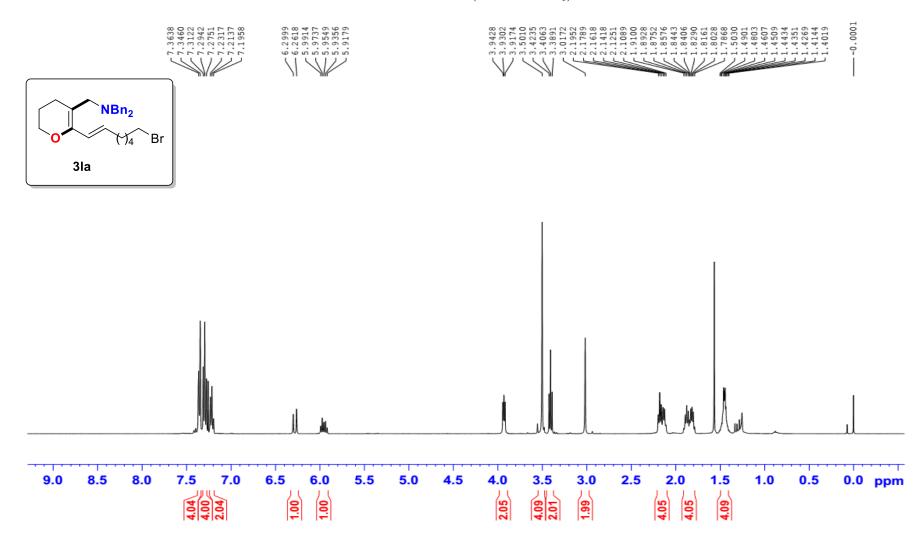

YHJ-P-**3ia** ¹H NMR (500MHz CDCl₃)



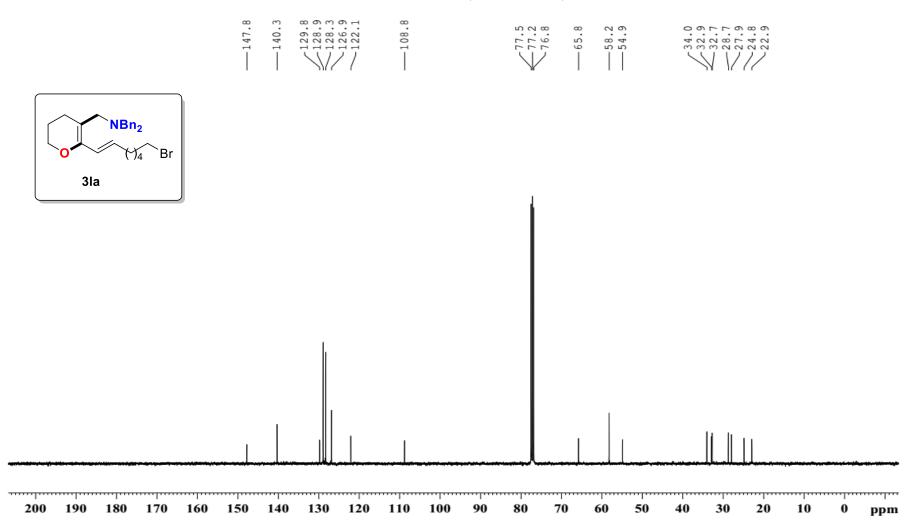
YHJ-P-**3ia** ¹³C NMR (125MHz CDCl₃)

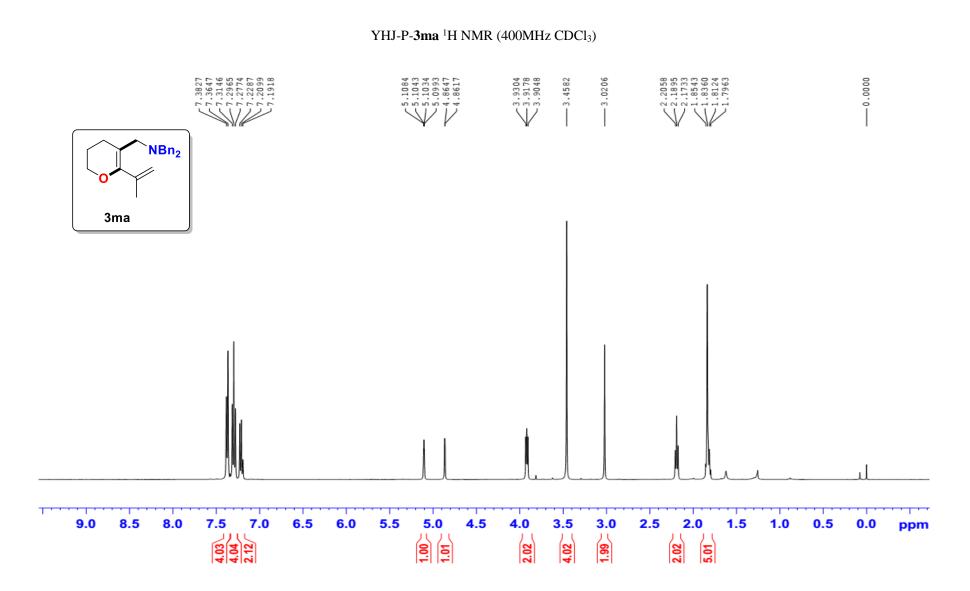

YHJ-P-**3**ja ¹H NMR (400MHz CDCl₃)

