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S1. MIM effective circuit models and response curves 

 

In the conventional model for the tip-sample impedance, the tip couples to the sample capacitively 

via an interface capacitor that accounts for the insulating spacer. The typical response curves are 

plotted in Fig. S1a. The signal difference between the insulating and conductive limits of sample 

conductivity provides a reference for the maximum MIM-Im contrast one can expect for this model. 

In typical experiments, a calibration sample, such as patterned Al thin film which has a native 

oxide layer (a couple of nanometers thick) on the surface, can be used to obtain a reference value 

for the maximum MIM-Im contrast. In our MIM measurement on graphene moiré systems, the 

signal contrast between center and corner of the moiré hexagon is often much larger than the 

maximum reference contrast measured on the calibration sample, indicating the breakdown of the 

conventional tip-sample impedance model.  

 

As suggested by our combined MIM-cAFM measurement, the tip-sample interface has a contact 

resistance that is on the order of 10's of kOhms. The effective circuit model and the corresponding 

response curves are shown in Fig. S1b. Note that the span of the tip-sample admittance is much 

larger than that of the conventional model. The MIM signal contrast of the moiré pattern from Fig. 

1b in the main text, after calibration of the signal gain, corresponds to an admittance change of ~6 

S, which agrees reasonably well with estimates from cAFM data in Fig. 1c, ~2 S. The deviation 

could be due to the uncertainty in the tip geometry used in the calibration procedure.  

 

 

 

 
Figure S1. Simulated MIM response curves based on two effective circuit models for the tip-

sample interaction. (a) The tip-sample contact does not have a good electrical conduction and is 

thus dominated by an interface capacitance. This is the case for MIM measurements on most of 

common samples. The response curves plot the imaginary and real parts of the tip-sample 

admittance as a function of varying sample resistance. (b) The tip-sample contact has a good 

electrical conduction which can be modelled by a contact resistance. This is the case for imaging 

moiré patterns in graphene/hBN samples in this work. The response curves plot the imaginary and 

real parts of the tip-sample admittance (inverse of impedance) as a function of varying tip-sample 

contact resistance.  
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S2. Data on additional samples 

 
 

Figure S2. MIM/cAFM images for TBG/hBN samples D2-D5 (a, c, e and g) and their FFT images 

(b, d, f and h). All scale bars: 15 nm.  
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S3. Atomic stacking model for dual-moiré structures 

The periodic atomic lattice for each of the three layers in a TBG/hBN structure can be described 

by the lowest harmonics: 

𝑓(𝑟) = ∑ 𝑒𝑖�⃗⃗�𝑖∙𝑟

3

𝑖=1

 

where �⃗⃗�𝑖 (i=1,2,3) are the unit vectors for individual atomic lattice. Thus �⃗⃗�𝑖 ∙ 𝑟 represent the phase 

of the lattice. The formation of moiré patterns depends on the alignment among the phases of the 

three layers. The center of each moiré-S domain can be identified by the location where the three 

lattice phases are closest to each other (See an example in Fig. S3a). We thus define a phase 

variation as 

𝛥𝑝ℎ𝑎𝑠𝑒(𝑟) = (wrap(�⃗⃗�1
ℎ𝐵𝑁 ∙ 𝑟 − �⃗⃗�1

𝐺1 ∙ 𝑟))2 + (wrap(�⃗⃗�2
ℎ𝐵𝑁 ∙ 𝑟 − �⃗⃗�2

𝐺1 ∙ 𝑟))2

+ (wrap(�⃗⃗�1
ℎ𝐵𝑁 ∙ 𝑟 − �⃗⃗�1

𝐺2 ∙ 𝑟))2 + (wrap(�⃗⃗�2
ℎ𝐵𝑁 ∙ 𝑟 − �⃗⃗�2

𝐺2 ∙ 𝑟))2

+ (wrap(�⃗⃗�1
𝐺1 ∙ 𝑟 − �⃗⃗�1

𝐺2 ∙ 𝑟))2 + (wrap(�⃗⃗�2
𝐺1 ∙ 𝑟 − �⃗⃗�2

𝐺2 ∙ 𝑟))2 

Here the wrap() function wraps the phase value to the range [−𝜋, 𝜋]. The centers of moiré-S 

