# **Supporting Information**

# <sup>DMP</sup>DAB–Pd–MAH: A Versatile Pd(o) Source for Precatalyst Formation, Reaction Screening, and Preparative-Scale Synthesis

Jingjun Huang,<sup>†</sup> Matthew Isaac,<sup>†</sup> Ryan Watt,<sup>†</sup> Joseph Becica,<sup>†</sup> Emma Dennis,<sup>†</sup> Makhsud I. Saidaminov,<sup>†</sup> William A. Sabbers,<sup>‡</sup> and David C. Leitch<sup>†,\*</sup>

<sup>†</sup>Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada. <sup>‡</sup>Department of Chemistry, Temple University, 1901 N. Broad St, Philadelphia, PA 19122, United States. \*Corresponding author: dcleitch@uvic.ca

# **Table of Contents**

| I: General Considerations                                 | 2  |
|-----------------------------------------------------------|----|
| II: Synthesis and Characterization of Palladium Complexes | 3  |
| Synthesis of <sup>DMP</sup> DAB–Pd–MAH (1)                | 3  |
| Solution Stability of <sup>DMP</sup> DAB–Pd–MAH (1)       | 7  |
| Synthesis of [phosphine]–Pd–MAH complexes                 | 9  |
| dppp–Pd–MAH ( <b>2</b> )                                  | 9  |
| DPEPhos–Pd–MAH ( <b>3</b> )                               |    |
| XantPhos–Pd–MAH ( <b>4</b> )                              |    |
| dppf–Pd–MAH (5)                                           | 21 |
| SPhos–Pd–MAH ( <b>6</b> )                                 | 24 |
| RuPhos–Pd–MAH ( <b>7</b> )                                |    |
| XPhos–Pd–MAH ( <b>8</b> )                                 | 27 |
| <i>t</i> BuXPhos–Pd–MAH ( <b>9</b> )                      |    |
| BrettPhos–Pd–MAH ( <b>10</b> )                            |    |
| <i>t</i> BuBrettPhos–Pd–MAH ( <b>11</b> )                 |    |
| BippyPhos–Pd–MAH ( <b>12</b> )                            |    |
| Me₄tBuXPhos–Pd–MAH ( <b>13</b> )                          | 45 |
| JackiePhos–Pd–MAH ( <b>14</b> )                           | 50 |
| III: High-Throughput Screening                            | 56 |
| General Procedure for High-Throughput Screening           | 56 |
| High-Throughput Screening Data                            | 58 |
| IV: Preparative-Scale Synthesis                           | 72 |
| V: X-ray Crystallographic Details                         |    |
| <sup>DMP</sup> DAB–Pd–MAH (1)                             |    |
| DPEPhos–Pd–MAH ( <b>3</b> )                               |    |
| XantPhos–Pd–MAH (4)                                       |    |
| dppf–Pd–MAH ( <b>5</b> )                                  |    |
| XPhos–Pd–MAH ( <b>8</b> )                                 |    |
| Bippyphos–Pd–MAH ( <b>12</b> )                            |    |
| VI: References                                            |    |

# I: General Considerations

**Materials.** All solvents and common organic reagents were purchased from commercial suppliers and used without further purification. All palladium sources (except Pd<sub>2</sub>dba<sub>3</sub>•CHCl<sub>3</sub>) were purchased from Strem Chemicals and used as received. Pd<sub>2</sub>dba<sub>3</sub>•CHCl<sub>3</sub> was prepared according to the method of Zalesskiy and Ananikov.<sup>1</sup> *N*,*N*'-bis(2,6-dimethylphenyl)ethan-1,2-diimine was prepared using a reported procedure.<sup>2</sup> <sup>tBu</sup>DAB–Pd–MAH was prepared using a reported procedure.<sup>3</sup> All phosphine ligands were purchased from Strem Chemicals and used as received. Anhydrous solvents (SureSeal) were purchased from MilliporeSigma and used as received.

**Techniques.** All air-free manipulations were performed under a dry nitrogen atmosphere using an MBraun glovebox. High-throughput experimentation was performed using 1 mL capacity glass shell vials in sealable aluminum reaction blocks purchased from Analytical Sales. Heating/stirring was achieved using rare-earth magnetic tumble stirrers acquired from V&P Scientific.

**Analysis and Spectroscopy.** All NMR spectra were acquired on either a Bruker AVANCE 300 MHz spectrometer or a Bruker AVANCE Neo 500 MHz spectrometer. All <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts are calibrated to residual protio-solvents and all <sup>31</sup>P NMR chemical shifts are calibrated to external standards. All NMR spectroscopic data is processed using Bruker TopSpin 4.07.

UPLC analysis was performed using a Shimadzu Nexera X2 instrument consisting of an autosampler, binary pumps, degassing unit, column oven with a diode-array UV/Vis detector. A Raptor ARC-18 column ( $100 \times 2.1$  mm, particle size 1.8 µm) and a Waters CORTECS® UPLC® T3 column ( $2.1 \times 30$  mm, particle size 1.6 µm) were used. The eluent used is the mixture of two mobile phases. Water with 0.05% trifluoroacetic acid (TFA) was set to be the mobile phase A, and acetonitrile with 0.05% TFA was set to be the mobile phase B. The gradient profiles, flow rates and injection volumes used for analysis are shown in Section III. The assignments to the key peaks are based on the retention times of isolated compounds and starting materials using the same separation method. All solvents used were HPLC grade.

LCMS analysis was performed using a Waters Acquity class H UPLC system which consists of a quaternary pump, a Sampler Manager-Flow Through Needle, columns selection module with an oven compartment, a photodiode array detector, and a QDa Mass Spectrometer. An ACQUITY UPLC<sup>®</sup> BEH C18 column ( $2.1 \times 50$  mm, particle size 1.7 µm) was used for the analysis of C-O coupling. The solvent mixture consists of solvent A which was water with 0.4% formic acid (FA) and solvent B was set to be acetonitrile with 0.4% FA. The detailed separation methods are also included in Section III. The assignments to the key peaks are also based on the retention times of the isolated product and starting materials using the same separation method. Masslynx was used to process the data. All solvents used were LC-MS grade.

High-resolution electrospray ionization mass spectrometric analysis was performed using a Thermo Scientific Ultimate 3000 ESI-Orbitrap Exactive Plus.

Details of X-ray crystallography studies are given in Section V.

# II: Synthesis and Characterization of Palladium Complexes

## Synthesis of <sup>DMP</sup>DAB–Pd–MAH (1)

Both of these procedures are carried out under ambient atmosphere.

*From Pd*<sub>2</sub>*dba*<sub>3</sub>•*CHCl*<sub>3</sub>: A 250 mL round bottom flask containing a stirbar was charged with Pd<sub>2</sub>dba<sub>3</sub>•*CHCl*<sub>3</sub> (251.5 mg, 0.243 mmol), *N*,*N*'-bis(2,6-dimethylphenyl)ethan-1,2-diimine (134.4 mg, 0.510 mmol, 2.1 equiv), and maleic anhydride (51.4 mg, 0.522 mmol, 2.15 equiv). Acetone (45 mL) was added to dissolve/suspend the components. The reaction mixture was stirred at room temperature for three hours, producing a dark purple/red homogeneous solution. The reaction solution was concentrated under vacuum to a volume of approximately 2 mL. TBME (40 mL) was added and the solution



was stirred for 15 minutes, producing a purple/red slurry. After the solid settled, the TBME was decanted, leaving a purple/red solid. The solid was dissolved in a minimum of acetone and filtered through Celite to remove palladium black. The Celite bed was thoroughly rinsed with acetone until the rinsings were colourless, and the combined filtrate was evaporated under vacuum. The resulting purple/red solid was washed with TBME (3 x 10 mL) and dried under vacuum to give compound **1** (187 mg, 82% yield).

From Pd(OAc)<sub>2</sub>: A 1 L round bottom flask containing a stirbar was charged with dibenzylideneacetone (dba, 6.26 g, 26.7 mmol, 2 equiv) and sodium acetate (10.96 g, 133.6 mmol, 10 equiv). Methanol (250 mL) was added and the mixture stirred to ensure dissolution of the dba. With stirring, solid Pd(OAc)<sub>2</sub> (3.00 g, 13.4 mmol) was added through a powder funnel, which was rinsed with methanol (50 mL) to ensure quantitative transfer. The flask was immersed in an oil bath kept at 40-45 °C. The reaction mixture was stirred vigorously at this temperature for 3 hours. The flask was then cooled to room temperature. The resulting dark slurry was filtered through filter paper in a Buchner funnel to collect the crude "Pd(dba)<sub>2</sub>" solid. The solid was washed successively with methanol (3 x 30 mL), water (3 x 30 mL), and acetone (2 x 10 mL). This solid was then transferred to a 1 L round bottom flask containing a stir bar, and slurried in acetone (300 mL). Solid N,N'-bis(2,6-dimethylphenyl)ethan-1,2-diimine (3.71 g, 14.0 mmol, 1.05 equiv) and maleic anhydride (1.38 g, 14.0 mmol, 1.05 equiv) were added through a powder funnel, which was rinsed with acetone (100 mL) to ensure quantitative transfer. The reaction mixture was stirred at room temperature for 3 hours. The dark red solution was filtered through a bed of Celite using a medium porosity frit to remove palladium black. The Celite bed was thoroughly rinsed with acetone until the rinsings were colourless, and the combined filtrate was evaporated under vacuum. TBME (100 mL) was added and the solid triturated in the flask. The purple/red solid was collected by suction filtration, and the filter cake was washed with TBME (6 x 10 mL, until rinsings are colourless) to completely remove dba. The solid was dried under vacuum to give compound 1 (3.60 g, 57% yield from  $Pd(OAc)_2$ ). See Figure S1 for images from key stages of the synthesis.

<sup>1</sup>H NMR: (300 MHz;  $d_6$ -acetone)  $\delta$  2.17 (s, 12H, 4 x Ar–CH<sub>3</sub>), 3.44 (s, 2H, –CH=CH–), 6.99 (m, 6H, 6 x Ar–H), 8.42 (s, 2H, 2 x –CH=NAr). <sup>13</sup>C{<sup>1</sup>H} NMR: (125 MHz;  $d_6$ -acetone) 17.3 (4 x Ar–CH<sub>3</sub>), 42.1 (–CH=CH–), 126.2 (Ar), 128.2 (Ar), 149.0 (Ar), 165.2 (–N=C–C=N–), 171.0 (2 x C=O). HRMS (ESI) of [C<sub>22</sub>H<sub>22</sub>N<sub>2</sub>O<sub>3</sub>Pd•Na]<sup>+</sup> (major isotopomer, sodium adduct): 491.05575 (calc'd); 491.05511 (found). Elemental analysis (CHN) of C<sub>22</sub>H<sub>22</sub>N<sub>2</sub>O<sub>3</sub>Pd: 56.36, 4.73, 5.98 (calc'd); 56.33, 4.79, 5.84 (actual). Elemental analysis performed on batch of compound prepared from Pd(OAc)<sub>2</sub> (synthesis shown in Fig. S1). Sample stored in air for >7 months prior to analysis.

A)

B)









F)





Figure S1. Synthesis of DAB–Pd–MAH (1) from 3.00 g Pd(OAc)<sub>2</sub>. A) Materials for "Pd(dba)<sub>2</sub>" synthesis. B) Initial reaction mixture. C) Reaction mixture after heating to 40-45 °C for 3 h. D) Isolation of crude "Pd(dba)<sub>2</sub>". E) Materials for synthesis of 1. F) Initial reaction mixture. G) Celite filtration to remove Pd black. H) TBME reslurry/trituration. I) Isolated solid.



**Figure S2**. <sup>1</sup>H NMR spectrum (300 MHz;  $d_6$ -acetone) of **1**. Quintet at 1.92 ppm is  $d_5$ -acetone; singlet at 1.95 ppm is acetone; 1:1:1 triplet at 2.65 ppm is HDO; singlet at 2.69 ppm is H<sub>2</sub>O.



Figure S3. <sup>13</sup>C NMR spectrum (125 MHz;  $d_6$ -acetone) of 1.



**Figure S4.** *Left:* Experimental HRMS-ESI spectrum of [1•Na]<sup>+</sup>. *Right:* Calculated HRMS isotope pattern for [1•Na]<sup>+</sup>.



**Figure S5.** Solid-state molecular structure of complex **1**. Thermal ellipsoids plotted at 50% probability for non-H atoms; H-atoms shown as uniformly-sized white spheres for clarity. Selected bond lengths (Å) and angles (°): Pd1–N1: 2.1342(11); Pd1–N2: 2.1520(11); Pd1–C19: 2.0556(14); Pd1–C20: 2.0868(13); C19–C20: 1.4315(18); N1–Pd1–N2: 76.30(4); C19–Pd1–C20: 40.42(5); N1–Pd1–C19: 117.93(5); N2–Pd1–C20: 124.67(5).

## Solution Stability of <sup>DMP</sup>DAB–Pd–MAH (1)

In air, complex **1** (12.0 mg, 0.0256 mmol) was dissolved in six different deuterated solvents (CDCl<sub>3</sub>, CD<sub>2</sub>Cl<sub>2</sub>,  $d_6$ -acetone, CD<sub>3</sub>CN,  $d_6$ -DMSO, and  $d_8$ -THF; 0.6 mL each) to generate solutions of 20 mg **1** / 1 mL solvent. Complex **1** is not soluble in  $d_6$ -DMSO, so this solvent was omitted from the stability analysis. 1,3,5-Trimethoxybenzene (~3 mg) was added to each solution as an internal standard. Initial <sup>1</sup>H NMR spectra were obtained for each solution after 30 minutes (300 MHz), and the peak area ratio for the imine C–H signal (8.43 ppm in  $d_6$ -acetone) and the internal standard Ar–H signal was recorded. Subsequent <sup>1</sup>H NMR spectra were obtained at 2, 6, 18, 24, 30, 42, and 48 hours; Figure S6 contains representative stack plots for spectra obtained in CDCl<sub>3</sub> (top) and  $d_6$ -THF (bottom). The peak area ratio for the imine C–H signal and the internal standard Ar–H signal for each spectrum was divided by the initial ratio to generate the normalized concentration data in Table S1. For CDCl<sub>3</sub> and CD<sub>3</sub>CN, a palladium mirror was clearly visible on the inside wall of the NMR tubes after 18 hours, whereas the NMR tubes containing the CD<sub>2</sub>Cl<sub>2</sub>,  $d_6$ -acetone, and  $d_8$ -THF solutions remained mirror-free over 48 hours.