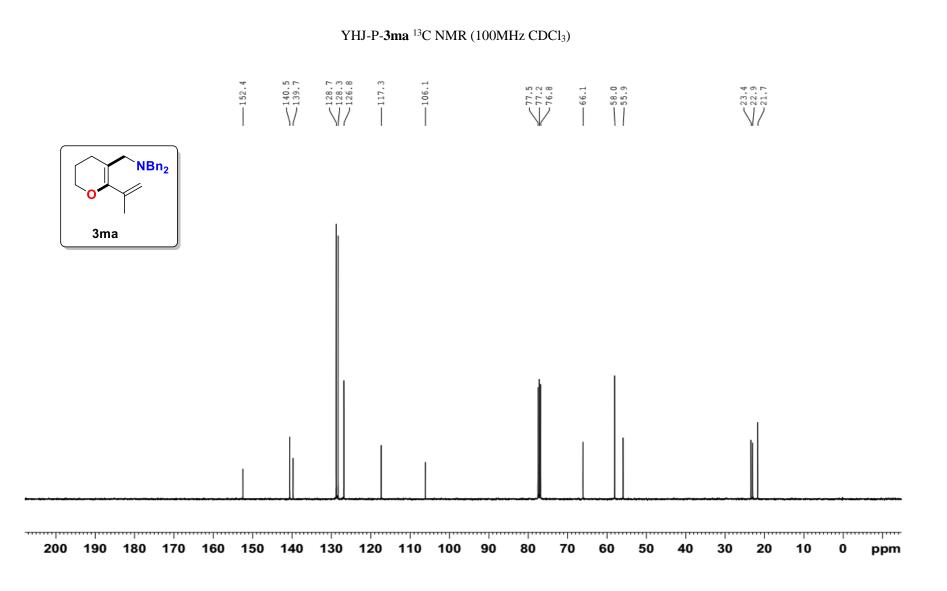


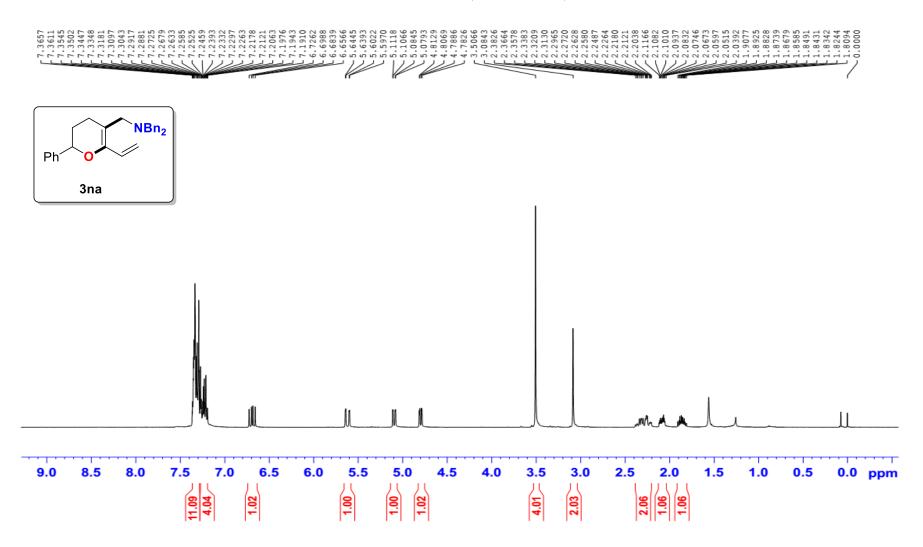

YHJ-P-3ja ¹³C NMR (100MHz CDCl₃)

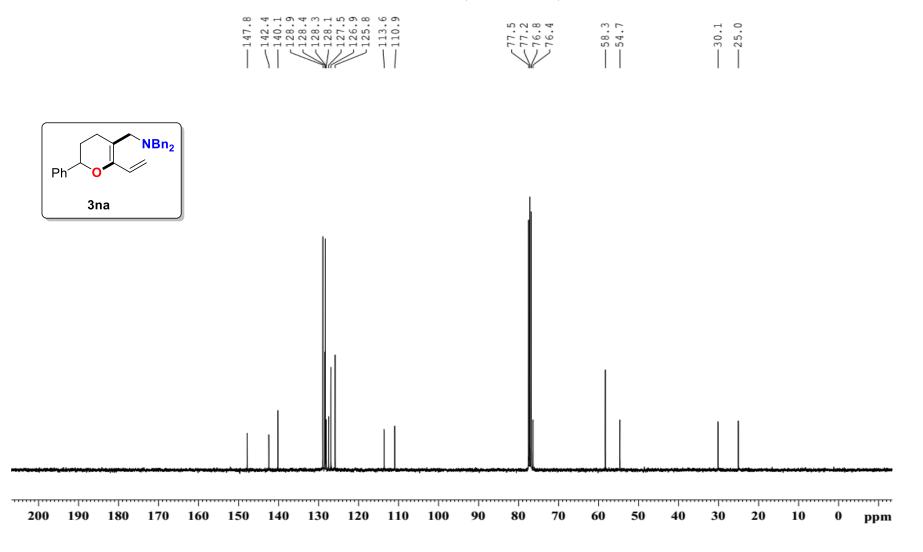
YHJ-P-3ka ¹H NMR (400MHz CDCl₃)