domains correspond to the minimum values of 𝛥𝑝ℎ𝑎𝑠𝑒. To find the analytical expressions for the 

unit vectors, we find the center locations of adjacent moiré-S domains in the following way. First, 

it is obvious that 𝑟 = 0 corresponds to the minimum location of 𝛥𝑝ℎ𝑎𝑠𝑒  in the (0, 0) moiré-S 

domain around origin. Second, we solve the local minimum locations of 𝛥𝑝ℎ𝑎𝑠𝑒 in the (1, 0) and 

(0, 1) moiré-S domains, respectively. For simplicity, we define 𝛥�⃗⃗�𝑖
𝑎 = �⃗⃗�𝑖

ℎ𝐵𝑁 − �⃗⃗�𝑖
𝐺1 , 𝛥�⃗⃗�𝑖

𝑏 =

�⃗⃗�𝑖
ℎ𝐵𝑁 − �⃗⃗�𝑖

𝐺2 and 𝛥�⃗⃗�𝑖
𝑐 = �⃗⃗�𝑖

𝐺1 − �⃗⃗�𝑖
𝐺2, where i = 1 or 2.  

 

In the (1, 0) domain, there should be an accumulated phase difference of 2𝜋 between G1 and G2 

as well as between hBN and G2 along 𝛥�⃗⃗�1
𝑏 and 𝛥�⃗⃗�1

𝑐. Therefore, we can manually add the phase 

difference to remove the wrap() function and we get: 

𝛥𝑝ℎ𝑎𝑠𝑒 𝑖𝑛 (1,0)(𝑟) = (𝛥�⃗⃗�1
𝑎 ∙ 𝑟)

2
+ (𝛥�⃗⃗�2

𝑎 ∙ 𝑟)
2

+ (𝛥�⃗⃗�1
𝑏 ∙ 𝑟 − 2𝜋)

2
+ (𝛥�⃗⃗�2

𝑏 ∙ 𝑟)
2
 

+(𝛥�⃗⃗�1
𝑐 ∙ 𝑟 − 2𝜋)

2
+ (𝛥�⃗⃗�2

𝑐 ∙ 𝑟)
2
 

The local minimum location can be obtained by solving 
𝜕

𝜕𝑥
𝛥𝑝ℎ𝑎𝑠𝑒(𝑟) = 0 and 

𝜕

𝜕𝑦
𝛥𝑝ℎ𝑎𝑠𝑒(𝑟) = 0, 

which gives 

𝑟1 =
2𝜋 ∑ [(𝛥�⃗⃗�1

𝑏 + 𝛥�⃗⃗�1
𝑐) ∙ (𝛥�⃗⃗�𝑖

𝑚 × �̂�)](𝛥�⃗⃗�𝑖
𝑚 × �̂�)𝑖,𝑚

1
2

∑ |𝛥�⃗⃗�𝑖
𝑚 × 𝛥�⃗⃗�𝑗

𝑛|2
𝑖,𝑗,𝑚,𝑛

 

where i,j = 1 or 2, m,n = a, b, or c. 

 

Similarly, in the (0, 1) domain, the additional term of 2𝜋 should be added to 𝛥�⃗⃗�2
𝑏 ∙ 𝑟 and 𝛥�⃗⃗�2

𝑐 ∙ 𝑟. 

The local minimum location is 

𝑟2 =
2𝜋 ∑ [(𝛥�⃗⃗�2

𝑏 + 𝛥�⃗⃗�2
𝑐) ∙ (𝛥�⃗⃗�𝑖

𝑚 × �̂�)](𝛥�⃗⃗�𝑖
𝑚 × �̂�)𝑖,𝑚

1
2

∑ |𝛥�⃗⃗�𝑖
𝑚 × 𝛥�⃗⃗�𝑗

𝑛|2
𝑖,𝑗,𝑙,𝑚

 

where i,j = 1 or 2, m,n = a, b, or c. 