Figure S6. <sup>1</sup>H NMR spectra (300 MHz) stack plots for solution stability of 1 in CDCl<sub>3</sub> (top) and d<sub>6</sub>-THF (bottom) with time increasing from front (30 min) to back (48 h). Key peaks are the imine C−H signal (~8.2 ppm), the DMP aromatic signals (~7 ppm), and the Ar−H signal for 1,3,5-trimethoxybenzene internal standard (~6 ppm).

|          | [ <b>1</b> ]/[ <b>1</b> ] <sub>30min</sub> |            |                         |       |                     |
|----------|--------------------------------------------|------------|-------------------------|-------|---------------------|
| Time (h) | CDCl₃                                      | $CD_2Cl_2$ | d <sub>6</sub> -acetone | CD₃CN | d <sub>6</sub> -THF |
| 0.5      | 1.00                                       | 1.00       | 1.00                    | 1.00  | 1.00                |
| 2        | 0.93                                       | 0.98       | 0.99                    | 0.97  | 0.99                |
| 6        | 0.78                                       | 0.97       | 1.00                    | 0.81  | 0.97                |
| 18       | 0.45                                       | 0.94       | 0.94                    | 0.48  | 0.91                |
| 24       | 0.24                                       | 0.92       | 0.93                    | 0.30  | 0.89                |
| 30       | 0.12                                       | 0.91       | 0.93                    | 0.20  | 0.91                |
| 42       | n/d                                        | 0.86       | 0.87                    | n/d   | 0.93                |
| 48       | n/d                                        | 0.84       | 0.85                    | n/d   | 0.92                |

**Table S1.** Normalized [1] (starting from an initial concentration of 20 mg / mL) for solutions usingfive different deuterated solvents over 48 hours to assess stability.



**Figure S7.** Plot of normalized [1] (starting from an initial concentration of 20 mg / mL) for five different deuterated solvents over 48 hours at room temperature under air.

## Synthesis of [phosphine]-Pd-MAH complexes

Unless otherwise noted, the following general procedure was used to prepare all of the following phosphine– Pd–MAH complexes. Starting materials were handled and weighed under inert dinitrogen atmosphere in the glovebox (due to oxygen-sensitivity of the phospines). A 20 mL vial or 50 mL round-bottom flask was charged with complex **1** (100.0 mg, 0.2133 mmol), the corresponding phosphine ligand (1.05 equiv, 0.2240 mmol), and a crossshaped magnetic stirbar. Anhydrous, degassed THF (5-15 mL) was added, and the reaction mixture stirred for 1-2 hours. During this time, the solution changes colour from an initial dark red/purple to yellow/orange; the exact final colour and the rate of colour change depends on the phosphine used. Note: after the 1-2 hours stirring, the solution can be opened to ambient atmosphere if desired.

The solvent was then removed *in vacuo* to give a yellow to orange residue. This residue was triturated with hexanes or diethyl ether (2-4 mL), followed by decantation of the liquid phase (with or without centrifugation as required). This trituration/decantation process was repeated 2-5 more times to remove the <sup>DMP</sup>DAB byproduct, as well as any excess phosphine. The solid was then dried *in vacuo* to give the product.

#### dppp–Pd–MAH (2)

Previously reported compound<sup>4</sup> prepared according to the general procedure using **1** (123.0 mg, 0.2623 mmol), dppp (113.6 mg, 0.2755 mmol), and THF (5 mL). Trituration/decantation 3 x with diethyl ether (4 mL). Tan solid: 130.0 mg (80%). <sup>1</sup>H NMR: (300 MHz; CDCl<sub>3</sub>)  $\delta$  1.58-1.75 (m, 1H, dppp tether), 2.25-2.34 (m, 3H, dppp-tether), 2.61-2.73 (m, 2H, dppp tether), 4.07 (m, 2H, -CH=CH-), 7.32-7.46 (m, 16H, Ar–H), 7.57-7.83 (m, 4H, Ar–H); <sup>13</sup>C{<sup>1</sup>H} NMR: (125 MHz; CDCl<sub>3</sub>)  $\delta$  18.9 (t, J = 3.8 Hz), 27.5 (m), 52.7 (m), 128.8 (t, J = 5.0 Hz), 130.0, 130.6, 131.7 (t, J = 6.3 Hz), 132.7 (m), 133.2 (t, J = 7.5 Hz),



dppp-Pd-MAH (2) 80% isolated

136.1 (m), 171.6;  ${}^{31}P{}^{1}H$  NMR: (121 MHz; CDCl<sub>3</sub>)  $\delta$  10.2. HRMS (ESI) of  $[C_{31}H_{28}O_3P_2Pd\bullet Na]^+$  (major isotopomer, sodium adduct): 639.04407 (calc'd); 639.04408 (found). Elemental analysis (CH) of  $C_{31}H_{28}O_3P_2Pd$ : 60.35, 4.57 (calc'd); 60.33, 4.61 (actual).

See Figures S8-S13 for characterization data.



Figure S8. <sup>1</sup>H NMR spectrum (300 MHz; CDCl<sub>3</sub>) of 2.



Figure S9.  $^{31}$ P NMR spectrum (121 MHz; CDCl<sub>3</sub>) of **2**.



Figure S10. <sup>13</sup>C NMR spectrum (125 MHz; CDCl<sub>3</sub>) of **2**. Full spectrum window.



Figure S11. <sup>13</sup>C NMR spectrum (125 MHz; CDCl<sub>3</sub>) of **2**. Expansion of aliphatic carbon region.



Figure S12. <sup>13</sup>C NMR spectrum (125 MHz; CDCl<sub>3</sub>) of **2**. Expansion of aromatic carbon region.



**Figure S13.** *Left:* Experimental HRMS-ESI spectrum of [**2**•Na]<sup>+</sup>. *Right:* Calculated HRMS isotope pattern for [**2**•Na]<sup>+</sup>.

DPEPhos-Pd-MAH (3)

Prepared according to the general procedure using **1** (100.0 mg, 0.2133 mmol), DPEPhos (120.6 mg, 0.2240 mmol), and THF (5 mL). Trituration/decantation 3 x with diethyl ether (4 mL). Tan solid: 135.7 mg (86%). Crystals for X-ray diffraction were grown at room temperature from DCM/Et<sub>2</sub>O (Et<sub>2</sub>O as anti-solvent) by layering Et<sub>2</sub>O on top of a concentrated solution of **3** in DCM. <sup>1</sup>H NMR: (500 MHz; CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  4.09 (m, 2H, -CH=CH–), 6.67 (m, 2H, Ar–H), 6.93 (t, 2H, *J* = 7.6 Hz), 6.99 (dd, 2H, *J* = 3.7, 8.4 Hz), 7.26-7.46 (m, 24H, Ar–H); <sup>13</sup>C{<sup>1</sup>H} NMR: (125 MHz; CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  54.9 (m), 120.6, 124.6 (t, *J* 





DPEPhos-Pd-MAH (3) 86% isolated

Hz), 133.4 (m), 134.2 (t, J = 7.5 Hz), 158.5 (t, J = 4.8 Hz), 170.1; <sup>31</sup>P{<sup>1</sup>H} NMR: (202 MHz; CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  16.6. HRMS (ESI) of [C<sub>40</sub>H<sub>30</sub>O<sub>4</sub>P<sub>2</sub>Pd•Na]<sup>+</sup> (major isotopomer, sodium adduct): 765.05463 (calc'd); 765.05497 (found). Elemental analysis (CH) of C<sub>40</sub>H<sub>30</sub>O<sub>4</sub>P<sub>2</sub>Pd: 64.66, 4.07 (calc'd); 64.63, 4.18 (actual).



Figure S14. <sup>1</sup>H NMR spectrum (500 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of 3.



Figure S15.  $^{31}\text{P}$  NMR spectrum (202 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of 3.



Figure S16. <sup>13</sup>C NMR spectrum (125 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of **3**.



Figure S17. <sup>13</sup>C NMR spectrum (125 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of **3**. Expansions showing multiplets.



**Figure S18.** *Left:* Experimental HRMS-ESI spectrum of [**3**•Na]<sup>+</sup>. *Right:* Calculated HRMS isotope pattern for [**3**•Na]<sup>+</sup>.



**Figure S19.** Solid-state molecular structure of complex **3**, including diethyl ether solvate. Thermal ellipsoids plotted at 50% probability for non-H atoms; H-atoms shown as uniformly-sized white spheres for clarity. X-ray diffraction data collected at room temperature. Selected bond lengths (Å) and angles (°): Pd1–P1: 2.3140(10); Pd1–P2: 2.3211(10); Pd1–C1: 2.104(4); Pd1–C2: 2.125(4); C1–C2: 1.396(6); P1–Pd1–P2: 106.32(3); C1–Pd1–C2: 38.55(15); C1–Pd1–P1: 106.38(12); C2–Pd1–P2: 108.67(12).

#### XantPhos–Pd–MAH (4)

Prepared according to the general procedure using **1** (100.0 mg, 0.2133 mmol), XantPhos (129.6 mg, 0.2240 mmol), and THF (5 mL). Trituration/decantation 3 x with THF (4 mL). White solid: 147.7 mg (81%). Compound isolated as the THF solvate (1 equiv THF, as observed by <sup>1</sup>H NMR spectroscopy, remains after extensive vacuum drying of the isolated solid). Crystals for X-ray diffraction were grown at room temperature from DCM/Et<sub>2</sub>O (Et<sub>2</sub>O as anti-solvent) by layering Et<sub>2</sub>O on top of a concentrated solution of **4** in DCM. <sup>1</sup>H NMR: (500 MHz; CDCl<sub>3</sub>)  $\delta$  1.47 (s, 3H, –CH<sub>3</sub>), 1.87 (m, 4H, THF), 1.89 (s, 3H, –CH<sub>3</sub>), 3.77 (m, 4H, THF), 3.98 (m, 2H, –CH=CH–), 6.54 (td, 2H, J = 1.0, 8.0 Hz), 7.09-7.28 (m, 16H, Ar–H), 7.42 (t, 4H, J = 7.4 Hz), 7.46 (t, 2H,



XantPhos-Pd-MAH (4) 81% isolated (THF solvate)

 $J = 7.4 \text{ Hz}, 7.55 \text{ (dd, } 2H, J = 1.0, 8.0 \text{ Hz}); {}^{13}\text{C}{}^{1}\text{H} \text{ NMR: } (125 \text{ MHz}; \text{ CDCI}_3) \delta 23.9, 25.6 \text{ (THF}), 31.6, 36.0, 56.8 \text{ (m)}, 68.0 \text{ (THF}), 121.2 \text{ (m)}, 124.4 \text{ (t, } J = 2.6 \text{ Hz}), 126.7, 128.2 \text{ (m)}, 128.4 \text{ (m)}, 129.5, 129.8, 130.8 \text{ (m)}, 131.7, 132.9 \text{ (m)}, 133.5 \text{ (m)}, 133.9 \text{ (m)}, 155.4 \text{ (t, } J = 5.2 \text{ Hz}), 169.8; {}^{31}\text{P}{}^{1}\text{H} \text{ NMR: } (202 \text{ MHz}; \text{ CDCI}_3) \delta 10.7. \text{ HRMS (ESI) of } [C_{43}\text{H}_{34}\text{O}_4\text{P}_2\text{Pd}\bullet\text{H}]^+ \text{ (major isotopomer, proton adduct): } 783.10399 \text{ (calc'd)}; 783.10406 \text{ (found)}. \text{ Elemental analysis } (\text{CH}) \text{ of } C_{47}\text{H}_{2}\text{O}_5\text{P}_2\text{Pd} \text{ (4}\bullet\text{THF}): 66.01, 4.95 \text{ (calc'd)}; 66.67, 4.94 \text{ (actual)}.$ 



Figure S20. <sup>1</sup>H NMR spectrum (500 MHz; CDCl<sub>3</sub>) of 4.



Figure S21. <sup>1</sup>H NMR spectrum (500 MHz; CDCl<sub>3</sub>) of **4**. Expansion of aromatic region.



Figure S22. <sup>31</sup>P NMR spectrum (202 MHz; CDCl<sub>3</sub>) of 4.



Figure S23. <sup>13</sup>C NMR spectrum (125 MHz; CDCl<sub>3</sub>) of **4**.



Figure S24. <sup>13</sup>C NMR spectrum (125 MHz; CDCl<sub>3</sub>) of **4**. Expansion of downfield region.



Figure S25. <sup>13</sup>C NMR spectrum (125 MHz; CDCl<sub>3</sub>) of **4**. Expansions showing multiplets.



**Figure S26.** *Top:* Experimental HRMS-ESI spectrum of [**4**•H]<sup>+</sup>. *Bottom:* Calculated HRMS isotope pattern for [**4**•H]<sup>+</sup>.



**Figure S27.** Solid-state molecular structure of complex **4**, including half-occupancy dichloromethane solvate. Thermal ellipsoids plotted at 50% probability for non-H atoms; H-atoms shown as uniformly-sized white spheres for clarity. Selected bond lengths (Å) and angles (°): Pd1–P1: 2.3492(7); Pd1–P2: 2.3427(7); Pd1–C1: 2.141(3); Pd1–C2: 2.111(3); C1–C2: 1.420(4); P1–Pd1–P2: 106.32(3); C1–Pd1–C2: 39.01(11); C1–Pd1–P1: 110.43(8); C2– Pd1–P2: 104.24(8).

### dppf–Pd–MAH (5)

Prepared according to the general procedure using **1** (100.0 mg, 0.2133 mmol), dppf (124.2 mg, 0.2240 mmol), and THF (5 mL). Trituration/decantation 3 x with diethyl ether (4 mL). Brown solid: 150.0 mg (93%). Crystals for X-ray diffraction were grown at room temperature from DCM/Et<sub>2</sub>O (Et<sub>2</sub>O as anti-solvent) by layering Et<sub>2</sub>O on top of a concentrated solution of **5** in DCM. <sup>1</sup>H NMR: (300 MHz; CDCl<sub>3</sub>)  $\delta$  4.11 (br m, 2H, –CH=CH–), 4.19 (br m, 4H, Cp–H), 4.33 (br m, 4H, Cp–H), 7.42 (br m, 12H, Ph–H), 7.52 (br m, 4H, Ph–H), 7.65 (br m, 4H, Ph–H); <sup>13</sup>C{<sup>1</sup>H} NMR: (125 MHz; CDCl<sub>3</sub>)  $\delta$  53.8 (m), 72.4, 74.6, 128.5 (d, *J* = 13.4 Hz), 130.2 (d, *J* = 48.0 Hz), 133.8 (m), 136.6 (m), 170.7; <sup>31</sup>P{<sup>1</sup>H}



dppf-Pd-MAH (5) 93% isolated

NMR: (202 MHz; CDCl<sub>3</sub>) δ 22.9. HRMS (ESI) of [C<sub>38</sub>H<sub>30</sub>FeO<sub>3</sub>P<sub>2</sub>Pd•Na]<sup>+</sup> (major isotopomer, Na<sup>+</sup> adduct): 780.99466 (calc'd); 780.99434 (found). Elemental analysis (CH) of C<sub>38</sub>H<sub>30</sub>FeO<sub>3</sub>P<sub>2</sub>Pd: 60.14, 3.98 (calc'd); 60.08, 4.08 (actual).