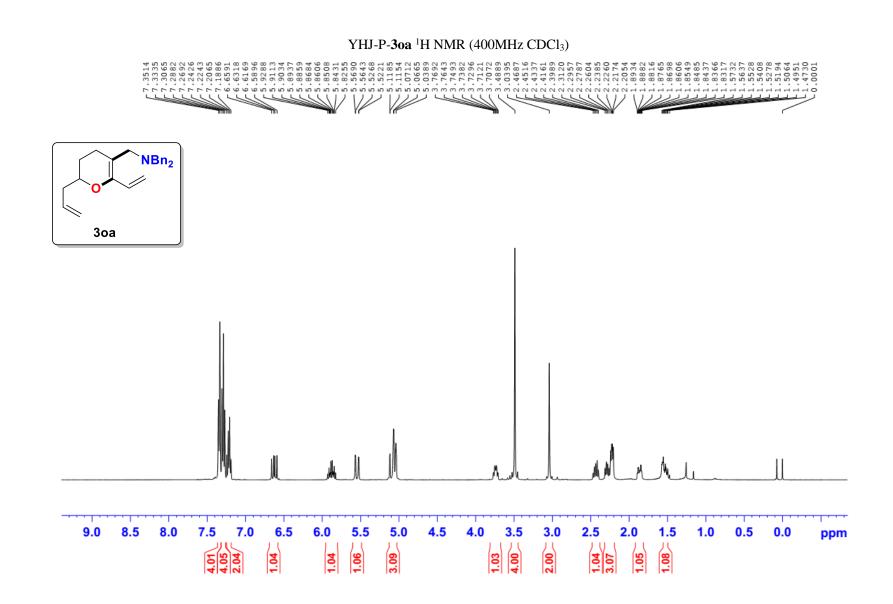




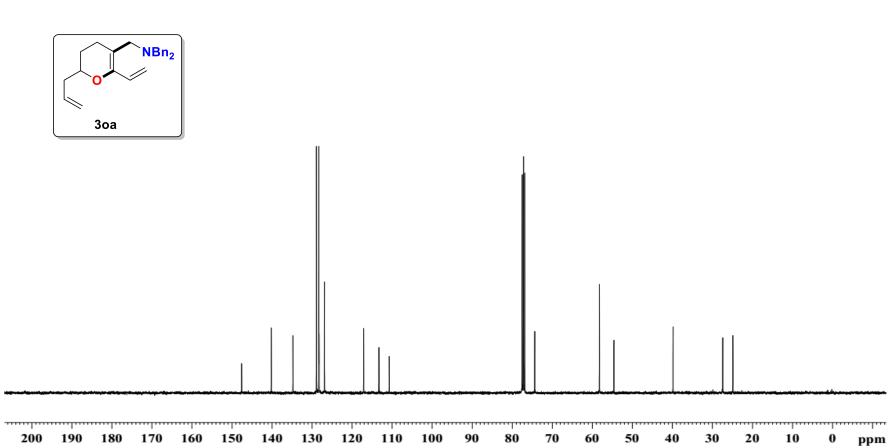

YHJ-P-3la¹H NMR (400MHz CDCl₃)


YHJ-P-3la ¹³C NMR (125MHz CDCl₃)



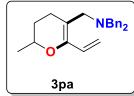


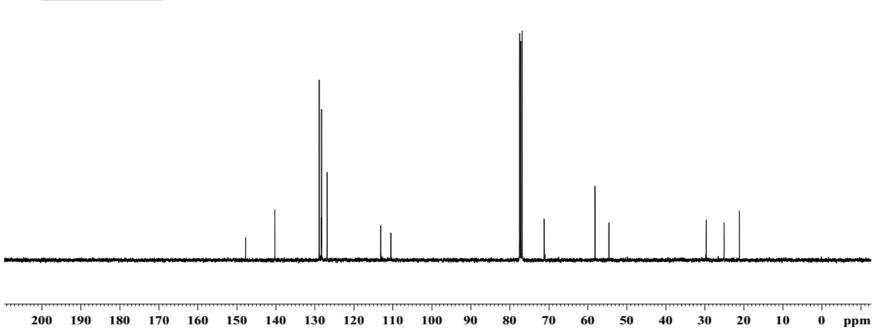
YHJ-P-3na ¹H NMR (400MHz CDCl₃)

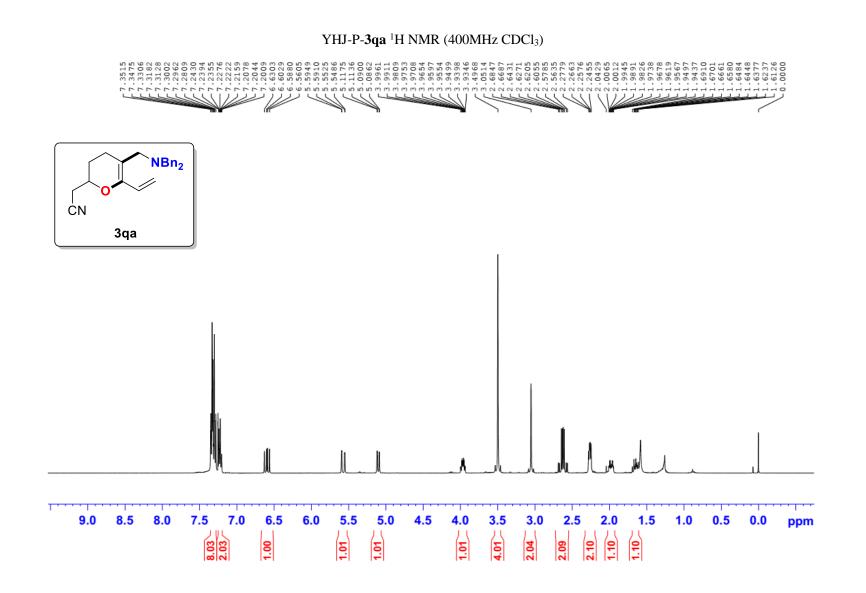


YHJ-P-3na ¹³C NMR (100MHz CDCl₃)