 

The other unit vector is then 𝑟3 = 𝑟2 − 𝑟1. 
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Note that if we pick the hBN layer to be identical as the G1 layer, the trilayer stack should become 

a G1/G2 bilayer stack. Indeed, by setting �⃗⃗�𝑖
ℎ𝐵𝑁 = �⃗⃗�𝑖

𝐺1 hence 𝛥�⃗⃗�𝑖
𝑎 = 0 and 𝛥�⃗⃗�𝑖

𝑏 = 𝛥�⃗⃗�𝑖
𝑐, it can be 

verified that the analytical expressions for 𝑟1 and 𝑟2 reduce to those expected for a bilayer stack. 

  

As another sanity check, Fig. S3b plots the calculated 𝛥𝑝ℎ𝑎𝑠𝑒 for the case in Fig. S3a. The markers 

indicate the locations of the minimum values of 𝛥𝑝ℎ𝑎𝑠𝑒, which match well the atomic patterns in 

Fig. S3a.  

 

 
Figure S3. (a) Atomic stacking model for twisted bilayer graphene (3.6°) on hBN. Blue atoms for 

hBN, red atoms for aligned graphene and green atoms for rotated graphene, respectively. (b) 

Calculated phase variation 𝛥𝑝ℎ𝑎𝑠𝑒. Locations of the minimum values of 𝛥𝑝ℎ𝑎𝑠𝑒 are indicated by 

the markers in both (a) and (b). 
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S4. FFT analysis on dual-moiré patterns 

 
Figure S4. FFT analysis of a periodic pattern with discontinuities at the boundaries of the large 

periodic structure. Orange circles are the lattice extended from domain (0, 0) without including 

any discontinuities. Red circles are those for hexagon domains (1, 0) and (-1, 0). Green (blue) ones 

are for domains (0, 1) and (0, -1) ((-1, 1) and (1, -1)).    

 

In this section, we present the mathematical analysis on the Fourier transform of a dual moiré 

superstructure in which the moiré-S pattern has discontinuities at the boundaries of the moiré-L 

unit cell domains. 

 

The periodic structure of the triangular moiré-S lattice can be described by the lowest harmonics 

of the following form: 

𝑓(𝑟) = ∑ 𝑒𝑖�⃗⃗�𝑖∙𝑟

3

𝑖=1

 

with �⃗⃗�1,  �⃗⃗�2 and �⃗⃗�3 = �⃗⃗�2 − �⃗⃗�1 the three unit vectors of the moiré-S lattice. 

 

Across the boundaries of the moiré-L domains, the discontinuities in the moiré-S lattice can be 

modelled as two displacement vectors, 𝛿1 and 𝛿2, along the two directions defined by the two unit 

vectors of the moiré-L lattice, 𝐴1 and 𝐴2, respectively. In the (m, n)-th unit cell of the moiré-L 

lattice, as shown in Fig. S4, the overall accumulated displacement will be: 

𝛿𝑚𝑛 = 𝑚𝛿1 + 𝑛𝛿2 

Therefore, in general, the moiré-S lattice with discontinuities can be expressed as 

𝑓(𝑟) = ∑ 𝑒𝑖�⃗⃗�𝑖∙(𝑟−�⃗⃗⃗�𝑚𝑛)

3

𝑖=1
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for 𝑟 within the (m, n)-th domain. Therefore, the Fourier transform of 𝑓(𝑟) can be obtained by 

calculating the Fourier transform of each term, 𝐹𝑖(�⃗⃗�). Thus, we have: 

𝐹𝑖(�⃗⃗�) = ∬ 𝑒𝑖�⃗⃗�𝑖∙(𝑟−�⃗⃗⃗�𝑚𝑛) ∙ 𝑒−𝑖�⃗⃗�∙𝑟𝑑2𝑟 

where the integral is over the entire plane. 

