SupportingInformation:Laser-scribingoptimization for sprayedSnO2-based perovskitesolar modules on flexible plastic substrates

Babak Taheri¹, Francesca De Rossi¹, Giulia Lucarelli¹, Luigi Angelo Castriotta¹, Aldo Di Carlo^{1,2,3}, Thomas M. Brown¹, Francesca Brunetti¹*

¹ CHOSE, Department of Electronic Engineering, Università degli Studi di Roma Tor Vergata, Via del Politecnico 1, Rome, 00133, Italy

² LASE–Laboratory for Advanced Solar Energy, National University of Science and Technology MISiS, Moscow, Russia

³ Institute for Structure of Matter, National Research Council (CNR-ISM), Rome, Italy

E-mail: francesca.brunetti@uniroma2.it

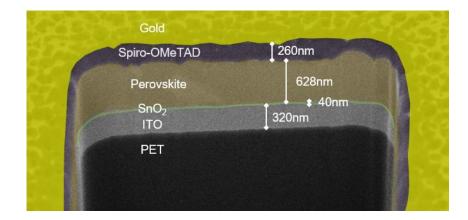


Figure S 1: FIB-cut cross-sectional SEM image of perovskite solar device.

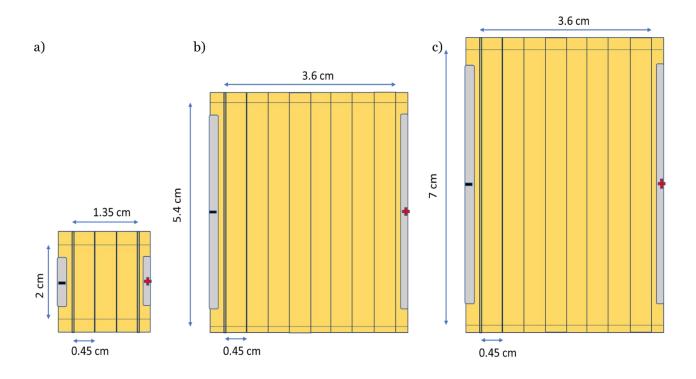


Figure S 2: Schematic representation of module layout a) mini modules with 2.34 cm² active area b) M1 modules with 16.84 cm² active area c) M2 modules with 21.84 cm² active area.

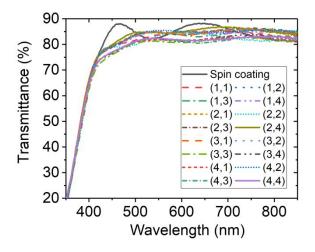


Figure S 3: Transmittance spectra of spray-coated SnO_2 samples from different portions of the 10×12.5 cm² flexible PET/ITO substrate used for the automatic spray coating process.

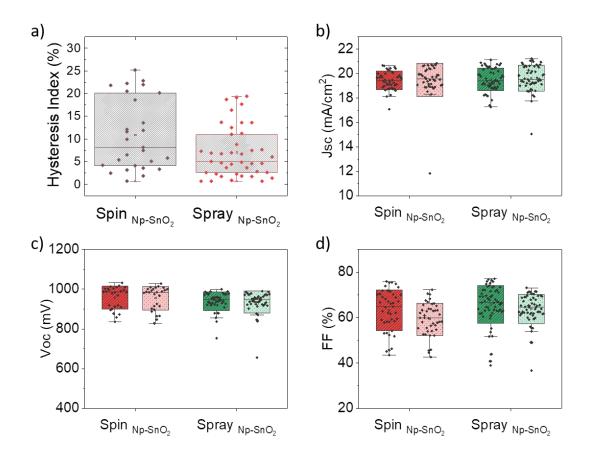


Figure S 4 : a) Hysteresis index calculated as follows: $(PCE_{rev} - PCE_{for}) / PCE_{rev}$; b) J_{SC} , c) V_{OC} and d) FF obtained from the J-V curves of FPSCs endowed with spray and spin-coated SnO_2 layers.