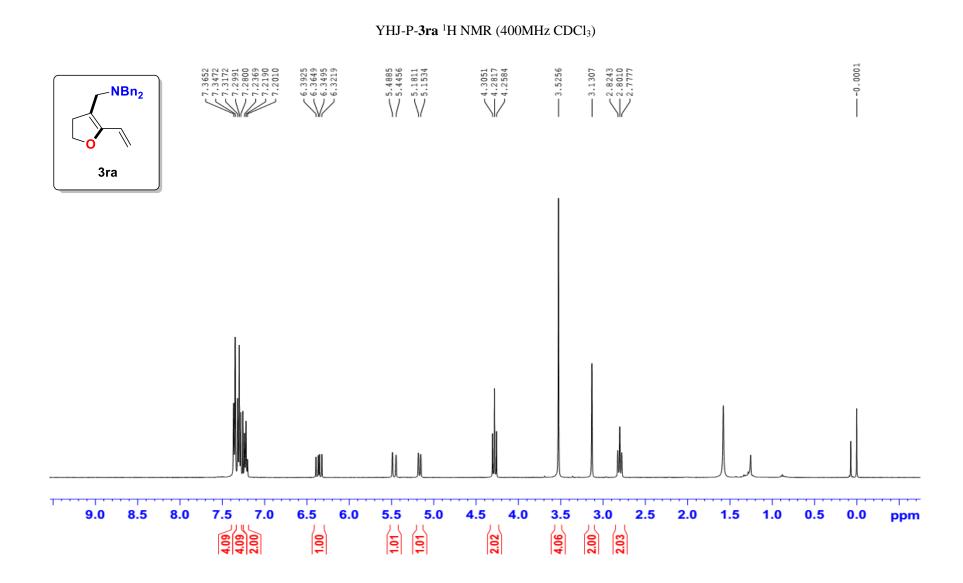
YHJ-P-30a ¹³C NMR (100MHz CDCl₃)

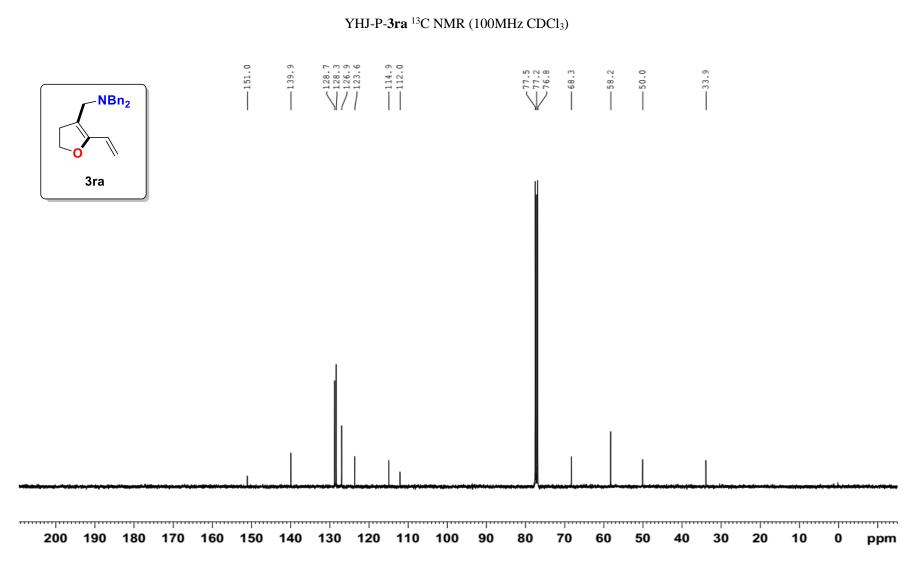

47.	34.7 28.9 28.3 28.2 26.9	17.1 13.3 10.7	77.5 77.2 16.8	54.6	8 . 68	24.9
			\bigvee	2 2	۳ ا	12

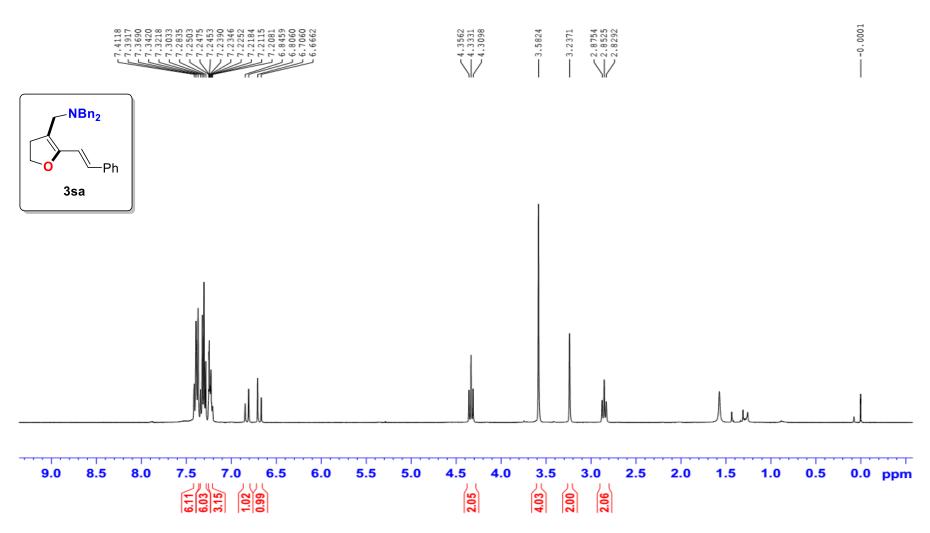



YHJ-P-3pa ¹H NMR (400MHz CDCl₃) 245 210 117 067 009 586 410 259 74 700 865 88 566 43 922 80 5 01 NBn₂ 3ра . . . · - -_ 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm 0.31 2:01 1.05 1.07 4.00 2.00 1.05 0.93 2.01