**Figure S31**. <sup>13</sup>C NMR spectrum (125 MHz; CDCl<sub>3</sub>) of **5** (green labels are manually-picked peaks in the multiplet).



**Figure S32.** *Left:* Experimental HRMS-ESI spectrum of [**5**•Na]<sup>+</sup>. *Right:* Calculated HRMS isotope pattern for [**5**•Na]<sup>+</sup>.



**Figure S33.** Solid-state molecular structure of complex **5**. Thermal ellipsoids plotted at 50% probability for non-H atoms; H-atoms shown as uniformly-sized white spheres for clarity. X-ray diffraction data collected at room temperature. Selected bond lengths (Å) and angles (°): Pd1–P1: 2.324(4); Pd1–P2: 2.302(4); Pd1–C1: 2.140(16); Pd1–C2: 2.105(16); C1–C2: 1.39(2); P1–Pd1–P2: 105.16(13); C1–Pd1–C2: 38.3(6); C1–Pd1–P1: 113.5(5); C2–Pd1–P2: 102.9(5).

### SPhos-Pd-MAH (6)

Prepared according to the general procedure using **1** (100.0 mg, 0.2133 mmol), SPhos (91.9 mg, 0.2240 mmol), and THF (5 mL). Trituration/decantation 3 x with diethyl ether (4 mL). Yellow solid: 86.6 mg (66%). <sup>1</sup>H NMR: (300 MHz; CDCl<sub>3</sub>)  $\delta$  1.10-1.40 (m, 10H, Cy–H), 1.60-1.96 (br m, 10H, Cy–H), 2.12 (br m, 2H, Cy–H), 3.69 (s, 6H, 2 x OCH<sub>3</sub>), 4.5 (v br, 1H, –CH=CH–), 6.91 (m, 3H, Ar–H), 7.37-7.46 (m, 3H, Ar–H), 7.60 (m, 1H, Ar–H); <sup>13</sup>C{<sup>1</sup>H} NMR: (75 MHz; CDCl<sub>3</sub>)  $\delta$  26.1, 27.0 (d, *J* = 11.1 Hz), 28.9 (m), 29.5 (br), 34.3 (d, *J* = 19.0), 54.7 (br), 55.8, 105.3 (br), 127.5 (d, *J* = 4.0 Hz), 129.4, 130.7 (d, *J* = 2.1 Hz), 130.9 (d, *J* = 11.1 Hz), 132.0, 137.3 (d, 31.0 Hz), 143.8, 144.2, 153.6; <sup>31</sup>P{<sup>1</sup>H} NMR: (121 MHz; CDCl<sub>3</sub>)  $\delta$  44.2. HRMS (ESI) of [C<sub>30</sub>H<sub>37</sub>O<sub>5</sub>PPd•H]<sup>+</sup> (major isotopomer, H<sup>+</sup> adduct): 615.14862 (calc'd);



SPhos-Pd-MAH (6) 66% isolated

615.14870 (found). Elemental analysis (CH) of C<sub>30</sub>H<sub>37</sub>O<sub>5</sub>PPd: 58.59, 6.06 (calc'd); 58.47, 6.07 (actual).



Figure S35. <sup>31</sup>P NMR spectrum (121 MHz; CDCl<sub>3</sub>) of 6.



Figure S36. <sup>13</sup>C NMR spectrum (75 MHz; CDCl<sub>3</sub>) of 6.



**Figure S37.** *Left:* Experimental HRMS-ESI spectrum of [6•H]<sup>+</sup> and [6•Na]<sup>+</sup>. *Middle:* Calculated HRMS isotope pattern for [6•H]<sup>+</sup>. *Right:* Calculated HRMS isotope pattern for [6•Na]<sup>+</sup>.

#### RuPhos–Pd–MAH (7)

Prepared according to the general procedure using **1** (99.3 mg, 0.2118 mmol), RuPhos (98.8 mg, 0.2118 mmol), and THF (15 mL). Trituration/decantation 6 x with hexanes (4 mL). Yellow solid: 86.8 mg (61%). <sup>1</sup>H NMR: (500 MHz,  $CD_2Cl_2$ )  $\delta$  1.01 (d, 6H, J = 5.9 Hz, O-CH(CH<sub>3</sub>)<sub>2</sub>), 1.11-1.43 (m, 10H, Cy–H), 1.26 (d, 6H, J = 5.9 Hz, O-CH(CH<sub>3</sub>)<sub>2</sub>), 1.60-1.80 (m, 6H, Cy–H), 1.60-1.80 (m, 6H), 1.85 (m, 2H, Cy–H), 2.00 (m, 2H, Cy–H), 2.13 (m, 2H, Cy–H), 2.50 (br s, 1H, -CH=CH–), 4.50 (br s, 1H, -CH=CH–), 4.55 (sept, 2H, J = 5.8 Hz, 2 x O-CH(CH<sub>3</sub>)<sub>2</sub>), 6.80 (d, 2H, J = 8.3 Hz, Ar–H), 6.83-6.89 (m, 1H, Ar–H), 7.35 (t, 1H, J = 8.3 Hz, Ar–H), 7.38-7.44 (m, 2H, Ar–H), 7.57-7.63 (m, 1H, Ar–H); <sup>13</sup>C{<sup>1</sup>H} NMR: (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  21.2, 21.7, 25.6, 26.2, 26.8 (d, J = 11.1 Hz), 26.8 (d, J = 13.9 Hz), 29.4, 29.9, 34.6 (d, J =





19.3 Hz), 54.4, 54.5, 70.4, 105.8, 126.8 (d, J = 3.8 Hz), 129.4, 130.2, 131.0 (d, J = 10.8 Hz), 131.6, 137.9 (d, J = 32.0 Hz), 145.5 (d, J = 28.9 Hz), 153.1; <sup>31</sup>P{<sup>1</sup>H} NMR: (300 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  44.9. HRMS (ESI) of [C<sub>34</sub>H<sub>45</sub>O<sub>5</sub>PPd•Na]<sup>+</sup> (major isotopomer, Na<sup>+</sup> adduct): 693.19317 (calc'd); 693.19345 (found). Elemental analysis (CH) of C<sub>34</sub>H<sub>45</sub>O<sub>5</sub>PPd: 60.85, 6.76 (calc'd); 60.75, 6.66 (actual).



Figure S38. <sup>1</sup>H NMR spectrum (500 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of 7.



Figure S39. <sup>31</sup>P NMR spectrum (202 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of 7.



Figure S41. Left: Experimental HRMS-ESI spectrum of [7•Na]<sup>+</sup>. Right: Calculated isotope pattern for [7•Na]<sup>+</sup>.

XPhos–Pd–MAH (8)

Prepared according to the general procedure using **1** (109.9 mg, 0.2344 mmol), XPhos (112.9 mg, 0.2367 mmol), and THF (10 mL). Trituration/decantation 6 x with hexanes (4 mL). Yellow solid: 101.6 mg (64%). Crystals for X-ray diffraction were grown at room temperature from DCM/Et<sub>2</sub>O (Et<sub>2</sub>O as anti-solvent) by layering Et<sub>2</sub>O on top of a concentrated solution of **8** in DCM. <sup>1</sup>H NMR: (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  0.93 (d, 6H, *J* = 6.3 Hz, -CH(CH<sub>3</sub>)<sub>2</sub>), 1.16-1.52 (m, 10 H, Cy–H), 1.36 (d, 6H, *J* = 6.7 Hz, -CH(CH<sub>3</sub>)<sub>2</sub>), 1.43 (d, 6H, *J* = 6.4 Hz, -CH(CH<sub>3</sub>)<sub>2</sub>), 1.50-1.70 (br m, 6H, Cy–H), 1.87 (br m, 2H, Cy–H), 2.00-2.30 (br m, 6H, 2 x -CH(CH<sub>3</sub>)<sub>2</sub> + Cy–H), 3.15 (sept, 1 H, *J* = 6.9 Hz, -CH(CH<sub>3</sub>)<sub>2</sub>), 4.48 (br s, 1H, -CH=CH–), 6.97 (br dd, 1H, *J* = 2.8 Hz, 7.1 Hz, Ar–H), 7.39 (br s, 2H, Ar–H), 7.43 (t, 1H, *J* = 7.4 Hz,



Ar–H), 7.48 (t, 1H, J = 7.4 Hz, Ar–H), 7.68 (t, 1H, J = 6.0 Hz, Ar–H); <sup>13</sup>C{<sup>1</sup>H} NMR: 23.8, 24.0, 24.9, 26.0, 27.0 (d, J = 3.0 Hz), 27.3 (d, J = 3.0 Hz), 29.2, 30.3, 31.5, 33.8, 36.3 (d, J = 17.7 Hz), 55.4, 122.7 (d, J = 5.3 Hz), 127.5 (d, J = 3.6 Hz), 129.9, 132.0, 132.2 (d, J = 10.2 Hz), 137.4 (d, J = 29.1 Hz), 146.7 (d, J = 29.2 Hz), 148.8; <sup>31</sup>P{<sup>1</sup>H} NMR: 38.6. HRMS (ESI) of  $[C_{37}H_{51}O_{3}PPd \bullet H]^{+}$  (major isotopomer, H<sup>+</sup> adduct): 681.26834 (calc'd); 681.26863 (found). Elemental analysis (CH) of  $C_{37}H_{51}O_{3}PPd$ : 65.24, 7.55 (calc'd); 65.30, 7.85 (actual).



Figure S42. <sup>1</sup>H NMR spectrum (500 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of 8.



Figure S43. <sup>31</sup>P NMR spectrum (202 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of 8.



Figure S44. <sup>13</sup>C NMR spectrum (125 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of 8.



**Figure S45**. <sup>13</sup>C NMR spectrum (125 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of **8**. Expansion of aliphatic region.



Figure S46. <sup>13</sup>C NMR spectrum (125 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of 8. Expansion of aromatic region.



**Figure S47.** *Left:* Experimental HRMS-ESI spectrum of [8•H]<sup>+</sup> and [8•Na]<sup>+</sup>. *Middle:* Calculated HRMS isotope pattern for [8•H]<sup>+</sup>. *Right:* Calculated HRMS isotope pattern for [8•Na]<sup>+</sup>.



Figure S48. Solid-state molecular structure of complex 8. Thermal ellipsoids plotted at 50% probability for non-H atoms; H-atoms are shown as uniformly-sized white spheres. One cyclohexyl is disordered between two conformations, both of which have half-occupancy. Selected bond lengths (Å) and angles (°): Pd1–P1: 2.2995(9); Pd1–C1: 2.077(3); Pd1–C2: 2.135(3); Pd1–C23: 2.369(3); P1–Pd1–C23: 83.84(7); P1–Pd1–C1: 115.45(13); C2–Pd1–C23: 120.86(14).

tBuXPhos–Pd–MAH (9)

Prepared according to the general procedure using **1** (100.0 mg, 0.2133 mmol), *t*BuXPhos (95.1 mg, 0.2240 mmol), and THF (5 mL). Trituration/decantation 3 x with diethyl ether (4 mL). Yellow solid: 97.0 mg (72%). <sup>1</sup>H NMR: (500 MHz, CDCl<sub>3</sub>)  $\delta$  0.89 (d, 6H, *J* = 6.6 Hz, -CH(CH<sub>3</sub>)<sub>2</sub>), 1.33 (d, 6H, *J* = 6.6 Hz, -CH(CH<sub>3</sub>)<sub>2</sub>), 1.38 (d, 18H, *J* = 13.9 Hz, 2 x *t*Bu), 1.42 (d, 6H, *J* = 7.6 Hz, -CH(CH<sub>3</sub>)<sub>2</sub>), 2.30 (sept, 2H, *J* = 7.0 Hz, 2 x -CH(CH<sub>3</sub>)<sub>2</sub>), 3.20 (sept, 1H, *J* = 7.2 Hz, -CH(CH<sub>3</sub>)<sub>2</sub>), 4.30 (br s, 1H, -CH=CH–), 7.00 (m, 1H, Ar–H), 7.37 (br s, 2H, Ar–H), 7.40-7.45 (m, 2H, Ar–H), 7.85 (m, 1H, Ar–H); <sup>13</sup>C{<sup>1</sup>H} NMR: 24.3 (br), 25.9, 31.0 (m), 31.3 (br), 33.6, 36.5 (br), 56.8 (d, *J* = 13.3 Hz), 122.6 (d, *J* = 5.0 Hz), 126.9, 127.0, 129.7 (d, *J* = 2.1 Hz), 133.3 (d, *J* = 10.4 Hz), 134.7, 137.7 (d, *J* = 19.5 Hz),



147.9 (d, J = 29.2 Hz), 149.2, 170.0 (v br); <sup>31</sup>P{<sup>1</sup>H} NMR: 65.6. HRMS (ESI) of  $[C_{33}H_{47}O_3PPd \bullet H]^+$  (major isotopomer, H<sup>+</sup> adduct): 629.23704 (calc'd); 629.23715 (found). Elemental analysis (CH) of  $C_{33}H_{47}O_3PPd$ : 63.00, 7.53 (calc'd); 62.43, 7.45 (actual).



Figure S49. <sup>1</sup>H NMR spectrum (500 MHz; CDCl<sub>3</sub>) of 9.



Figure S50.  $^{31}\text{P}$  NMR spectrum (202 MHz; CDCl<sub>3</sub>) of **9**.



Figure S51. <sup>13</sup>C NMR spectrum (125 MHz; CDCl<sub>3</sub>) of 9.



Figure S52. <sup>13</sup>C NMR spectrum (125 MHz; CDCl<sub>3</sub>) of **9**. Expansion of aliphatic region.



Figure S53. <sup>13</sup>C NMR spectrum (125 MHz; CDCl<sub>3</sub>) of **9**. Expansion of aromatic region.



**Figure S54.** *Left:* Experimental HRMS-ESI spectrum of [**9**•H]<sup>+</sup>. *Right:* Calculated HRMS isotope pattern for [**9**•H]<sup>+</sup>.