 

We evaluate the integral by summing the contribution from individual unit cells. Specifically, in 

the (m, n)-th unit cell which is centered at �⃗⃗�𝑚,𝑛 = 𝑚 ∙ 𝐴1 + 𝑛 ∙ 𝐴2, we define a reduced position 

vector 𝑟0 = 𝑟 − �⃗⃗�𝑚,𝑛, and we express the integral in terms of 𝑟0. 

𝐹𝑖(�⃗⃗�) = ∑ 𝐹𝑖
𝑚𝑛(�⃗⃗�)

𝑚,𝑛

= ∑ ∬ 𝑒𝑖�⃗⃗�𝑖∙(𝑟0+�⃗⃗�𝑚,𝑛−𝑚∙�⃗⃗⃗�1−𝑛∙�⃗⃗⃗�2) ∙ 𝑒−𝑖�⃗⃗�∙(𝑟0+�⃗⃗�𝑚,𝑛)𝑑2𝑟0
𝑢.𝑐.𝑚,𝑛

= ∑ 𝑒𝑖�⃗⃗�𝑖∙(�⃗⃗�𝑚,𝑛−𝑚∙�⃗⃗⃗�1−𝑛∙�⃗⃗⃗�2)−𝑖�⃗⃗�∙�⃗⃗�𝑚,𝑛

𝑚,𝑛

∬ 𝑒𝑖(�⃗⃗�𝑖−�⃗⃗�)∙𝑟0

𝑢.𝑐.

𝑑2𝑟0

= ∑ 𝑒𝑖�⃗⃗�𝑖∙(�⃗⃗�𝑚,𝑛−𝑚∙�⃗⃗⃗�1−𝑛∙�⃗⃗⃗�2)−𝑖�⃗⃗�∙�⃗⃗�𝑚,𝑛

𝑚,𝑛

𝐹𝑖
00(�⃗⃗�) 

 

Note that 𝐹𝑖
00(�⃗⃗�) ≡ ∬ 𝑒𝑖(�⃗⃗�𝑖−�⃗⃗�)∙𝑟0

𝑢.𝑐.
𝑑2𝑟0 is simply the integral within the (0, 0)-th unit cell which 

is a constant independent of m and n. We then have 

𝐹𝑖(�⃗⃗�) = 𝐹𝑖
00(�⃗⃗�) ∑ 𝑒𝑖�⃗⃗�𝑖∙(�⃗⃗�𝑚,𝑛−𝑚∙�⃗⃗⃗�1−𝑛∙�⃗⃗⃗�2)−𝑖�⃗⃗�∙�⃗⃗�𝑚,𝑛

𝑚,𝑛

 

= 𝐹𝑖
00(�⃗⃗�) ∑ 𝑒𝑖[(�⃗⃗�𝑖−�⃗⃗�)∙(𝑚∙�⃗�1+𝑛∙�⃗�2)−𝑚�⃗⃗�𝑖∙�⃗⃗⃗�1−𝑛�⃗⃗�𝑖∙�⃗⃗⃗�2]

𝑚,𝑛

= 𝐹𝑖
00(�⃗⃗�) ∑ 𝑒𝑖𝑚∙((�⃗⃗�𝑖−�⃗⃗�)∙�⃗�1−�⃗⃗�𝑖∙�⃗⃗⃗�1)

𝑚

∑ 𝑒𝑖𝑛∙((�⃗⃗�𝑖−�⃗⃗�)∙�⃗�2−�⃗⃗�𝑖∙�⃗⃗⃗�2)

𝑛

= 𝐹𝑖
00(�⃗⃗�)

1 − 𝑒𝑖𝑀[(�⃗⃗�𝑖−�⃗⃗�)∙�⃗�1−�⃗⃗�𝑖∙�⃗⃗⃗�1]

1 − 𝑒𝑖[(�⃗⃗�𝑖−�⃗⃗�)∙�⃗�1−�⃗⃗�𝑖∙�⃗⃗⃗�1]