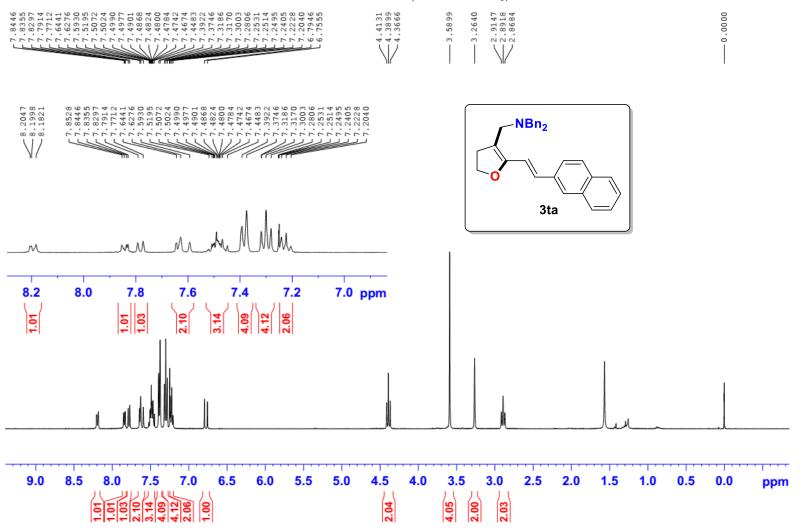
YHJ-P-**3pa** ¹³C NMR (100MHz CDCl₃)


	 140.2	128.9 128.3 128.3 128.3	113.1	$\overbrace{71.5}^{77.5}$	
۔					

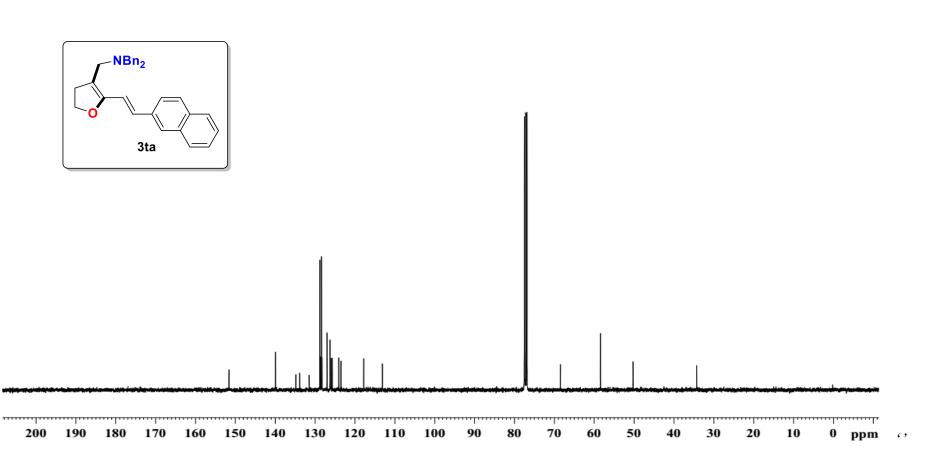




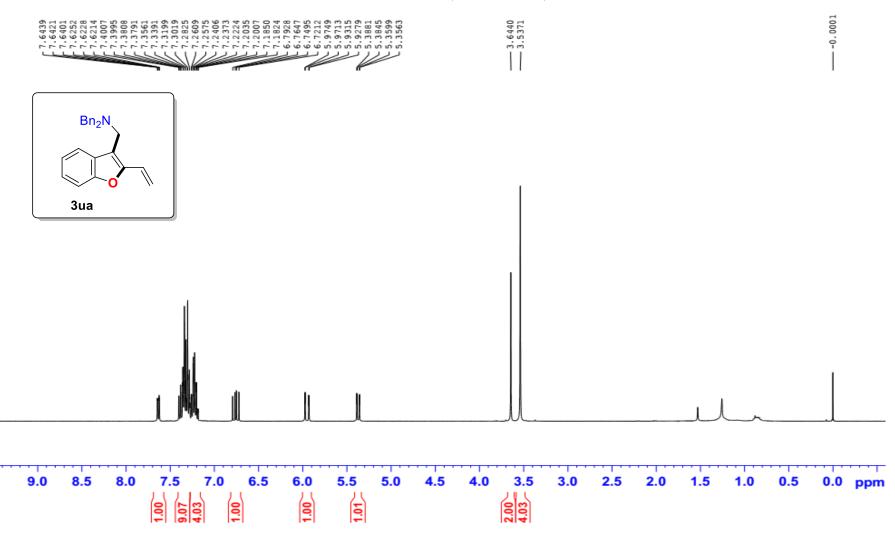
YHJ-P-3qa¹³C NMR (100MHz CDCl₃) 128.8 128.3 127.3 127.0 117.0 114.2 110.8 -146.9 -139.9 $\sum_{\substack{23.9\\23.9}}^{27.1}$ 77.5 76.8 76.8 —58.4 —54.4 NBn₂ ĊΝ 3qa 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 0 10 ppm