BrettPhos–Pd–MAH (10)

Prepared according to the general procedure using **1** (91.0 mg, 0.1941 mmol), BrettPhos (104.2 mg, 0.1941 mmol), and THF (9 mL). Trituration/decantation 5 x with hexanes (5 mL). Yellow solid: 92.3 mg (64%). <sup>1</sup>H NMR: (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  0.88 (br d, 6H, *J* = 4.75 Hz), 1.04-2.21 (m, 20H, Cy–H), 1.35 (br d, 6H, *J* = 6.7 Hz), 1.43 (br s, 6H), 2.28 (br s, 2H), 2.56 (br s, 2H), 3.13 (sept, 1H, *J* = 6.7 Hz), 3.46 (s, 3H), 3.90 (s, 3H), 4.45 (br s, 1H), 6.83-7.00 (m, 2H), 7.21-7.50 (m, 2H); <sup>13</sup>C{<sup>1</sup>H} NMR: (125 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  22.6, 22.8, 23.3, 23.6, 23.9, 24.4, 24.7, 25.0, 25.5, 26.1, 27.2 (d, *J* = 15.4 Hz), 27.5 (d, *J* = 11.4 Hz), 30.4, 31.2, 33.2, 33.8, 38.0 (d, *J* = 130.5 Hz), 54.5, 55.4, 55.8, 110.7 (d, *J* = 3.1 Hz), 113.0, 116.0 d (J = 5.7 Hz), 122.2, 124.9, 127.5 (d, *J* = 23.5 Hz), 137.3 (d, *J* = 30.0 Hz),



64% isolated

141.2, 145.4, 148.8, 152.2 (d, J = 14.9 Hz), 155.4 (d, J = 2.5 Hz), 169.4, 171.1; <sup>31</sup>P{<sup>1</sup>H} NMR: (121 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  46.0. HRMS (ESI) of [C<sub>39</sub>H<sub>55</sub>O<sub>5</sub>PPd•H]<sup>+</sup> (major isotopomer, H<sup>+</sup> adduct): 741.28947 (calc'd); 741.28956 (found). Elemental analysis (CH) of C<sub>39</sub>H<sub>55</sub>O<sub>5</sub>PPd: 63.19, 7.48 (calc'd); 63.38, 7.72 (actual).



Figure S55. <sup>1</sup>H NMR spectrum (500 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of **10**.



Figure S56. <sup>31</sup>P NMR spectrum (121 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of **10**.



Figure S57. <sup>13</sup>C NMR spectrum (125 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of **10**.



Figure S58. <sup>13</sup>C NMR spectrum (125 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of **10**. Expansion of aliphatic region.


Figure S59. <sup>13</sup>C NMR spectrum (125 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of **10**. Expansion of aromatic region.



**Figure S60.** *Left:* Experimental HRMS-ESI spectrum of [**10**•H]<sup>+</sup> and [**10**•Na]<sup>+</sup>. *Middle:* Calculated HRMS isotope pattern for [**10**•H]<sup>+</sup>. *Right:* Calculated HRMS isotope pattern for [**10**•Na]<sup>+</sup>.

tBuBrettPhos–Pd–MAH (11)

Prepared according to the general procedure using **1** (56.0 mg, 0.1194 mmol), *t*BuBrettPhos (60.8 mg, 0.1254 mmol), and THF (2.5 mL). Trituration/decantation 5 x with hexanes (5 mL). Yellow solid: 44.0 mg (54%). <sup>1</sup>H NMR: (300 MHz, CDCl<sub>3</sub>)  $\delta$ 0.88 (br m, 6H), 1.20-1.50 (br m, 30H), 2.01 (br m, 1H, –CH=CH–), 3.15 (sept, 1H, *J* = 6.8 Hz), 3.41 (s, 3H), 3.84 (s, 3H), 4.27 (br s, 1H, –CH=CH–), 6.85 (d, 1H, *J* = 8.7 Hz), 6.93 (dd, 1H, *J* = 1.8, 8.8 Hz), 7.19 (br s, 1H), 7.42 (br s, 1H); <sup>13</sup>C{<sup>1</sup>H} NMR: (500 MHz, CDCl<sub>3</sub>)  $\delta$  23.1 (br), 24.7, 25.3 (br), 31.4 (br), 31.8 (d, *J* = 7.8 Hz), 33.7, 54.1, 54.3, 57.6, 57.7, 110.3 (d, *J* = 2.7 Hz), 112.9 (d, *J* = 1.2 Hz), 114.7 (d, *J* = 5.3 Hz), 122.5 (br), 126.4 (br), 128.6 (d, *J* = 11.2 Hz), 139.1 (d, *J* = 30.5 Hz), 149.3, 152.0 (d, *J* = 15.2 Hz), 154.7 (d, *J* = 2.1 Hz); <sup>31</sup>P{<sup>1</sup>H</sup> NMR: (300 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  72.1. HRMS



(ESI) of  $[C_{35}H_{51}O_5PPd \cdot H]^+$  (major isotopomer,  $H^+$  adduct): 689.25817 (calc'd); 689.25851 (found). Elemental analysis (CH) of  $C_{35}H_{51}O_5PPd$ : 61.00, 7.46 (calc'd); 60.98, 7.35 (actual).



Figure S61. <sup>1</sup>H NMR spectrum (500 MHz; CDCl<sub>3</sub>) of **11**.



Figure S62. <sup>31</sup>P NMR spectrum (121 MHz; CDCl<sub>3</sub>) of **11**.



Figure S63. <sup>13</sup>C NMR spectrum (125 MHz; CDCl<sub>3</sub>) of **11**.



Figure S64. <sup>13</sup>C NMR spectrum (125 MHz; CDCl<sub>3</sub>) of **11**. Expansion of aliphatic region.



Figure S65. <sup>13</sup>C NMR spectrum (125 MHz; CDCl<sub>3</sub>) of **11**. Expansion of aromatic region.



**Figure S66.** *Left:* Experimental HRMS-ESI spectrum of [**11**•H]<sup>+</sup> and [**11**•Na]<sup>+</sup>. *Middle:* Calculated HRMS isotope pattern for [**11**•H]<sup>+</sup>. *Right:* Calculated HRMS isotope pattern for [**11**•Na]<sup>+</sup>.

BippyPhos–Pd–MAH (12)

Prepared according to the general procedure using **1** (100.0 mg, 0.2133 mmol), BippyPhos (113.5 mg, 0.2240 mmol), and THF (5 mL). Trituration/decantation 5 x with hexanes (5 mL). Tan solid: 130.0 mg (86%). <sup>1</sup>H NMR: (300 MHz, CDCl<sub>3</sub>)  $\delta$  0.73 (d, 9H, *J* = 15.0 Hz), 0.87 (d, 9H, *J* = 15.3 Hz), 3.98 (dd, 1H, *J* = 4.2, 6.3 Hz) 4.32 (d, 1H, *J* = 4.1 Hz), 6.60 (d, 1H, *J* = 2.1 Hz), 7.21-7.42 (m, 13H), 7.74 (m, 2H), 8.12 (d, 1H, *J* = 1.9 Hz); <sup>13</sup>C{<sup>1</sup>H} NMR: (125 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  28.7 (d, *J* = 8.3 Hz), 28.8 (d, *J* = 8.3 Hz), 34.5 (d, *J* = 13.6 Hz), 34.7 (d, *J* = 13.3 Hz), 51.3 (d, *J* = 14.2 Hz), 54.8 (d, *J* = 2.2 Hz), 107.7, 113.3, 125.9, 127.7, 127.8, 128.2, 128.6, 128.8, 128.9, 129.3, 139.0, 130.3, 130.8, 139.3, 140.8, 144.1 (d, *J* = 29.3 Hz), 144.4 (d, *J* = 5.8 Hz), 150.7, 169.2 (d, *J* = 3.3 Hz), 170.4;



BippyPhos-Pd-MAH (12) 86% isolated

 $^{31}P{^{1}H}$  NMR: (121 MHz, CDCl<sub>3</sub>)  $\delta$  46.5. HRMS (ESI) of  $[C_{36}H_{37}N_4O_3PPd \bullet Na]^+$  (major isotopomer, Na<sup>+</sup> adduct): 733.15303 (calc'd); 733.15292 (found). Elemental analysis (CHN) of  $C_{36}H_{37}N_4O_3PPd$ : 60.81, 5.24, 7.88 (calc'd); 60.57, 5.33, 7.86 (actual).



Figure S67. <sup>1</sup>H NMR spectrum (300 MHz; CDCl<sub>3</sub>) of **12**.



Figure S68. <sup>31</sup>P NMR spectrum (121 MHz; CDCl<sub>3</sub>) of **12**.



Figure S69. <sup>13</sup>C NMR spectrum (125 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of **12**.



Figure S70.  $^{13}$ C NMR spectrum (125 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of **12**. Expansion of aliphatic region.



Figure S71. <sup>13</sup>C NMR spectrum (125 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of **12**. Expansion of aromatic region.



**Figure S72.** *Left:* Experimental HRMS-ESI spectrum of  $[12 \cdot H]^+$ . *Right:* Calculated HRMS isotope pattern for  $[12 \cdot H]^+$ .



**Figure S73.** Solid-state molecular structure of complex **12**, excluding disordered diethyl ether and dichloromethane solvates. Thermal ellipsoids plotted at 50% probability for non-H atoms; H-atoms shown as uniformly-sized white spheres for clarity. One phenyl group is shown in wireframe for clarity. Selected bond lengths (Å) and angles (°): Pd1–P1: 2.3051(8); Pd1–C13: 2.367(3); Pd1–C12: 2.622(3); Pd1–C33: 2.133(3); Pd1–C34: 2.081(3); C33-C34: 1.422(4); P1–Pd1–C13: 84.55(6); P1–Pd1–C34: 114.71(8); C13–Pd1–C33: 121.37(10).



**Figure S74.** Solid-state molecular structure of complex **12**, including disordered half-occupancy diethyl ether and full-occupancy dichloromethane solvates. Thermal ellipsoids plotted at 50% probability for non-H atoms; Hatoms shown as uniformly-sized white spheres for clarity.

#### Me<sub>4</sub>tBuXPhos-Pd-MAH (13)

Prepared according to the general procedure using **1** (101.8 mg, 0.2171 mmol), Me<sub>4</sub>tBuXPhos (109.6 mg, 0.2126 mmol), and THF (11 mL). Trituration/decantation 7 x with hexanes (5 mL). Yellow solid: 75.7 mg (51%). <sup>1</sup>H NMR: (300 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$ 0.53 (d, 9H, *J* = 15.0 Hz), 0.77 (d, 9H, *J* = 15.3 Hz), 1.41 (m, 4H, THF), 3.57 (m, 4H, THF), 3.89 (dd, 1H, *J* = 4.2, 5.9 Hz) 4.11 (d, 1H, *J* = 4.1 Hz), 6.07 (d, 1H, *J* = 2.0 Hz), 6.80-7.02 (m, 8H), 7.06 (m, 2H), 7.41 (m, 2H), 7.76-7.86 (m, 5H); <sup>13</sup>C{<sup>1</sup>H} NMR: (125 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  28.7 (d, *J* = 8.3 Hz), 28.8 (d, *J* = 8.3 Hz), 34.5 (d, *J* = 13.6 Hz), 34.7 (d, *J* = 13.3 Hz), 51.3 (d, *J* = 14.2 Hz), 54.8 (d, *J* = 2.2 Hz), 107.7, 113.3, 125.9, 127.7, 127.8, 128.2, 128.6, 128.8, 128.9, 129.3, 139.0, 130.3, 130.8, 139.3, 140.8, 144.1



Me<sub>4</sub>*t*BuXPhos-Pd-MAH (13) 51% isolated

(d, J = 29.3 Hz), 144.4 (d, J = 5.8 Hz), 150.7, 169.2 (d, J = 3.3 Hz), 170.4; <sup>31</sup>P{<sup>1</sup>H} NMR: (121 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  46.6.Yield: 43%; <sup>1</sup>H NMR: (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  0.83 (d, 3H, J = 6.0 Hz), 0.88 (d, 3H, J = 6.0 Hz), 1.13 (s, 3H), 1.24 (d, 3H, J = 5.8 Hz), 1.35 (d, 3H, J = 5.6 Hz), 1.38-1.60 (m, 24H), 2.01 (m, 1H), 2.21 (s, 3H), 2.21 (s, 3H), 2.40 (br m, 2H), 2.63 (s, 3H), 3.15 (sept, 1H, J = 6.9 Hz), 4.24 (br s, 1H), 7.25 (s, 1H), 7.40 (s, 1H); <sup>13</sup>C{<sup>1</sup>H} NMR: (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  17.0, 17.1, 19.6, 23.1, 24.2, 24.4, 25.6, 26.3, 26.5, 31.4 (d, J = 30.2 Hz), 32.5, 32.6, 32.7, 32.7, 33.9, 38.7 (d, J = 3.6 Hz), 58.0 (d, J = 29.7 Hz), 58.6, 117.9 (d, J = 4.5 Hz), 122.4, 124.5, 125.9, 126.3, 128.1, 135.5 (d, J = 10.3 Hz), 136.4 (d, J = 12.4 Hz), 136.6 (d, J = 4.3 Hz), 138.8, 139.3, 139.6 (d, J = 1.5 Hz), 145.6 (d, J = 35.2 Hz), 147.2, 149.3, 163.5, 169.8; <sup>31</sup>P{<sup>1</sup>H} NMR: (300 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  89.6. HRMS (ESI) of [C<sub>37</sub>H<sub>55</sub>O<sub>3</sub>PPd•H] (major isotopomer, H<sup>+</sup> adduct): 685.29964 (calc'd); 685.29954 (found). Elemental analysis (CH) of C<sub>37</sub>H<sub>55</sub>O<sub>3</sub>PPd: 64.85, 8.09 (calc'd); 64.08, 8.05 (actual).

The formation of **13** from either complex **1** or the *tert*-butyl analogue and two equivalents of Me<sub>4</sub>*t*BuXPhos at room temperature was followed by <sup>1</sup>H and <sup>31</sup>P NMR spectroscopy using the following procedure. Inside a nitrogen glovebox, a 1.8 mL HPLC vial was charged with Me<sub>4</sub>*t*BuXPhos (13.0 mg, 0.0271 mmol) and CDCl<sub>3</sub> (0.2 mL). The vial was sealed with an aluminum crimp cap containing a PTFE-lined rubber septum and removed from the glovebox. An NMR tube was charged with either <sup>DMP</sup>DAB–Pd–MAH (**1**, 6.3 mg, 0.0134 mmol) or <sup>tBu</sup>DAB–Pd–MAH (5.0 mg, 0.0134 mmol) and 1,3,5-trimethoxybenzene (0.00402 mmol, added as a stock solution in CDCl<sub>3</sub>) with a total CDCl<sub>3</sub> volume of 0.5 mL, and the tube capped with a small rubber septum. An initial <sup>1</sup>H NMR spectrum was obtained to lock and shim on the sample, and to establish the relative integration between the signals for the starting Pd complexes and the internal standard. The solution of Me<sub>4</sub>*t*BuXPhos was then added to the NMR tube via syringe, and both <sup>1</sup>H and <sup>31</sup>P NMR spectra were taken at regular intervals to monitor the reaction progress (Figure S75).



**Figure S75.** Comparison of ligand substitution reaction progress between <sup>DMP</sup>DAB–Pd–MAH (**1**) or <sup>tBu</sup>DAB–Pd– MAH and Me<sub>4</sub>tBuXPhos (2 equiv) to generate **13**. Complex **1** is >95% converted after 60 min, whereas ~90% of <sup>tBu</sup>DAB–Pd–MAH remains after the same time period.



