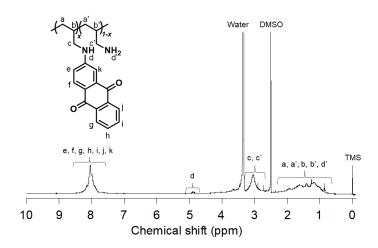
Supporting Information

Hydrophilic Anthraquinone-Substituted Polymer: Its Environmentally Friendly Preparation and Efficient Charge/Proton-Storage Capability for Polymer–Air Secondary Batteries

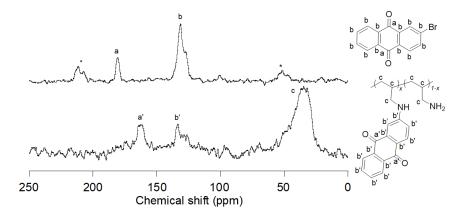
Kouki Oka, Saki Murao, Miho Kataoka, Hiroyuki Nishide, Kenichi Oyaizu*

Department of Applied Chemistry and Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan

Corresponding Author *oyaizu@waseda.jp.


Supplementary Method

1. Electrode preparation


The polymer/carbon composite electrodes were prepared by coating the slurry of the polymer single-walled carbon nanotube (SWNT), polyvinylidene difluoride (5:5:1 in w/w/w), and *N*-methyl pyrrolidone (NMP) onto glassy carbon substrates. The polymer carbon composite was coated on a glassy carbon plate with a thickness of ca. 10 μ m. The mass loading of the polymer was adjusted to ca. 1.0 mg.

2. Electrochemical measurement

A tailor-made glass cell (20 cm² electrolyte, Watanabe Kagaku Co.) was employed as the electrochemical cell.

Figure S1. 500 MHz ¹H NMR spectrum (dimethyl sulfoxide- d_6) of anthraquinone substituted poly(allylamine).

Figure S2 Solid state ¹³C-NMR spectra of anthraquinone substituted poly(allylamine) (* spinning side band).

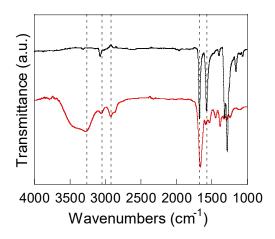
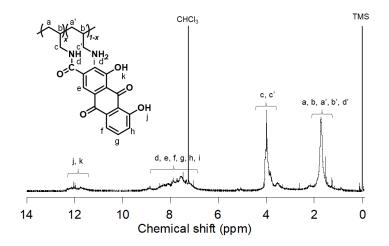
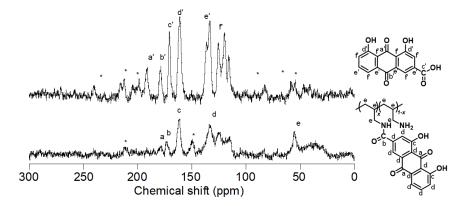
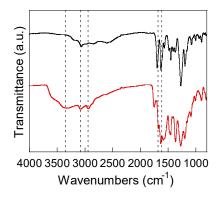
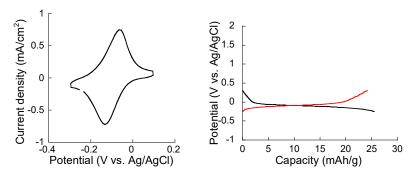


Figure S3 IR spectra of bromoanthraquinone (black) and anthraquinone-substituted poly(allylamine) (red).


Figure S4. 500 MHz ¹H NMR spectrum (CDCl₃) of PDHA.

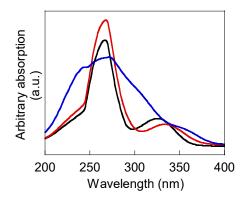

Figure S5. Solid state ¹³C-NMR spectra of a) bromoanthraquinone and b) PDHA (* Spinning side band).

Figure S6. IR spectra of 4,5-dihydroxyanthraquinone-2-carboxylic acid (black) and PDHA (red).

Figure S7. a) Cyclic voltammogram and b) Charging (black) and discharging (red) curves of the anthraquinone substituted poly(allylamine)/SWNT composite electrode in 0.5 M H₂SO₄ aqueous solution at 10 C.

Figure S8. The UV-vis absorption spectra (arbitrary absorption) of anthraquinone (0.1 mM) (black), poly(vinylanthraquinone) (0.1 mM) (red), and anthraquinone substituted poly(allylamine) (0.1 mM) (blue) in NMP.

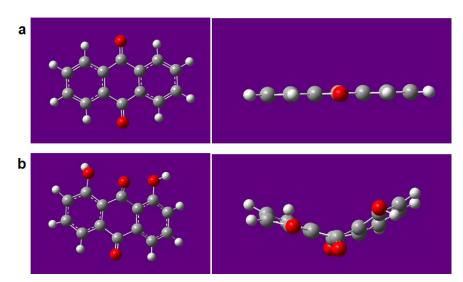
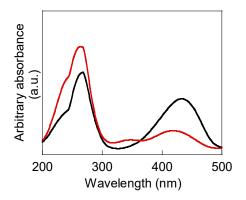
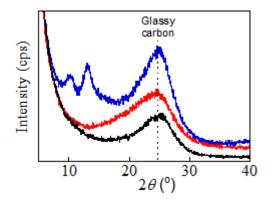




Figure S9. UM06/6-31G(d,p) optimized structures of (a) anthraquionone and (b) DHA.