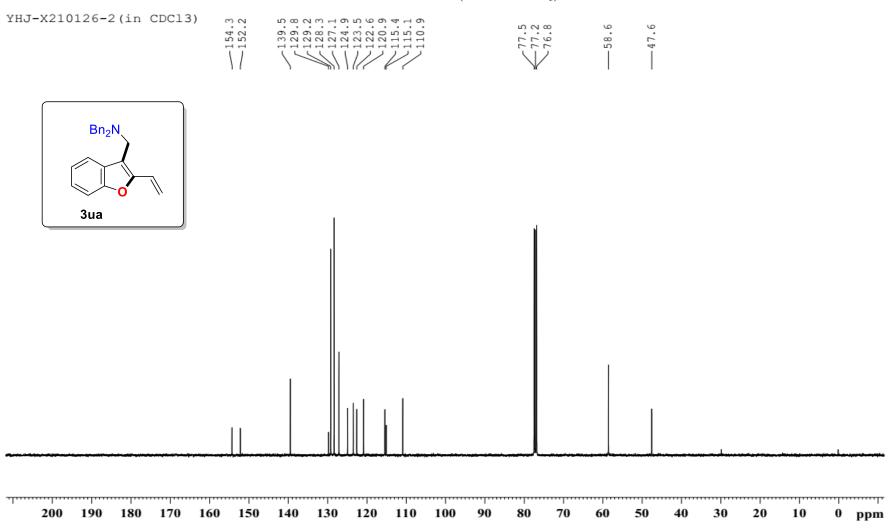


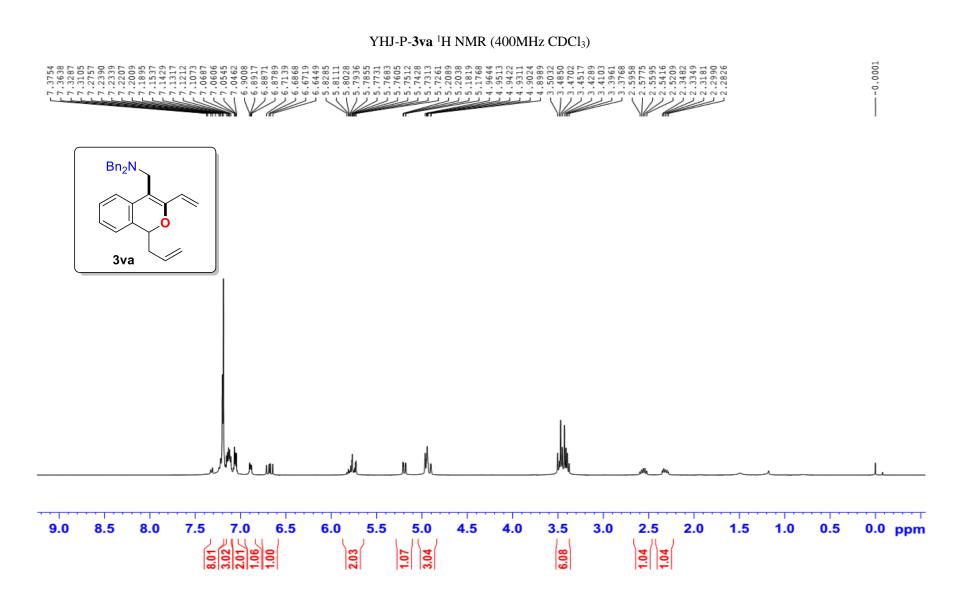
139.9 137.2 137.2 128.4 128.4 128.4 127.8 127.0 1127.0 1127.8 1127.0 1127.8 -151.3 $\overbrace{76.8}^{77.5}$ -58.3 50.1 -34.3 L -NBn₂ -Ph 3sa 200 190 180 170 160 150 140 130 120 110 100 80 70 50 90 60 40 30 20 10 0 ppm


YHJ-P-3sa ¹³C NMR (100MHz CDCl₃)

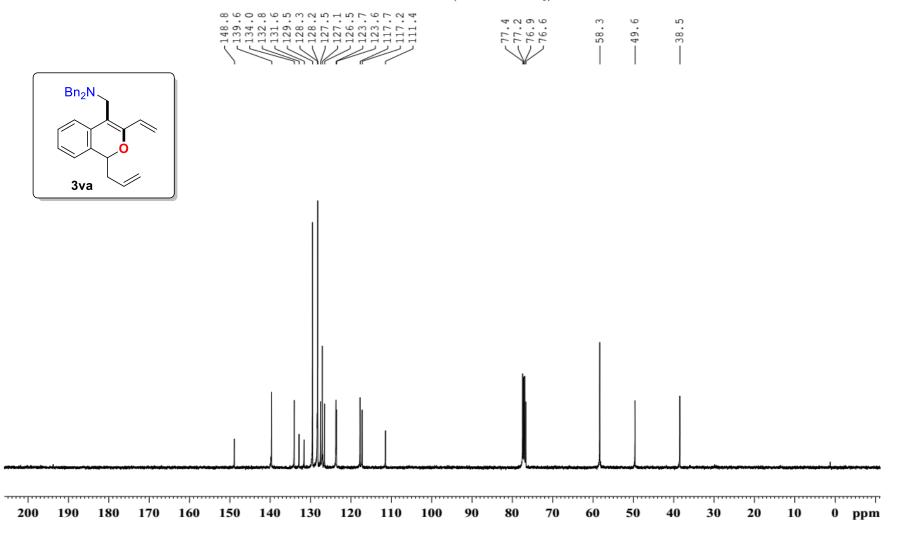
YHJ-P-3ta ¹H NMR (400MHz CDCl₃)