**Figure S76.** <sup>1</sup>H NMR spectrum stack plot of the ligand substitution between <sup>DMP</sup>DAB–Pd–MAH (1) (singlet at 8.24 ppm) and Me<sub>4</sub>*t*BuXPhos (2 equiv), with time increasing from front (0 min) to back (62 min). Singlet at 8.15 ppm is free <sup>DMP</sup>DAB (displaced by Me<sub>4</sub>*t*BuXPhos).



Figure S77. <sup>1</sup>H NMR spectrum (500 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of **13**.







Figure S79.  $^{13}$ C NMR spectrum (125 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of **13**.



Figure S80. <sup>13</sup>C NMR spectrum (125 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of **13**. Expansion of aliphatic region.



Figure S81. <sup>13</sup>C NMR spectrum (125 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of **13**. Expansion of aromatic region.



**Figure S82.** *Left:* Experimental HRMS-ESI spectrum of  $[13 \cdot H]^+$  and  $[13 \cdot Na]^+$ . *Middle:* Calculated HRMS isotope pattern for  $[13 \cdot H]^+$ . *Right:* Calculated HRMS isotope pattern for  $[13 \cdot Na]^+$ .

JackiePhos–Pd–MAH (14)

Prepared according to the general procedure using **1** (56.5 mg, 0.1205 mmol), JackiePhos (100.8 mg, 0.1265 mmol), and THF (4 mL). Trituration/decantation 6 x with hexanes (4 mL). Yellow solid: 66.4 mg (55%). <sup>1</sup>H NMR: (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  0.93 (br s, 3H), 0.97 (br s, 3H), 1.08 (br s, 3H), 1.29 (br s, 3H), 1.43 (br s, 3H), 1.46 (br s, 3H), 2.19 (Br s, 3H), 2.33 (br s, 1H), 2.26 (br d, 1H, *J* = 6.9 Hz), 3.15 (sept, 1H, *J* = 6.9 Hz), 3.57 (s, 3H), 3.62 (s, 3H), 4.32 (br s, 1H), 7.06 (dd, 1H, *J* = 2.8 Hz, 9.0 Hz), 7.17 (d, 1H, *J* = 8.9 Hz), 7.44 (br s, 1H), 7.46 (br s, 1H), 7.77-7.90 (m, 2H), 7.95-8.13 (m, 4H); <sup>13</sup>C{<sup>1</sup>H} NMR: (125 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  22.8, 23.6, 24.3, 24.6, 25.2, 32.1, 33.9, 54.9, 55.1, 59.3 (d, *J* = 29.3 Hz), 60.1, 112.3 (d, *J* = 5.5 Hz), 116.5 (d, *J* = 7.0 Hz), 116.6, 119.8, 120.6, 122, 122.4 (d, *J* = 38.2 Hz), 122.9, 124.1, 124.2, 125.0, 126.3, 131.5 g (J = 33.4)



Hz), 131.6 q (J = 33.5 Hz), 132.6, 133.5, 136.0 (d, J = 34.9 Hz), 137.7 (d, J = 38.0 Hz), 141.4, 144.3, 149.5, 152.7 (d, J = 18.8 Hz), 154.7 (d, J = 3.0 Hz), 168.5, 168.7;  ${}^{31}P{}^{1}H$  NMR: (202 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  28.9;  ${}^{19}F{}^{1}H$  NMR: (282 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  63.4. HRMS (ESI) of [C<sub>43</sub>H<sub>39</sub>F<sub>12</sub>O<sub>5</sub>PPd•H]<sup>+</sup> (major isotopomer, H<sup>+</sup> adduct): 1001.14511 (calc'd); 1001.14681 (found). Elemental analysis (CH) of C<sub>43</sub>H<sub>39</sub>F<sub>12</sub>O<sub>5</sub>PPd: 51.59, 3.93 (calc'd); 51.84, 4.08 (actual).



Figure S83. <sup>1</sup>H NMR spectrum (500 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of 14.



Figure S84. <sup>31</sup>P NMR spectrum (202 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of 14.



Figure S85. <sup>19</sup>F NMR spectrum (282 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of **14**.



Figure S86. <sup>13</sup>C NMR spectrum (125 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of 14.



Figure S87. <sup>13</sup>C NMR spectrum (125 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of **14**. Expansion of aliphatic region.



Figure S88. <sup>13</sup>C NMR spectrum (125 MHz; CD<sub>2</sub>Cl<sub>2</sub>) of **14**. Expansion of aromatic region.



**Figure S89.** *Left:* Experimental HRMS-ESI spectrum of  $[14 \cdot H]^+$ . *Right:* Calculated HRMS isotope pattern for  $[14 \cdot H]^+$ .

The ligand substitution progress for four phosphines and one NHC reacting with complex **1** at room temperature was followed by <sup>1</sup>H NMR spectroscopy using the following procedure. Inside a nitrogen glovebox, a 1.8 mL HPLC vial was charged with ligand (0.0134 mmol for DPEPhos and DIPP-NHC; 0.0271 mmol for monodentate phosphines) and  $d_8$ -THF (0.2 mL). The vial was sealed with an aluminum crimp cap containing a PTFE-lined rubber septum and removed from the glovebox. An NMR tube was charged with <sup>DMP</sup>DAB–Pd–MAH (**1**, 6.3 mg, 0.0134 mmol) and 1,3,5-trimethoxybenzene (~0.0134 mmol) with a total  $d_8$ -THF volume of 0.5 mL, and the tube capped with a screw-cap containing a septum. An initial <sup>1</sup>H NMR spectrum was obtained to lock and shim on the sample, and to establish the relative integration between the signals for the starting Pd complex and the internal standard. The solution of phosphine was then added to the NMR tube via syringe, and <sup>1</sup>H NMR spectra were taken at regular intervals to monitor the reaction progress (Figure S90).



**Figure S90.** Comparison of ligand substitution reaction progress between <sup>DMP</sup>DAB–Pd–MAH (**1**) and several phosphines (P:Pd = 2) or *N*,*N*′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (DIPP-NHC, 1 equiv per Pd) to generate [ligand]–Pd–MAH complexes. Both DPEPhos and Bippyphos result in >95% substitution in less than 5 minutes. NMR yields determined by relative integration of product signals to 1,3,5-trimethoxybenzene internal standard. For DIPP-NHC, while immediate ligand substitution is apparent (~90% conversion of **1** in 5 min), the <sup>1</sup>H NMR spectra indicate the presence of multiple species (Figure S91).



Figure S91. <sup>1</sup>H NMR spectrum of the reaction between 1 and DIPP-NHC (1 equiv).

# III: High-Throughput Screening

# General Procedure for High-Throughput Screening

The coupling of 2-chloropyridine and benzylamine (1° amine screen from Figure 6) is given here as an example.

# Preparation of palladium sources:

Four different palladium precatalysts were dissolved in corresponding solvents with high solubility in four different vials. 21.0 mg (0.0936 mmol) of palladium acetate was dissolved in 1348 µL of dichloromethane. 17.1 mg (0.0468 mmol) of allylpalladium(II) chloride dimer was dissolved in 2269 µL of acetone. 48.4 mg (0.0468 mmol) of recrystalized Pd<sub>2</sub>dba<sub>3</sub>•CHCl<sub>3</sub> was dissolved in 1968 µL of tetrahydrofuran. 43.9 mg of DAB-Pd-MAH (0.0936 mmol) was dissolved in 2235 µL of acetone. These palladium sources stock solutions were dispensed into a 96-well-plate (24 wells for each palladium source). 40 uL of palladium acetate stock solution was dispensed into each of the 24 wells. 63.3 uL of allylpalladium chloride dimer stock solution was dispensed into each of the 24 wells. 56.3 uL of Pd<sub>2</sub>dba<sub>3</sub>•CHCl<sub>3</sub> stock solution was dispensed into each of the 24 wells. 63.3 uL of DMPDAB-Pd-MAH stock solution was dispensed into each of the 24 wells. The solvents were then evaporated through using Genevac. The 96-well-plate was stored in the glovebox for the further use.

## Preparation of phosphine ligands:

The ratio between the Pd loading and phosphine ligands is 2:1. Inside the glovebox, 0.0624 mmol of each phosphine ligand (33.5 mg of BrettPhos, 29.7 mg of XPhos, 26.5 mg of tBuXPhos, 30.2 mg tBuBrettPhos, 29.1 mg of RuPhos, 29.2  $\mu$ L of P(tBu)3) was dissolved in 600  $\mu$ L of THF in 4-dram vials separately. 100  $\mu$ L of each ligand stock solution was weighed, and the mass was recorded. 0.0052 mmol of each ligand stock solution (51.5  $\mu$ L of BrettPhos stock solution, 53.3  $\mu$ L of XPhos stock solution, 51.9  $\mu$ L of tBuXPhos stock solution, 51.7  $\mu$ L of tBuBrettPhos stock solution, 51.5  $\mu$ L of RuPhos stock solution and 52.4  $\mu$ L of P(tBu)<sub>3</sub>) was dispensed into each of four wells containing four different palladium sources.

## Preparation of reaction stock solution:

A vial was in charge with 67.9  $\mu$ L (0.72 mmol) of 2-chloropyridine, 78.8  $\mu$ L (0.72 mmol) of benzylamine, 207.6 (2.16 mmol) mg of NaO-*t*Bu, 36.3 mg (0.216 mmol) of 1,3,5-trimethoxybenzene, 5.4 mL of THF and a stir bar. After being mixed well, 161.1  $\mu$ L of this reaction stock solution was added into each well. The top of 24-well-plate was screwed on, and the whole plate was taken out form the glovebox. The plate was placed on the hot plate and stirred for 3 hours at 80 °C.

## Analysis of 24-well reactions:

500  $\mu$ L of acetonitrile was added to each well once the reaction was stopped for diluting the reaction mixtures. 40  $\mu$ L of each diluted reaction mixture was then transferred to 24 different HPLC vials followed by the addition of 1 mL of acetonitrile. These 24 samples were analyzed by the HPLC/UV-VIS detector. A)

B)









**Figure S92.** General procedure for running microscale high-throughput screens. A) Well-prepared palladium sources. B) Addition of reaction stock solutions and phosphine ligands. C) 24-well plate for running the reaction. D) Analysis by HPLC/UV-VIS.



Table S2. UPLC gradient profile in primary amine C-N coupling.

| Time     | Mobile Phase | Flow Rate | Injection Volume |
|----------|--------------|-----------|------------------|
| (min)    | B (ACN) %    | (mL/min)  | (μL)             |
| 0.01     | 15           | 0.8       | 5                |
| 0.01-3.5 | 15-85        |           |                  |
| 3.5-3.6  | 85-15        |           |                  |
| 3.6-4.5  | 15           |           |                  |



**Figure S93.** Representative UPLC trace for primary C-N coupling (<sup>DMP</sup>DAB-Pd-MAH/*t*BuBrettPhos)



Figure S94. Representative UPLC trace for primary C-N coupling (Pd<sub>2</sub>dba<sub>3</sub>•CHCl<sub>3</sub>/P(tBu)<sub>3</sub>)

| Peak Area    |                  |                  |                    |                   |
|--------------|------------------|------------------|--------------------|-------------------|
|              |                  | 2 chloropyriding | N-Benzylpyridin-2- | 1,3,5-            |
|              |                  | 2-chioropynume   | amine              | trimethoxybenzene |
|              | BrettPhos        | 0                | 3385492            | 2997690           |
|              | Xphos            | 0                | 76787              | 2453649           |
|              | <i>t</i> BuXPhos | 0                | 2377402            | 2655255           |
| Fu(OAC)2     | tBuBrettPhos     | 0                | 2307905            | 2515666           |
|              | RuPhos           | 0                | 1733149            | 2461734           |
|              | P( <i>t</i> Bu)3 | 1105874          | 0                  | 2325394           |
|              | BrettPhos        | 0                | 2370577            | 2334463           |
|              | Xphos            | 0                | 0                  | 2271905           |
|              | <i>t</i> BuXPhos | 0                | 3082567            | 2454643           |
|              | tBuBrettPhos     | 0                | 2729767            | 2434876           |
|              | RuPhos           | 0                | 1669756            | 2367546           |
|              | P( <i>t</i> Bu)3 | 673521           | 496436             | 2286357           |
|              | BrettPhos        | 0                | 3312089            | 3317989           |
|              | Xphos            | 0                | 81863              | 2288290           |
|              | <i>t</i> BuXPhos | 0                | 2837787            | 2404427           |
|              | tBuBrettPhos     | 0                | 2952075            | 2509544           |
|              | RuPhos           | 0                | 1799661            | 2353881           |
|              | P( <i>t</i> Bu)3 | 1125019          | 0                  | 2336137           |
|              | BrettPhos        | 0                | 3447511            | 1976975           |
|              | Xphos            | 0                | 67808              | 2158353           |
|              | <i>t</i> BuXPhos | 0                | 3283754            | 1861477           |
| DAD-PU-IVIAN | tBuBrettPhos     | 0                | 3397940            | 1900147           |
|              | RuPhos           | 0                | 3072338            | 2358024           |
|              | P( <i>t</i> Bu)3 | 1019157          | 185338             | 1952504           |

Table S3. HPLC peak areas for the screen of the primary amine C-N coupling.



Table S4. UPLC gradient profile in secondary C-N coupling.

| Time (min) | Mobile Phase<br>B (ACN) % | Flow Rate<br>(mL/min) | Injection Volume<br>(μL) |
|------------|---------------------------|-----------------------|--------------------------|
| 0.01       | 2                         | 0.8                   | 5                        |
| 0.01-4     | 2-98                      |                       |                          |
| 4-4.1      | 98-2                      |                       |                          |
| 4.1-4.5    | 2                         |                       |                          |





Figure S95. Representative UPLC trace for secondary C-N coupling (<sup>DMP</sup>DAB-Pd-MAH/RuPhos)



Figure S96. Representative UPLC trace for secondary C-N coupling (Pd(OAc)<sub>2</sub>/tBuBrettPhos)

| Peak Area                  |                  |                   |                          |                   |
|----------------------------|------------------|-------------------|--------------------------|-------------------|
|                            |                  | 4 bromognisolo    | 4-(4-                    | 1,3,5-            |
|                            |                  | 4-0101110a111501e | Methoxyphenyl)morpholine | trimethoxybenzene |
|                            | BrettPhos        | 252879            | 1621663                  | 1155080           |
|                            | Xphos            | 48764             | 2135289                  | 1217403           |
| Dd(OAc)                    | <i>t</i> BuXPhos | 325613            | 1327837                  | 1202379           |
| FU(UAC)2                   | tBuBrettPhos     | 563476            | 0                        | 1079231           |
|                            | RuPhos           | 0                 | 2239831                  | 1248760           |
|                            | P( <i>t</i> Bu)3 | 33578             | 2218340                  | 1310637           |
|                            | BrettPhos        | 154978            | 1962981                  | 1170919           |
|                            | Xphos            | 41485             | 2099868                  | 1125205           |
| [Pd(allyl)Cl] <sub>2</sub> | <i>t</i> BuXPhos | 26394             | 2124637                  | 1144206           |
|                            | tBuBrettPhos     | 276407            | 1414466                  | 1205944           |
|                            | RuPhos           | 25981             | 2369094                  | 1279222           |
|                            | P( <i>t</i> Bu)3 | 58704             | 1741241                  | 1143075           |
|                            | BrettPhos        | 194292            | 1983567                  | 1231454           |
|                            | Xphos            | 81890             | 2597186                  | 1461177           |
|                            | <i>t</i> BuXPhos | 76280             | 2335810                  | 1430355           |
|                            | tBuBrettPhos     | 515913            | 255223                   | 1233285           |
|                            | RuPhos           | 54649             | 2354111                  | 1304103           |
|                            | P( <i>t</i> Bu)3 | 143585            | 2551969                  | 1763992           |
|                            | BrettPhos        | 232626            | 3141942                  | 1836385           |
|                            | Xphos            | 133078            | 2406601                  | 1295819           |
|                            | <i>t</i> BuXPhos | 38335             | 3353916                  | 1696089           |
| DAR-Da-MAH                 | tBuBrettPhos     | 0                 | 1887528                  | 1698093           |
|                            | RuPhos           | 0                 | 3602097                  | 1698681           |
|                            | P(tBu)3          | 62502             | 2763901                  | 1727788           |

Table S5. HPLC peak areas for the screen of the secondary C-N coupling.



