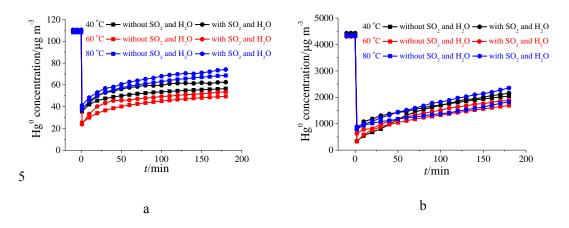
Supporting Information

Different design strategies of metal sulfide sorbents to capture low concentrations of gaseous Hg⁰ in coal-fired flue gas and high concentrations of gaseous Hg⁰ in smelting flue gas

Chang Wang, Jian Mei, Qianqian Hong, Fangtian Xie, Zhen Ding, Chen Ma, Shijian Yang* School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, P. R. China


Corresponding Author:

* School of Environment and Civil Engineering, Jiangnan University. Telephone: 86-18-066068302; E-mail: yangshijiangsq@163.com.

Content including: five pages, one table and three figures.

Hg ⁰ concentration		40 °C	60 °C	80 °C
4300 μg m ⁻³	without H ₂ O and SO ₂	15.7	16.8	16.0
	with H_2O and SO_2	14.9	15.6	14.2
110 μg m ⁻³	without H ₂ O and SO ₂	5.25	5.96	4.31
	with H_2O and SO_2	4.68	5.52	4.05

Table S1 The amounts of Hg^0 captured by sulfureted Mo/FeTiO_x/mg g⁻¹

Figure S1 (a), Effect of H₂O and SO₂ on the adsorption of low concentrations of gaseous Hg⁰ onto sulfureted Mo/FeTiO_x. Reaction conditions: sorbent mass = 5 mg, total flow rate = 500 mL min⁻¹, MHSV = 6,000,000 cm³ g⁻¹ h⁻¹, $[O_2] = 5\%$ (when used), $[H_2O] = 8\%$ (when used), and $[SO_2] = 80$ ppm (when used);

(b), Effect of H₂O and SO₂ on the adsorption of high concentrations of gaseous Hg⁰ onto sulfureted Mo/FeTiO_x. Reaction conditions: [Hg⁰] = 4300 μ g m⁻³, sorbent mass = 10 mg, total flow rate = 300 mL min⁻¹, MHSV = 1,800,000 cm³ g⁻¹ h⁻¹, [O₂] = 7% (when used), [H₂O] = 8% (when used), and [SO₂] = 1% (when used).

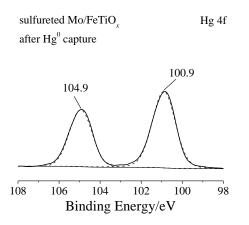
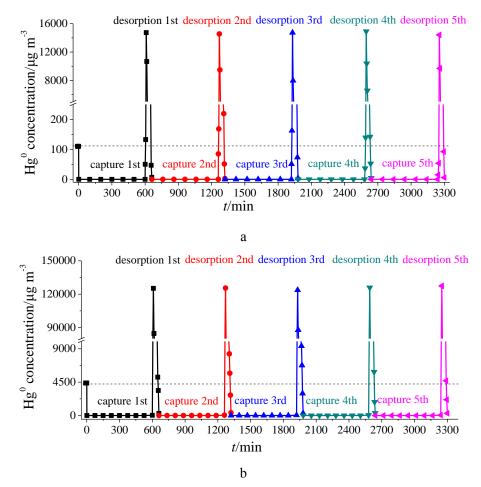



Figure S2 XPS spectra for sulfureted Mo/FeTiO_x after Hg^0 capture in Hg 4f spectral region

Figure S3 (a), Five cycles of the enrichment of gaseous Hg^0 in CFG using reproducible sulfureted Mo/FeTiO_x. Operating conditions of Hg^0 capture: adsorption temperature = 60 °C, $[Hg^0] = 110 \ \mu g$ m⁻³, $[O_2] = 5\%$, $[H_2O] = 8\%$, $[SO_2] = 80$ ppm, sorbent mass = 50 mg, total flow rate = 500 mL min⁻¹, and MHSV = 6.0×10^5 cm³ g⁻¹ h⁻¹; Operating conditions of Hg⁰ desorption: desorption temperature = 400 °C, total flow rate of air = 100 mL min⁻¹, and MHSV = 1.2×10^5 cm³ g⁻¹ h⁻¹.

(b), Five cycles of the enrichment of gaseous Hg⁰ in SFG using reproducible sulfureted Mo/FeTiO_x. Operating conditions of Hg⁰ capture: adsorption temperature = 60 °C, $[Hg^0] = 4300 \ \mu g \ m^{-3}$, $[O_2] = 7\%$, $[H_2O] = 8\%$, $[SO_2] = 1\%$, sorbent mass = 150 mg, total flow rate = 300 mL min⁻¹, and MHSV = $1.2 \times 10^5 \ cm^3 \ g^{-1} \ h^{-1}$. Operating conditions of Hg⁰ desorption: desorption temperature = 400 °C and total flow rate of air =100 mL min⁻¹, and MHSV = $4.0 \times 10^4 \ cm^3 \ g^{-1} \ h^{-1}$.