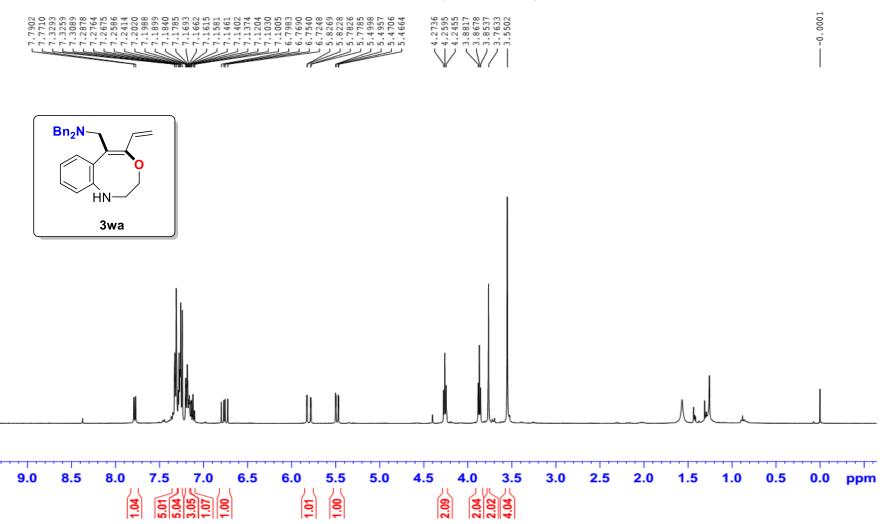


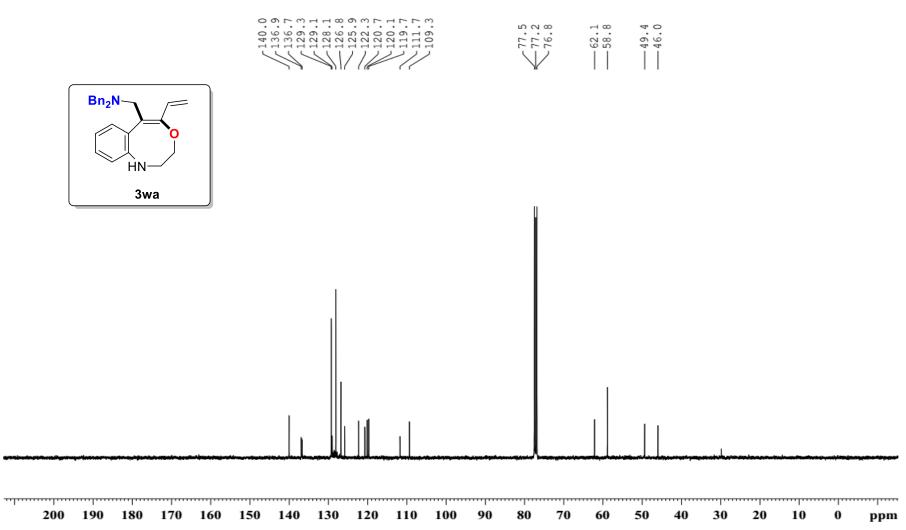

YHJ-P-3ta ¹³C NMR (125MHz CDCl₃)



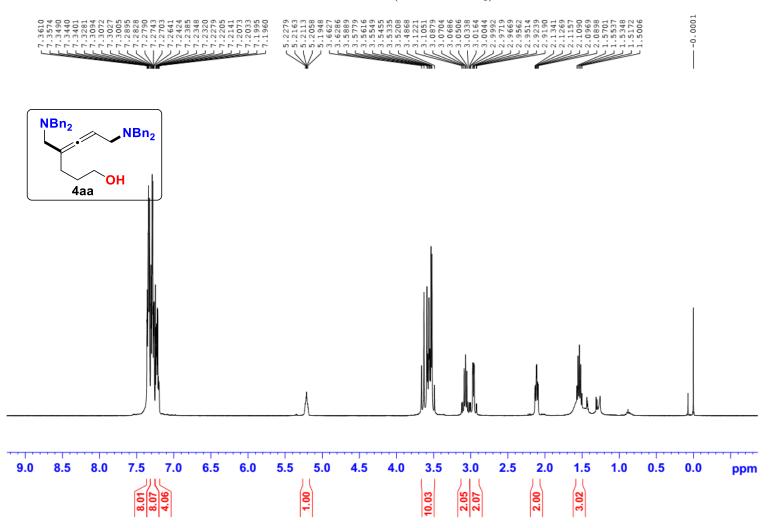
YHJ-P-3ua ¹H NMR (400MHz CDCl₃)