Table S6. UPLC gradient profile in sulfonamide C-N coupling.

| Time (min) | Mobile Phase<br>B (ACN) % | Flow Rate<br>(mL/min) | Injection Volume<br>(μL) |
|------------|---------------------------|-----------------------|--------------------------|
| 0.1        | 2                         | 1.3                   | 5                        |
| 0.1-2      | 2-98                      |                       |                          |
| 2-2.1      | 98-2                      |                       |                          |
| 2.1-2.5    | 2                         |                       |                          |





Figure S97. Representative UPLC trace for sulfonamide C-N coupling (<sup>DMP</sup>DAB-Pd-MAH/tBuXPhos)



Figure S98. Representative UPLC trace for sulfonamide C-N coupling (Pd(OAc)<sub>2</sub>/Me<sub>4</sub>tBuXPhos)

| Peak Area                  |                          |                |                          |                   |
|----------------------------|--------------------------|----------------|--------------------------|-------------------|
|                            |                          | 1-bromotoluene | N-(4-Methylphenyl)-4-    | 1,3,5-            |
| 4-51011000000              |                          | 4-bromotoldene | methylbenzenesulfonamide | trimethoxybenzene |
|                            | XantPhos                 | 828182         | 286064                   | 1855238           |
|                            | Xphos                    | 1401321        | 1248346                  | 1709830           |
|                            | <i>t</i> BuXPhos         | 1713058        | 661591                   | 1674885           |
| FU(UAC)2                   | Me₄ <i>t</i> BuXPhos     | 1842639        | 0                        | 1612624           |
|                            | BippyPhos                | 1894665        | 635097                   | 1699286           |
|                            | JackiePhos               | 1690195*       | 678312                   | 1715822           |
|                            | XantPhos                 | 1490106*       | 690288                   | 1899480           |
|                            | Xphos                    | 652314         | 2282165                  | 1715642           |
| [Pd(allyl)Cl] <sub>2</sub> | <i>t</i> BuXPhos         | 632700         | 1865855                  | 1714584           |
|                            | Me₄ <i>t</i> BuXPhos     | 0              | 2955988                  | 1715342           |
|                            | BippyPhos                | 0              | 2735683                  | 1759315           |
|                            | JackiePhos               | 0              | 2769710                  | 1738446           |
|                            | XantPhos                 | 1498090        | 461837                   | 1906187           |
|                            | Xphos                    | 704468         | 2497133                  | 1682254           |
|                            | <i>t</i> BuXPhos         | 953414         | 2324289                  | 1703807           |
|                            | Me <sub>4</sub> tBuXPhos | 482981         | 2589245                  | 1615176           |
|                            | BippyPhos                | 149533*        | 2941408                  | 1712223           |
|                            | JackiePhos               | 0              | 2581352                  | 1683564           |
|                            | XantPhos                 | 1527896        | 670644                   | 2020114           |
|                            | Xphos                    | 1629389        | 993276                   | 1805830           |
|                            | <i>t</i> BuXPhos         | 0              | 3130626                  | 1505343           |
| DAD-PU-IVIAN               | Me <sub>4</sub> tBuXPhos | 1000338        | 2362555                  | 1691062           |
|                            | BippyPhos                | 1484447        | 1467249                  | 1753619           |
|                            | JackiePhos               | 1544264        | 1423967                  | 1499409           |

| Table S7. HPLC peak are | as for the screen c | of the sulfonamide | C-N coupling. |
|-------------------------|---------------------|--------------------|---------------|
|-------------------------|---------------------|--------------------|---------------|

\*: The peak overlaps with other peaks



Table S8. UPLC gradient profile in imidazole C-N coupling.

|   |            | Mobile Phase | Flow Rate | Injection Volume |
|---|------------|--------------|-----------|------------------|
| _ | lime (min) | B (ACN) %    | (mL/min)  | (μι)             |
|   | 0.01       | 2            | 0.8       | 10               |
|   | 0.01-8     | 2-70         |           |                  |
|   | 8.0-10     | 70           |           |                  |
|   | 10-10.1    | 70-2         |           |                  |
|   | 10.1-12    | 2            |           |                  |





Figure S99. Representative UPLC trace for imidazole C-N coupling (DMPDAB-Pd-MAH/tBuBrettPhos)



Figure S100. Representative UPLC trace for imidazole C-N coupling ([Pd(allyl)Cl]<sub>2</sub>/XPhos)

| Peak Area                  |                          |                |                       |                   |
|----------------------------|--------------------------|----------------|-----------------------|-------------------|
|                            |                          | bromobenzene   | 4-methyl-1-phenyl-1H- | 1,3,5-            |
|                            |                          | bromobelizelle | imidazole             | trimethoxybenzene |
|                            | BrettPhos                | 4902673        | 0                     | 2908775           |
|                            | Xphos                    | 4571225        | 0                     | 2693832           |
| Pd(OAc).                   | <i>t</i> BuXPhos         | 4308077        | 50036                 | 2570979           |
| FU(UAC)2                   | <i>t</i> BuBrettPhos     | 4373545        | 25038                 | 2669042           |
|                            | Me <sub>4</sub> tBuXPhos | 4417449        | 0                     | 2600933           |
|                            | BippyPhos                | 4631296        | 0                     | 2800852           |
|                            | BrettPhos                | 4125483        | 90172                 | 2707002           |
|                            | Xphos                    | 4220220        | 0                     | 2700361           |
| [Pd(allyl)Cl] <sub>2</sub> | <i>t</i> BuXPhos         | 1439335        | 0                     | 3221589           |
|                            | <i>t</i> BuBrettPhos     | 2972207        | 1298343               | 3756382           |
|                            | Me₄ <i>t</i> BuXPhos     | 3519533        | 780383                | 2561988           |
|                            | BippyPhos                | 4251645        | 0                     | 2604595           |
|                            | BrettPhos                | 4190279        | 119157                | 2736082           |
|                            | Xphos                    | 4025391        | 0                     | 2568351           |
|                            | <i>t</i> BuXPhos         | 3323695        | 178714                | 2536932           |
|                            | <i>t</i> BuBrettPhos     | 2108103        | 2218445               | 2611913           |
|                            | Me <sub>4</sub> tBuXPhos | 2792228        | 1376263               | 2514431           |
|                            | BippyPhos                | 1248583        | 0                     | 4432359           |
|                            | BrettPhos                | 4364954        | 488724                | 2711391           |
|                            | Xphos                    | 4129583        | 300332                | 2514790           |
|                            | <i>t</i> BuXPhos         | 3361859        | 1031999               | 2484008           |
| DAD-PU-IVIAN               | tBuBrettPhos             | 2354270        | 2844027               | 2472766           |
|                            | Me <sub>4</sub> tBuXPhos | 3796109        | 1193196               | 2944526           |
|                            | BippyPhos                | 4106500        | 327324                | 2504938           |

| Table S9 HPIC    | neak areas for | the screen | of the | imidazole   | C-N counling  | 5          |
|------------------|----------------|------------|--------|-------------|---------------|------------|
| Table 33. The LC | peak aleas iui | the screen | or the | IIIIIuazoie | C-IN COupling | <u>،</u> • |



 Table S10. UPLC gradient profile in Heck arylation.

|            | Mobile Phase | Flow Rate | Injection Volume |
|------------|--------------|-----------|------------------|
| Time (min) | B (ACN) %    | (mL/min)  | (μL)             |
| 0.01       | 2            | 0.8       | 4                |
| 0.01-10    | 2-60         |           |                  |
| 10-10.1    | 60-2         |           |                  |
| 10.1-12.5  | 2            |           |                  |

mAU



**Figure S101.** Representative UPLC trace for Heck arylation (<sup>DMP</sup>DAB-Pd-MAH/P(*t*Bu)<sub>3</sub>)



Figure S102. Representative UPLC trace for Heck arylation (Pd<sub>2</sub>dba<sub>3</sub>•CHCl<sub>3</sub>/P(Cy)<sub>3</sub>)

| Peak Area   |                    |                   |                         |                   |
|-------------|--------------------|-------------------|-------------------------|-------------------|
|             |                    | 4-                | (E)-3-(4-acetylphenyl)- | 1,3,5-            |
|             |                    | bromoacetophenone | 2-methyl acrylic acid   | trimethoxybenzene |
|             |                    |                   | methyl ester            |                   |
|             | P(Cy)3             | 3697354           | 0                       | 2713253           |
|             | Xphos              | 3133597           | 1010419                 | 2705608           |
| Pd(OAc)     | P( <i>o</i> -tol)3 | 4054456           | 0                       | 2665803           |
|             | cataCXium A        | 3648619           | 0                       | 2750180           |
|             | dppp               | 5046162*          | 613668                  | 2780601           |
|             | P( <i>t</i> Bu)3   | 3877056           | 0                       | 2863547           |
|             | P(Cy)3             | 3990226           | 0                       | 2714838           |
|             | Xphos              | 4011877           | 0                       | 2712272           |
|             | P( <i>o</i> -tol)3 | 3372182           | 1386149                 | 2593248           |
|             | cataCXium A        | 3615156           | 0                       | 2716009           |
|             | dppp               | 4262695*          | 0                       | 2754042           |
|             | P( <i>t</i> Bu)3   | 289680            | 4093293                 | 2804407           |
|             | P(Cy)3             | 3652851           | 5205                    | 2726519           |
|             | Xphos              | 3269325           | 983800                  | 2707691           |
|             | P( <i>o</i> -tol)3 | 2154853           | 2455809                 | 2721192           |
|             | cataCXium A        | 3575334           | 0                       | 2700032           |
|             | dppp               | 5268009*          | 0                       | 2695499           |
|             | P( <i>t</i> Bu)3   | 175305            | 4021632                 | 2785341           |
|             | P(Cy)3             | 3934671           | 0                       | 2821811           |
|             | Xphos              | 4098690           | 0                       | 2776081           |
|             | P( <i>o</i> -tol)3 | 3695598*          | 1178678                 | 2804769           |
| DAB-PU-IMAH | cataCXium A        | 3835483           | 0                       | 2899726           |
|             | dppp               | 6550918*          | 0                       | 2797375           |
|             | P(tBu)3            | 1977407           | 2894277                 | 2934081           |

\*: The peak overlaps with other peaks.



#### Table S12. LC gradient profile 1 in C-O coupling.

| Time (min) | Mobile Phase<br>A % | Mobile Phase<br>B % | Flow Rate<br>(mL/min) | Injection Volume<br>(μL) |
|------------|---------------------|---------------------|-----------------------|--------------------------|
| initial    | 90                  | 10                  | 0.5                   | 2                        |
| 1          | 90                  | 10                  |                       |                          |
| 6.5        | 10                  | 90                  |                       |                          |
| 8          | 10                  | 90                  |                       |                          |
| 8.1        | 90                  | 10                  |                       |                          |
| 10         | 90                  | 10                  |                       |                          |

#### Table S13. LC gradient profile 2 in C-O coupling.

|            | Mobile Phase | Mobile Phase | Flow Rate | Injection Volume |
|------------|--------------|--------------|-----------|------------------|
| Time (min) | A %          | В %          | (mL/min)  | (μL)             |
| initial    | 90           | 10           | 0.5       | 2                |
| 1          | 90           | 10           |           |                  |
| 3          | 10           | 90           |           |                  |
| 4          | 10           | 90           |           |                  |
| 4.01       | 90           | 10           |           |                  |
| 5          | 90           | 10           |           |                  |



Figure S103. Representative LC-MS trace for C-O coupling (<sup>DMP</sup>DAB-Pd-MAH/BippyPhos)



Figure S104. Representative LC-MS trace for C-O coupling ([Pd(allyl)Cl]<sub>2</sub>/XPhos)

| Peak Area            |                          |                   |                       |                   |
|----------------------|--------------------------|-------------------|-----------------------|-------------------|
|                      |                          | 4-                | 1-(4- <i>n</i> -      | 1,3,5-            |
|                      |                          | bromoacetophenone | Butoxyphenyl)ethanone | trimethoxybenzene |
|                      | BrettPhos                | 0                 | 16394                 | 9937              |
|                      | Xphos                    | 0                 | 4796                  | 16462             |
| Pd(OAc) <sub>2</sub> | <i>t</i> BuXPhos         | 3431              | 3294                  | 3249              |
|                      | tBuBrettPhos             | 8133              | 24288                 | 17588             |
|                      | Me <sub>4</sub> tBuXPhos | 0                 | 21140                 | 15193             |
|                      | BippyPhos                | 0                 | 33879                 | 16345             |
|                      | BrettPhos                | 0                 | 24797                 | 15639             |
|                      | Xphos                    | 24914             | 870                   | 14634             |
|                      | <i>t</i> BuXPhos         | 17478             | 7831                  | 18873             |
|                      | tBuBrettPhos             | 9261              | 9856                  | 18759             |
|                      | Me <sub>4</sub> tBuXPhos | 11568             | 12345                 | 18724             |
|                      | BippyPhos                | 16455             | 12421                 | 16929             |
|                      | BrettPhos                | 0                 | 26791                 | 15385             |
|                      | Xphos                    | 2122              | 4430                  | 15765             |
| Pd₂dba₃∙CHCl₃        | <i>t</i> BuXPhos         | 6607              | 20584                 | 14592             |
|                      | tBuBrettPhos             | 4168              | 23313                 | 16532             |
|                      | Me <sub>4</sub> tBuXPhos | 3077              | 15562                 | 15412             |
|                      | BippyPhos                | 0                 | 28533                 | 15741             |
| DMPDAB-Pd-MAH        | BrettPhos                | 3675              | 21248                 | 12767             |
|                      | Xphos                    | 12303             | 3776                  | 15751             |
|                      | <i>t</i> BuXPhos         | 18218             | 15658                 | 15632             |
|                      | tBuBrettPhos             | 9388              | 19751                 | 15729             |
|                      | Me <sub>4</sub> tBuXPhos | 14421             | 13669                 | 15527             |
|                      | BippyPhos                | 0                 | 35573                 | 17352             |

Table S14. HPLC peak areas for the screen of the C-O coupling.

