Supporting information for:

Potential Applications of MoS₂/M₂CS₂ (M=Ti, V) Hetero-

structures as Anode Materials for Metal-Ion Batteries

Xian Yuan, ^{†,‡} Zhenhua Chen, [†] Bin Huang, ^{†,} § Yuping He, [‡] Naigen Zhou^{*,†}

[†]School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China

[‡]School of Science, Nanchang Institute of Technology, Nanchang 330099, China [§]School of Chemistry, Biology, and Materials Science, East China University of Technology, Nanchang 330031, China E-mail address: <u>ngzhou@ncu.edu.cn</u>

System	Pattern									
Мо S С Ф М (Ti, V)										
	Type-1	Type-2	Туре-3	Type-4	Type-5	Type-6				
E_{b-MoS_2/Ti_2CS}		-0.607	-0.396	-0.402	-0.609	-0.640				
d_{-MoS_2/Ti_2CS_2}	3.002	3.073	3.605	3.604	2.975	3.041				
E_{b-MoS_2/V_2CS_2}	-0.173	-0.188	0.042	0.033	-0.127	-0.184				
d_{-MoS_2/V_2CS_2}	3.094	3.080	3.656	3.654	3.131	3.080				

Table S1. Side views, binding energies *E*_b (eV) and interlayer distance *d* (Å) of six stacking patterns of MoS₂/M₂CS₂ (M=Ti, V) heterostructures.

O Metal ion (Li⁺, Na⁺, K⁺ or Mg²⁺)

Figure S1. (a) Side view of active adsorption sites of metal ions in MoS₂/V₂CS₂.
(b) The most favorable sites and corresponding energies on the surfaces or at the interface in MoS₂/V₂CS₂ for a single ion adsorption.

Table S2. The adsorption energy E_{ad} (eV) of a metal ion at 9 sites (T represents on the top surface, M represent at the interface, B represent on the bottom surface) in MoS₂/M₂CS₂ (M=Ti, V). The # represents that the structure deforms after adsorbing a metal ion or a metal ion moves to adjacent position after optimization of system.

System						E _{ad}				
		T1	T2	Т3	M1	M2	M3	B1	B2	B3
MoS_2/Ti_2CS_2	Li	-0.486	-0.686	#	-2.159	-2.415	-1.656	-2.148	-2.191	#
	Na	-0.453	-0.502	0.039	-2.013	-2.069	#	-1.930	-1.933	#
	K	-0.884	-0.912	-0.568	-2.300	-2.325	#	-2.295	-2.278	#
	Mg	1.075	1.052	1.464	-1.726	-1.993	#	-0.988	-0.954	#
MoS_2/V_2CS_2	Li	-0.330	-0.521	0.404	-1.920	-1.804	-1.401	-1.499	-1.652	-0.602
	Na	-0.322	-0.355	0.097	-1.715	-1.531	-1.310	-1.357	-1.394	-0.716
	K	-0.763	-0.790	-0.497	-1.955	#	#	-1.709	-1.733	-1.295
I	Mg	1.190	1.157	1.517	-1.025	#	-0.247	0.161	0.096	0.978

Figure S2. Total DOS of (a) pristine MoS₂/V₂CS₂ and the MoS₂/V₂CS₂ with a metal atom adsorption of (b) Li-ion, (c) Na-ion, (d) K-ion or (e) Mg-ion. The Fermi levels are set to zero and are indicated by black dashed lines.

Figure S3. The ELF plots of the (110) slices for a MoS₂/V₂CS₂ with four layers of (a) Li and five layers of (b) Na adatoms.

Figure S4. The voltage profiles of MoS₂/V₂CS₂ as a function of concentration of (a) Li-ion, (b) Na-ion, (c) K-ion and (d) Mg-ion.

Figure S5. (a) Top view of three diffusion paths of metal ions between adjacent M1 sites in MoS₂/V₂CS₂. (b) Diffusion barrier profiles of MoS₂/V₂CS₂ for Mg/Li/Na/K ions along path 3.