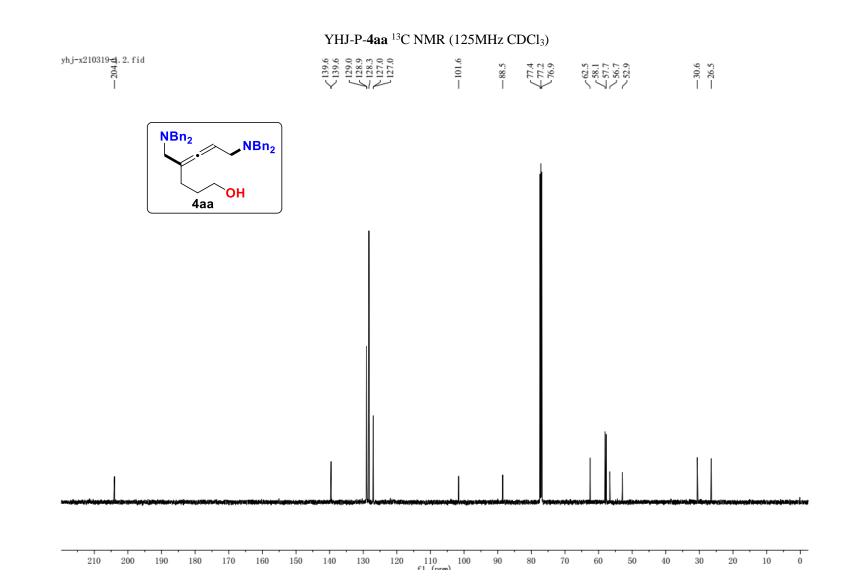


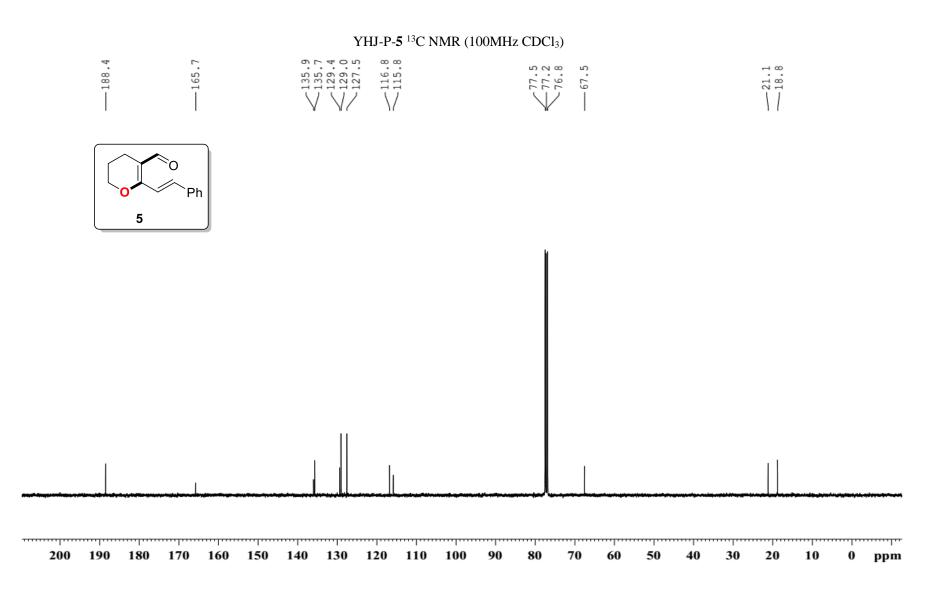

YHJ-P-3ua ¹³C NMR (100MHz CDCl₃)



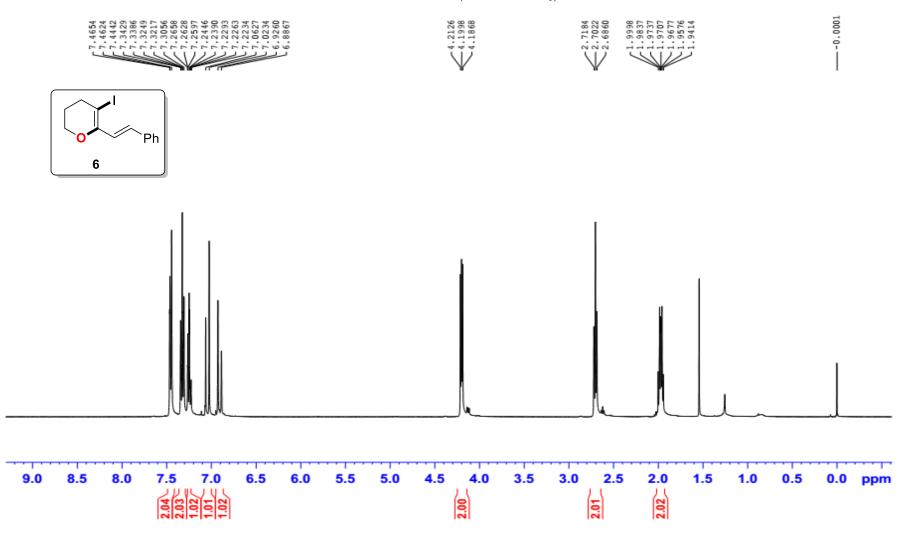
YHJ-P-3va ¹³C NMR (100MHz CDCl₃)

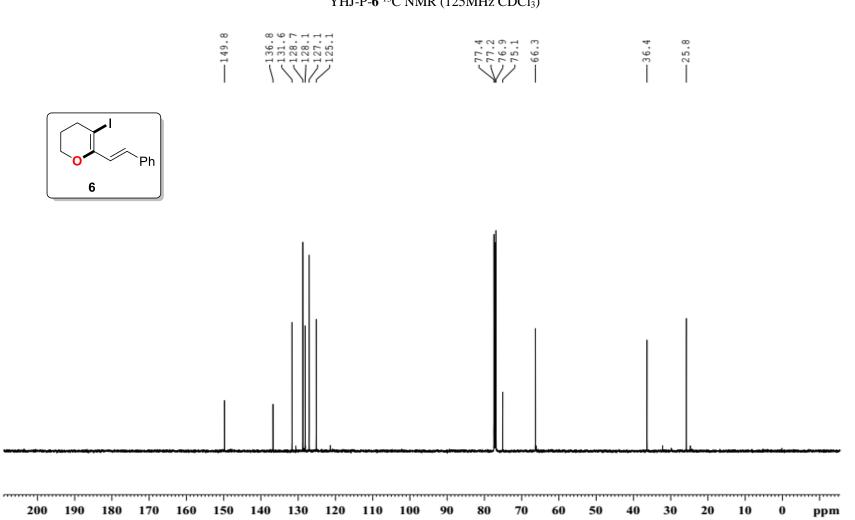

YHJ-P-3wa ¹H NMR (400MHz CDCl₃)




YHJ-P-3wa ¹³C NMR (125MHz CDCl₃)

YHJ-P-4aa ¹H NMR (400MHz CDCl₃)





YHJ-P-5¹H NMR (400MHz CDCl₃) -0.0001 4.2443 4.2315 4.2185 5085 89 555 2 ~ ~ °0 `Ph 5 10 8 ż -2.06 人 2.06 3 9 6 5 4 1 0 ppm 2:09 **5**09 507

YHJ-P-6¹H NMR (400MHz CDCl₃)

YHJ-P-6¹³C NMR (125MHz CDCl₃)