#### spiro-OMeTAD Synthesis



**Table S15.** UPLC gradient profile in the synthesis of *spiro*-OMeTAD.

| Time (min) | Mobile Phase<br>B (ACN) % | Flow Rate<br>(mL/min) | Injection Volume<br>(μL) |
|------------|---------------------------|-----------------------|--------------------------|
| 0.01       | 30                        | 0.8                   | 2                        |
| 0.01-10    | 30-95                     |                       |                          |
| 10-13.4    | 95                        |                       |                          |
| 13.4-13.5  | 95-30                     |                       |                          |



Figure S105. Representative UPLC trace for synthesis of *spiro*-OMeTAD at 282 nm (<sup>DMP</sup>DAB-Pd-MAH/XPhos)



Figure S106. Representative UPLC trace for synthesis of *spiro*-OMeTAD at 220 nm (<sup>DMP</sup>DAB-Pd-MAH/XPhos)

| Peak Area                     |                  |                                 |              |                             |
|-------------------------------|------------------|---------------------------------|--------------|-----------------------------|
|                               |                  | 4,4'-<br>dimethoxydiphenylamine | Spiro-OMeTAD | 1,3,5-<br>trimethoxybenzene |
| <sup>DMP</sup> DAB-Pd-<br>MAH | BrettPhos        | 7284590                         | 3866889      | 3648099                     |
|                               | Xphos            | 116877                          | 9326234      | 2570339                     |
|                               | <i>t</i> BuXPhos | 3145161                         | 4339269      | 2431577                     |
|                               | Sphos            | 349246                          | 7523095      | 2457494                     |
|                               | RuPhos           | 1396243                         | 7727987      | 2609098                     |
|                               | XantPhos         | 1739682                         | 8708891      | 2588164                     |

**Table S16.** HPLC peak areas for the screen of the synthesis of spiro-OMeTAD.

# IV: Preparative-Scale Synthesis

## N-Benzylpyridin-2-amine

A 4-dram vial was charged with 2-chloropyridine (426  $\mu$ L, 4.50 mmol), benzylamine (590  $\mu$ L, 5.40 mmol), NaOt-Bu (519 mg, 5.40 mmol), **1** (5.3 mg, 0.0113 mmol), BrettPhos (12.1 mg, 0.0225 mmol), and 9 mL of THF. The mixture was stirred at 60 °C for 1 h. Ethyl acetate was added to dilute the reaction mixture, and the diluted mixture was washed three times with water, dried over Mg<sub>2</sub>SO<sub>4</sub> anhydrous and concentrated in the rotary evaporator. Finally, the crude product



was dried in the vacuo to give 755 mg (4.10 mmol, 91%) product as a light yellow solid. Spectroscopic data is consistent with reported values.<sup>5</sup> <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.11 (d, *J* = 4.0 Hz, 1H), 7.38 (m, 5H), 7.27 (m, 1H), 6.59 (m, 1H), 6.38 (d, *J* = 8.4 Hz, 1H), 4.92 (br, 1H), 4.51 (d, *J* = 5.8 Hz, 2H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  158.7, 148.2, 139.2, 137.5, 128.6, 127.4, 127.2, 113.1, 106.8, 46.3.



Figure S108. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (75 MHz; CDCl<sub>3</sub>) of N-benzylpyridin-2-amine
#### 4-(4-Methoxyphenyl)morpholine

A 4-dram vial was charged with 4-bromoanisole (128  $\mu$ L, 1.00 mmol), morpholine (106  $\mu$ L, 1.20 mmol), NaOt-Bu (116 mg, 1.20 mmol), **1** (9.4 mg, 0.02 mmol), RuPhos (18.7 mg, 0.04 mmol), and 2 mL of THF. The mixture was stirred at 80 °C for 2 h. Ethyl acetate was added to dilute the reaction mixture, and the diluted mixture was washed three times with water, dried over Mg<sub>2</sub>SO<sub>4</sub> anhydrous and concentrated in the vacuo overnight to give 155.1 mg



(0.92 mmol, 92%) product as a yellow solid. Spectroscopic data is consistent with reported values.<sup>6</sup> <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  6.87 (m, 4H), 3.84 (appt, *J* = 4.8 Hz, 4H), 3.77 (s, 3H), 3.04 (appt, *J* = 4.8 Hz, 4H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  154.0, 145.6, 117.8, 114.5, 67.0, 55.5, 50.8.



Figure S109. <sup>1</sup>H NMR spectrum (300 MHz; CDCl<sub>3</sub>) of 4-(4-methoxyphenyl)morpholine



Figure S110. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (75 MHz; CDCl<sub>3</sub>) of 4-(4-methoxyphenyl)morpholine

#### N-(4-Methylphenyl)-4-methylbenzenesulfonamide

A 4-dram vial was charged with 4-bromotoluene (205 mg, 1.20 mmol), p-toluenesulfonamide (172 mg, 1.00 mmol),  $K_2CO_3$  (415 mg, 3.00 mmol), **1** (23.4 mg, 0.05 mmol), tBuXPhos (42.5 mg, 0.10 mmol), and 4 mL of CPME. The mixture was stirred at 100 °C for 16 h. Ethyl acetate was added to dilute the reaction mixture, and the diluted mixture was washed three times with water, dried over MgSO<sub>4</sub> anhydrous and concentrated in the Genevac. The crude product was purified via a silica plug (DCM/TBME, 20:1) and dried over the Na<sub>2</sub>SO<sub>4</sub> to give 183.7 mg (0.70 mmol, 70%) sulfate product as a pale yellow powder. Spectroscopic data is consistent with reported values.<sup>7</sup> <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  2.27 (s, 3H), 2.40 (s, 3H), 6.31 (br, 1H), 6.91 (d, *J* = 8.4 Hz, 2H), 7.04 (d, *J* = 8.3 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.61 (d, *J* = 8.3 Hz, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  143.7, 136.0, 135.0, 134.0, 129



(d, *J* = 8.0 Hz, 2H), 7.61 (d, *J* = 8.3 Hz, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): δ 143.7, 136.0, 135.0, 134.0, 129.6, 127.3, 122.0, 21.5, 20.8.



Figure S111. <sup>1</sup>H NMR spectrum (300 MHz; CDCl<sub>3</sub>) of N-(4-methylphenyl)-4-methylbenzenesulfonamide



Figure S112. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (75 MHz; CDCl<sub>3</sub>) of N-(4-methylphenyl)-4-methylbenzenesulfonamide

#### 4-Methyl-1-phenyl-1H-imidazole

A 4-dram vial was charged with bromobenzene (106  $\mu$ L, 1.00 mmol), 4-methylimidazole (99 mg, 1.20 mmol), K<sub>3</sub>PO<sub>4</sub> (425 mg, 2.00 mmol), **13** (10.3 mg, 0.015 mmol), and 1 mL of CPME. The mixture was stirred at 120 °C for 5 h. The mixture was extracted by DCM and concentrated *in vacuo*. The crude product was purified via flash chromatography (ethyl



acetate/hexane, 1:1) to give 101.1 mg (0.64 mmol, 64%) product as a pale yellow solid. Spectroscopic data is consistent with reported values.<sup>8</sup> <sup>1</sup>H NMR (300 MHz, CDCl3):  $\delta$  7.76 (d, *J* = 1.6 Hz, 1H), 7.49-7.44 (m, 2H), 7.37-7.31 (m, 3H), 7.01 (s, 1H), 2.30 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  139.5, 137.4, 134.5, 129.8, 127.0, 121.0, 114.5, 13.7.



Figure S113. <sup>1</sup>H NMR spectrum (300 MHz; CDCl<sub>3</sub>) of 4-methyl-1-phenyl-1H-imidazole



Figure S114. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (75 MHz; CDCl<sub>3</sub>) of 4-methyl-1-phenyl-1H-imidazole

#### (E)-3-(4-Acetylphenyl)-2-methyl Acrylic Acid Methyl Ester

A 4-dram vial was charged with 4-bromoacetophenone (185 mg, 0.93 mmol), methyl methacrylate (300  $\mu$ L, 2.78 mmol), Cy<sub>2</sub>NMe (220  $\mu$ L, 1.03 mmol), **1** (4.5 mg, 0.0095 mmol), P(*t*Bu)<sub>3</sub> (4.5  $\mu$ L, 0.0095 mmol) and 0.84 mL of CPME. The mixture was stirred at 80 °C for 26 h. The mixture was extracted by DCM and washed by 1M HCl and water, followed by the drying over the MgSO<sub>4</sub>. The filtrate was concentrated to give 142.5 mg (0.65 mmol, 76%) product as a light brown solid. Spectroscopic data is



consistent with reported values.<sup>9</sup> <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.98 (d, *J* = 8.4 Hz, 2H), 7.70 (apparent s, 1H), 7.46 (d, *J* = 8.3 Hz, 2H), 3.83 (s, 3H), 2.62 (s, 3H), 2.12 (d, *J* = 1.5 Hz, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  197.3, 168.6, 140.4, 137.5, 136.3, 130.3, 129.6, 128.3, 52.2, 26.6, 14.1. NMR spectroscopy (Figure S115, S116) and LCMS (Figure S117) reveals the presence of the bis(arylated) side product (15% by <sup>1</sup>H NMR relative integration).



Figure S115. <sup>1</sup>H NMR spectrum (300 MHz; CDCl<sub>3</sub>) of (*E*)-3-(4-acetylphenyl)-2-methyl acrylic acid methyl ester



**Figure S116**. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (75 MHz; CDCl<sub>3</sub>) of (*E*)-3-(4-acetylphenyl)-2-methyl acrylic acid methyl ester



**Figure S117**. MS (ESI) data from LCMS of isolated product mixture confirming presence of bis(arylation) product (minor, top) and mono(arylation) product (major, bottom).

#### 1-(4-n-Butoxyphenyl)ethanone

A 4-dram vial was charged with 4-bromoacetophenone (199 mg, 1.00 mmol), butyl alcohol (275  $\mu$ L, 3.00 mmol), Cs<sub>2</sub>CO<sub>3</sub> (489 mg, 1.50 mmol), **1** (4.7 mg, 0.01 mmol), *t*BuBippyPhos (10.1 mg, 0.02 mmol), and 1.8 mL of CPME. The mixture was stirred at 80 °C for 18 h. The mixture was extracted by ethyl acetate and washed three times with water. The rag layer



was combined with the aqueous phase and extracted by the ethyl acetate two additional times. The organic layers were dried over Mg<sub>2</sub>SO<sub>4</sub> and concentrated to give 168.2 mg (0.87 mmol, 87%) product as a brown liquid. Spectroscopic data is consistent with reported values.<sup>10</sup> <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.92 (m, 2H), 6.91 (m, 2H), 4.02 (t, *J* = 6.5 Hz, 2H), 2.55 (s, 3H), 1.78 (m, 2H), 1.50 (m, 2H), 0.98 (t, *J* = 7.03 Hz, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  196.8, 163.1, 130.5, 130.0, 114.1, 67.9, 31.1, 26.3, 19.2, 13.8.



Figure S118. <sup>1</sup>H NMR spectrum (300 MHz; CDCl<sub>3</sub>) of 1-(4-n-Butoxyphenyl)ethanone



Figure S119. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (75 MHz; CDCl<sub>3</sub>) of 1-(4-n-Butoxyphenyl)ethanone

#### 2,2',7,7'-Tetrakis-di(p-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD)

A 4-dram vial was charged with 2,2',7,7'-tetrabromo-9,9'spirobifluorene (632 mg, 1.00 mmol), 4,4'-dimethoxydiphenylamine (940 mg, 4.10 mmol), NaOtBu (480.5 mg, 5.00 mmol), **6** (6.2 mg, 0.01 mmol), and 10 mL of THF. The mixture was stirred at 80 °C for 24 h. The solvent was evaporated *in vacuo*. The residue was dissolved in minimal toluene, and passed through a silica plug (toluene:TBME, 20:1 eluent). The resulting solution was concentrated to give an orange solid. The solid was dissolved in 5 mL of THF, followed by the addition of 30 mL of methanol (anti-solvent) to crystallize the product. Pale yellow solid: 994.4 mg (0.81 mmol, 81% yield). Spectroscopic data is consistent with reported values.<sup>11</sup> <sup>1</sup>H NMR (500 MHz, *d*<sup>6</sup>-



DMSO):  $\delta$  3.72 (s, 24 H, 8 x –OCH<sub>3</sub>), 6.19 (d, 4H, J = 2.0 Hz), 6.70 (dd, 4H, J = 2.0, 8.4 Hz), 6.84 (m, 32H, Ar–H), 7.48 (d, 4H, J = 8.4 Hz). <sup>13</sup>C NMR (125 MHz, *d*<sup>6</sup>-DMSO):  $\delta$  155.7, 149.9, 147.7, 140.9, 134.4, 126.0, 121.4, 120.7, 116.2, 116.1, 65.4, 55.7. NOTE: Initial purification attempts using standard flash column chromatography (hexanes/ethyl acetate eluent; material loaded as a DCM solution) resulted in low recovered yields due to suspected decomposition of the product (formation of multiple new colored species).



Figure S120. <sup>1</sup>H NMR spectrum (500 MHz; d<sup>6</sup>-DMSO) of Spiro-OMeTAD



**Figure S121**. <sup>1</sup>H NMR spectrum (500 MHz; *d*<sup>6</sup>-DMSO) of *spiro*-OMeTAD. Expansion of aromatic region.



**Figure S122**. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (125 MHz; *d*<sup>6</sup>-DMSO) of *spiro*-OMeTAD. Signals at 26.0 and 67.5 ppm are trace residual THF from the recrystallization.



Figure S123. <sup>1</sup>H-<sup>13</sup>C HMBC NMR spectrum (500 MHz and 125 MHz; *d*<sup>6</sup>-DMSO) of *spiro*-OMeTAD.



**Figure S124**. Expansion of <sup>1</sup>H-<sup>13</sup>C HMBC NMR spectrum (500 MHz and 125 MHz; *d*<sup>6</sup>-DMSO) of *spiro*-OMeTAD. Signal at 65.4 is confirmed as the central *spiro*-carbon (quaternary).