1 − 𝑒𝑖𝑁[(�⃗⃗�𝑖−�⃗⃗�)∙�⃗�2−�⃗⃗�𝑖∙�⃗⃗⃗�2]

1 − 𝑒𝑖[(�⃗⃗�𝑖−�⃗⃗�)∙�⃗�2−�⃗⃗�𝑖∙�⃗⃗⃗�2]
 

 

|𝐹𝑖(�⃗⃗�)| =
sin (

𝑀
2

[(�⃗⃗�𝑖 − �⃗⃗�) ∙ 𝐴1 − �⃗⃗�𝑖 ∙ 𝛿1])

sin (
1
2 [(�⃗⃗�𝑖 − �⃗⃗�) ∙ 𝐴1 − �⃗⃗�𝑖 ∙ 𝛿1])

∙
sin (

𝑁
2

[(�⃗⃗�𝑖 − �⃗⃗�) ∙ 𝐴2 − �⃗⃗�𝑖 ∙ 𝛿2])

sin (
1
2 [(�⃗⃗�𝑖 − �⃗⃗�) ∙ 𝐴2 − �⃗⃗�𝑖 ∙ 𝛿2])

𝐹𝑖
00(�⃗⃗�) 

 

The peak positions of |𝐹𝑖(�⃗⃗�)|, denoted as �⃗⃗�𝑖
′, satisfy the conditions: 

(�⃗⃗�𝑖 − �⃗⃗�𝑖
′) ∙ 𝐴1 − �⃗⃗�𝑖 ∙ 𝛿1 = 0  &  (�⃗⃗�𝑖 − �⃗⃗�𝑖

′) ∙ 𝐴2 − �⃗⃗�𝑖 ∙ 𝛿2 = 0 

Define the reciprocal vectors �⃗⃗�𝐴1 and �⃗⃗�𝐴2 as 

�⃗⃗�𝐴1 =
𝐴2 × 𝑒𝑧

|𝐴1 × 𝐴2|
 

�⃗⃗�𝐴2 =
𝑒𝑧 × 𝐴1

|𝐴1 × 𝐴2|
 

And they satisfy the relations �⃗⃗�𝐴1 ∙ 𝐴1 = 1 and �⃗⃗�𝐴2 ∙ 𝐴2 = 1. We can then obtain 
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�⃗⃗�𝑖 − �⃗⃗�𝑖
′ = �⃗⃗�𝐴1 ∙ (�⃗⃗�𝑖 ∙ 𝛿1) + �⃗⃗�𝐴2 ∙ (�⃗⃗�𝑖 ∙ 𝛿2) 

or 

�⃗⃗�𝑖
′ = �⃗⃗�𝑖 − [�⃗⃗�𝐴1 ∙ (�⃗⃗�𝑖 ∙ 𝛿1) − �⃗⃗�𝐴2 ∙ (�⃗⃗�𝑖 ∙ 𝛿2)] 

 

We can see that the Fourier peak positions of the discontinuous lattice, �⃗⃗�𝑖
′, are shifted from those 

for a continuous lattice, �⃗⃗�𝑖, by a vector that depends on the displacement vectors, 𝛿1 and 𝛿2, and 

the reciprocal vectors corresponding to the moiré-L lattice, �⃗⃗�𝐴1 and �⃗⃗�𝐴2.  

 

Experimentally, we can find �⃗⃗�𝑖
′ from the Fourier transform of the entire image containing large 

number of moiré-L unit cells, and �⃗⃗�𝑖 can be determined from the Fourier transform of the data 

within individual moiré-L unit cells. �⃗⃗�𝐴1 and �⃗⃗�𝐴2 can also be determined by extracting the unit 

vectors for the moiré-L lattice. From these, we can then determine the displacement vectors, 𝛿1 

and 𝛿2. Alternatively, 𝛿1 and 𝛿2 can also be determined by comparing the moiré-S lattice patterns 

in neighboring moiré-L unit cells. The results from these two methods match very well. 