Figure S10. The UV-vis absorption spectra (arbitrary absorption) of DHA (0.1 mM) (black) and PDHA (0.1 mM) (red) in NMP.

Figure S11. XRD patterns of the thin films of poly(vinylanthraquinone) (blue) and PDHA (red), and glassy carbon substrate (black). These thin films are formed on the glassy carbon substrate.

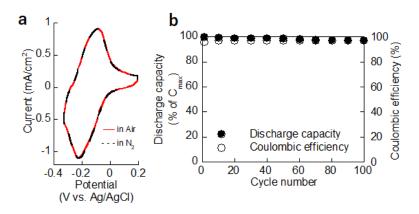


Figure S12. a) Cyclic voltammograms of the PDHA/SWNT composite electrode in 0.5 M H_2SO_4 aqueous solution in air (red solid line) and in nitrogen (black dotted line) at a scan rate of 10 mV/s. b) Capacity retention for 100 cycles on galvanostatic charge and discharge at 60 C.

Refe-	Anode-active	Cathode-active	Electrolyt	Voltage	Capacit
rence	Polymer	Catalyst	e	(V)	y loss
No.	(conductive additives)	(conductive			(100
		additives)			cycles)
1	Poly(vinylanthraquinone)	VGCF, MnO ₂ ,	30 wt%	0.5	-13%
	(ca. 100 nm layer)	and PVdF	КОН		
			aqueous		
			solution		
			(pH 14)		
2	poly(dianthraquinone-	VGCF, MnO ₂ ,	10 M	0.7	-3%
	substituted norbornene)	and PVdF	NaOH		
	(ca. 50 nm layer)		aqueous		
			solution		
3	poly(1,4-anthraquinone)	spinel cobalt	6.0 M	0.8	-5%
	(P14AQ) in situ polymerized	manganese oxide	КОН		
	on carbon nanotubes (CNTs)	supported on CNTs	aqueous		
			solution		
4	poly(2,5-dihydroxy-1,4-	Pt/C	H_2SO_4	0.4	-3%
	benzoquinone-3,6-		aqueous		
	methylene),		solution		
	single-wall carbon nanotube,		(pH 1)		
	and poly(vinylidene fluoride)				
5	a conducting redox polymer	Pt/C	H_2SO_4	0.5	-2%
	based on a trimer of EPE		aqueous		
	(E=3,4-		solution		
	ethylenedioxythiophene;		(pH 1)		
	P=3,4-				
	propylenedioxythiophene)				
	and a naphthoquinone (NQ)				
	pendant group				
6	naphthoquinone substituted	Pt/C	H_2SO_4	0.8	-7%
	poly(allylamine),		aqueous		
	single-wall carbon nanotube,		solution		
	and poly(vinylidene fluoride)		(0.05 M		
			H ₂ SO ₄)		
This	1,8-dihydroxyanthraquinone-	Pt/C	H_2SO_4	1.1	-2%

Table S1 Characteristics of other organic-air battery concepts

work	substituted poly(allylamine),	aqueous	
	single-wall carbon nanotube,	solution	
	and poly(vinylidene fluoride)	(0.5 M	
		$H_2SO_4)$	
		in air	

REFERENCES

- Choi, W.; Harada, D.; Oyaizu, K.; Nishide, H. Aqueous electrochemistry of poly(vinylanthraquinone) for anode-active materials in high-density and rechargeable polymer/air batteries. *J Am Chem Soc* 2011, *133* (49), 19839-43, DOI: 10.1021/ja206961t.
- (2) Kawai, T.; Oyaizu, K.; Nishide, H. High-Density and Robust Charge Storage with Poly(anthraquinone-substituted norbornene) for Organic Electrode-Active Materials in Polymer–Air Secondary Batteries. *Macromolecules* 2015, 48 (8), 2429-2434
- (3) Li, Y.; Liu, L.; Liu, C.; Lu, Y.; Shi, R.; Li, F.; Chen, J. Rechargeable Aqueous Polymer-Air Batteries Based on Polyanthraquinone Anode. *Chem* 2019, 5 (8), 2159-2170, DOI: 10.1016/j.chempr.2019.06.001.
- (4) Oka, K.; Furukawa, S.; Murao, S.; Oka, T.; Nishide, H.; Oyaizu, K. Poly(dihydroxybenzoquinone): its high-density and robust charge storage capability in rechargeable acidic polymer-air batteries. *Chem Commun (Camb)* 2020, *56* (29), 4055-4058, DOI: 10.1039/d0cc00660b.
- (5) Oka, K.; Strietzel, C.; Emanuelsson, R.; Nishide, H.; Oyaizu, K.; Stromme, M.; Sjodin, M. Conducting Redox Polymer as a Robust Organic Electrode-Active Material in Acidic Aqueous Electrolyte towards Polymer-Air Secondary Batteries. *ChemSusChem* 2020, *13* (9), 2280-2285, DOI: 10.1002/cssc.202000627.
- (6) Oka, K.; Murao, S.; Kobayashi, K.; Nishide, H.; Oyaizu, K. Charge- and Proton-Storage Capability of Naphthoquinone-Substituted Poly(allylamine) as Electrode-Active Material for Polymer–Air Secondary Batteries. ACS Applied Energy Materials 2020, DOI: 10.1021/acsaem.0c02178.