# V: X-ray Crystallographic Details

# DMPDAB-Pd-MAH (1)

Single crystals of  $C_{22}H_{22}N_2O_3Pd$  (1) were selected using a MitEGen loop using paratone oil. A suitable crystal was selected and run Bruker APEX-II CCD diffractometer. The crystal was kept at 99.96 K during data collection. Using Olex2,<sup>12</sup> the structure was solved with the olex2.solve<sup>13</sup> structure solution program using Charge Flipping and refined with the XL<sup>14</sup> refinement package using Least Squares minimization.

# Crystal structure determination of [1]

**Crystal Data** for C<sub>22</sub>H<sub>22</sub>N<sub>2</sub>O<sub>3</sub>Pd (*M* =468.81 g/mol): triclinic, space group P-1 (no. 2), *a* = 9.1137(9) Å, *b* = 10.2220(10) Å, *c* = 12.2985(12) Å, *a* = 70.989(2)°, *b* = 70.567(2)°,  $\gamma$  = 71.163(2)°, *V* = 991.53(17) Å<sup>3</sup>, *Z* = 2, *T* = 99.96 K,  $\mu$ (MoK $\alpha$ ) = 0.961 mm<sup>-1</sup>, *Dcalc* = 1.570 g/cm<sup>3</sup>, 16832 reflections measured (3.622° ≤ 2Θ ≤ 56.148°), 4746 unique ( $R_{int}$  = 0.0136,  $R_{sigma}$  = 0.0130) which were used in all calculations. The final  $R_1$  was 0.0162 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.0427 (all data).

#### Table S17 Crystal data and structure refinement for 1.

| · · · · · · · · · · · · · · · · · · ·       |                                                        |
|---------------------------------------------|--------------------------------------------------------|
| Identification code                         | 1                                                      |
| Empirical formula                           | $C_{22}H_{22}N_2O_3Pd$                                 |
| Formula weight                              | 468.81                                                 |
| Temperature/K                               | 99.96                                                  |
| Crystal system                              | triclinic                                              |
| Space group                                 | P-1                                                    |
| a/Å                                         | 9.1137(9)                                              |
| b/Å                                         | 10.2220(10)                                            |
| c/Å                                         | 12.2985(12)                                            |
| α/°                                         | 70.989(2)                                              |
| β/°                                         | 70.567(2)                                              |
| γ/°                                         | 71.163(2)                                              |
| Volume/Å <sup>3</sup>                       | 991.53(17)                                             |
| Z                                           | 2                                                      |
| $\rho_{calc}g/cm^3$                         | 1.570                                                  |
| µ/mm⁻¹                                      | 0.961                                                  |
| F(000)                                      | 476.0                                                  |
| Crystal size/mm <sup>3</sup>                | 0.75 × 0.75 × 0.1                                      |
| Radiation                                   | ΜοΚα (λ = 0.71073)                                     |
| 20 range for data collection/               | ° 3.622 to 56.148                                      |
| Index ranges                                | $-12 \le h \le 12, -13 \le k \le 13, -16 \le l \le 16$ |
| Reflections collected                       | 16832                                                  |
| Independent reflections                     | 4746 [ $R_{int}$ = 0.0136, $R_{sigma}$ = 0.0130]       |
| Data/restraints/parameters                  | 4746/0/257                                             |
| Goodness-of-fit on F <sup>2</sup>           | 1.063                                                  |
| Final R indexes [I>=2σ (I)]                 | $R_1 = 0.0162$ , $wR_2 = 0.0422$                       |
| Final R indexes [all data]                  | R <sub>1</sub> = 0.0171, wR <sub>2</sub> = 0.0427      |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.48/-0.36                                             |

| Table S18 Fractional Atomic Coordinates (×10 <sup>4</sup> ) and Equivalent Isotropic Displacement Parameters (Å <sup>2</sup> ×10 <sup>3</sup> ) |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| for 1. $U_{eq}$ is defined as 1/3 of of the trace of the orthogonalised $U_{\mu}$ tensor.                                                       |

| Atom | X           | У           | Z          | U(eq)    |
|------|-------------|-------------|------------|----------|
| Pd1  | 5717.1(2)   | 6331.2(2)   | 8038.0(2)  | 10.41(3) |
| 02   | 2223.7(12)  | 7193.9(11)  | 7649.9(9)  | 18.8(2)  |
| 03   | 1919.2(14)  | 9109.9(12)  | 8301.7(12) | 29.2(3)  |
| 01   | 2650.9(13)  | 4936.4(12)  | 7550.2(10) | 23.0(2)  |
| N2   | 7962.5(13)  | 5292.7(12)  | 7024.3(10) | 12.3(2)  |
| N1   | 7259.4(13)  | 7690.4(12)  | 7683.7(10) | 12.4(2)  |
| C22  | 2488.9(16)  | 7861.3(15)  | 8381.6(13) | 18.5(3)  |
| C20  | 3733.6(16)  | 5449.0(14)  | 8887.5(12) | 13.8(2)  |
| C2   | 9120.6(16)  | 5838.7(15)  | 6863.0(13) | 16.7(3)  |
| C1   | 8735.4(16)  | 7158.6(15)  | 7244.3(12) | 15.8(3)  |
| C4   | 9295.4(16)  | 2784.8(15)  | 6988.9(12) | 15.4(3)  |
| C5   | 9533.9(17)  | 1647.3(15)  | 6506.0(13) | 18.3(3)  |
| C6   | 8782.9(17)  | 1801.7(15)  | 5647.2(13) | 18.6(3)  |
| C9   | 6522.3(18)  | 5703.9(15)  | 5207.6(13) | 19.0(3)  |
| C8   | 7521.7(16)  | 4264.7(14)  | 5687.4(12) | 14.3(2)  |
| C14  | 5800.8(17)  | 10163.3(15) | 7429.5(13) | 17.0(3)  |
| C19  | 3464.8(16)  | 6786.8(14)  | 9147.6(12) | 15.2(2)  |
| C12  | 7320.3(16)  | 9082.5(15)  | 8955.0(12) | 16.2(3)  |
| C18  | 5317(2)     | 10058.3(16) | 6409.4(14) | 23.7(3)  |
| C15  | 5334.3(18)  | 11443.0(15) | 7765.8(14) | 21.8(3)  |
| C3   | 8288.6(15)  | 4080.0(14)  | 6562.3(12) | 12.8(2)  |
| C7   | 7780.7(17)  | 3099.5(15)  | 5241.7(12) | 17.2(3)  |
| C17  | 6827.7(18)  | 10389.7(16) | 9253.9(13) | 21.3(3)  |
| C13  | 6806.9(16)  | 9005.0(14)  | 8028.8(12) | 13.6(2)  |
| C21  | 2877.6(16)  | 5714.7(15)  | 7990.6(12) | 15.4(3)  |
| C10  | 10068.2(18) | 2576.2(16)  | 7963.0(14) | 21.0(3)  |
| C11  | 8295.0(18)  | 7816.8(16)  | 9668.5(13) | 20.2(3)  |
| C16  | 5857.2(19)  | 11550.1(16) | 8662.9(15) | 24.3(3)  |

| takes the r |                        |                 |                 |                 |                 |                 |
|-------------|------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Atom        | <b>U</b> <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
| Pd1         | 9.34(5)                | 9.60(5)         | 13.25(5)        | -3.94(4)        | -3.31(3)        | -1.93(3)        |
| 02          | 16.7(5)                | 17.6(5)         | 23.1(5)         | -3.0(4)         | -10.1(4)        | -2.2(4)         |
| 03          | 22.2(6)                | 15.5(5)         | 47.4(7)         | -10.0(5)        | -11.3(5)        | 3.4(4)          |
| 01          | 27.0(6)                | 25.9(5)         | 23.9(5)         | -8.4(4)         | -8.1(4)         | -12.7(5)        |
| N2          | 13.0(5)                | 11.1(5)         | 12.8(5)         | -3.7(4)         | -3.9(4)         | -1.3(4)         |
| N1          | 14.8(5)                | 10.9(5)         | 13.2(5)         | -3.1(4)         | -4.6(4)         | -4.1(4)         |
| C22         | 11.8(6)                | 18.1(6)         | 25.1(7)         | -7.0(6)         | -3.0(5)         | -2.9(5)         |
| C20         | 13.1(6)                | 14.2(6)         | 14.5(6)         | -3.1(5)         | -3.3(5)         | -4.6(5)         |
| C2          | 13.3(6)                | 16.1(6)         | 20.6(6)         | -7.3(5)         | -1.5(5)         | -3.6(5)         |
| C1          | 14.4(6)                | 16.7(6)         | 19.2(6)         | -6.2(5)         | -3.4(5)         | -6.5(5)         |
| C4          | 13.8(6)                | 14.9(6)         | 16.8(6)         | -4.5(5)         | -3.6(5)         | -2.1(5)         |
| C5          | 17.7(7)                | 12.2(6)         | 22.8(7)         | -5.1(5)         | -3.9(5)         | -1.0(5)         |
| C6          | 20.7(7)                | 14.9(6)         | 20.8(7)         | -8.6(5)         | -1.2(5)         | -4.9(5)         |
| C9          | 23.1(7)                | 15.7(6)         | 18.8(7)         | -4.0(5)         | -9.8(6)         | -1.1(5)         |
| C8          | 14.6(6)                | 14.3(6)         | 13.3(6)         | -2.9(5)         | -2.3(5)         | -4.2(5)         |
| C14         | 17.3(6)                | 14.2(6)         | 18.6(6)         | -2.7(5)         | -3.3(5)         | -5.2(5)         |
| C19         | 12.2(6)                | 16.5(6)         | 17.7(6)         | -7.0(5)         | -2.2(5)         | -3.3(5)         |
| C12         | 16.0(6)                | 19.4(6)         | 15.5(6)         | -5.9(5)         | -0.7(5)         | -8.8(5)         |
| C18         | 28.0(8)                | 19.6(7)         | 24.8(7)         | -0.7(6)         | -14.0(6)        | -4.5(6)         |
| C15         | 20.9(7)                | 13.0(6)         | 26.5(7)         | -3.2(6)         | -2.0(6)         | -3.1(5)         |
| C3          | 12.3(6)                | 12.0(6)         | 13.7(6)         | -4.2(5)         | -1.0(5)         | -3.7(5)         |
| C7          | 19.4(7)                | 18.6(6)         | 15.8(6)         | -5.6(5)         | -4.0(5)         | -6.5(5)         |
| C17         | 23.3(7)                | 24.0(7)         | 20.8(7)         | -11.6(6)        | 0.7(6)          | -11.5(6)        |
| C13         | 13.9(6)                | 12.0(6)         | 15.9(6)         | -4.8(5)         | -1.0(5)         | -5.8(5)         |
| C21         | 12.7(6)                | 16.8(6)         | 16.0(6)         | -2.8(5)         | -2.2(5)         | -5.4(5)         |
| C10         | 21.9(7)                | 18.1(7)         | 24.5(7)         | -6.0(6)         | -12.5(6)        | 1.0(5)          |
| C11         | 20.1(7)                | 25.5(7)         | 18.1(7)         | -6.1(6)         | -6.4(5)         | -7.3(6)         |
| C16         | 26.3(8)                | 17.1(7)         | 29.3(8)         | -12.9(6)        | 3.1(6)          | -8.0(6)         |
|             |                        |                 |                 |                 |                 |                 |

Table S19 Anisotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for 1. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

# Table S20 Bond Lengths for 1.

| Atom Atom I |     | Length/Å   | Ator | n Atom | Length/Å   |
|-------------|-----|------------|------|--------|------------|
| Pd1         | N2  | 2.1520(11) | C4   | C5     | 1.3974(19) |
| Pd1         | N1  | 2.1342(11) | C4   | C3     | 1.3976(18) |
| Pd1         | C20 | 2.0868(13) | C4   | C10    | 1.5082(19) |
| Pd1         | C19 | 2.0556(14) | C5   | C6     | 1.383(2)   |
| 02          | C22 | 1.4089(18) | C6   | C7     | 1.390(2)   |
| 02          | C21 | 1.4101(17) | C9   | C8     | 1.5063(18) |
| 03          | C22 | 1.1968(18) | C8   | C3     | 1.4016(18) |
| 01          | C21 | 1.1959(17) | C8   | C7     | 1.3902(19) |
| N2          | C2  | 1.2782(18) | C14  | C18    | 1.506(2)   |
| N2          | C3  | 1.4341(16) | C14  | C15    | 1.393(2)   |
| N1          | C1  | 1.2777(18) | C14  | C13    | 1.4021(19) |
| N1          | C13 | 1.4329(16) | C12  | C17    | 1.395(2)   |
| C22         | C19 | 1.4620(19) | C12  | C13    | 1.4001(19) |
| C20         | C19 | 1.4315(18) | C12  | C11    | 1.507(2)   |
| C20         | C21 | 1.4628(18) | C15  | C16    | 1.385(2)   |
| C2          | C1  | 1.4697(19) | C17  | C16    | 1.381(2)   |

# Table S21 Bond Angles for 1.

| Atom Atom Angle/° |     | Atom Atom Atom An |            |     | Angle/° |     |            |
|-------------------|-----|-------------------|------------|-----|---------|-----|------------|
| N1                | Pd1 | N2                | 76.30(4)   | C3  | C8      | C9  | 120.55(12) |
| C20               | Pd1 | N2                | 124.67(5)  | C7  | C8      | C9  | 121.54(12) |
| C20               | Pd1 | N1                | 157.61(5)  | C7  | C8      | C3  | 117.84(12) |
| C19               | Pd1 | N2                | 164.64(5)  | C15 | C14     | C18 | 120.86(13) |
| C19               | Pd1 | N1                | 117.93(5)  | C15 | C14     | C13 | 117.70(13) |
| C19               | Pd1 | C20               | 40.42(5)   | C13 | C14     | C18 | 121.34(13) |
| C22               | 02  | C21               | 108.65(11) | C22 | C19     | Pd1 | 104.94(9)  |
| C2                | N2  | Pd1               | 113.36(9)  | C20 | C19     | Pd1 | 70.96(8)   |
| C2                | N2  | C3                | 118.58(11) | C20 | C19     | C22 | 107.11(12) |
| C3                | N2  | Pd1               | 128.03(8)  | C17 | C12     | C13 | 117.36(13) |
| C1                | N1  | Pd1               | 114.08(9)  | C17 | C12     | C11 | 119.35(13) |
| C1                | N1  | C13               | 119.67(11) | C13 | C12     | C11 | 123.22(13) |
| C13               | N1  | Pd1               | 125.75(9)  | C16 | C15     | C14 | 120.45(14) |
| 02                | C22 | C19               | 108.48(11) | C4  | C3      | N2  | 121.02(12) |
| 03                | C22 | 02                | 119.52(14) | C4  | C3      | C8  | 122.60(12) |
| 03                | C22 | C19               | 131.99(15) | C8  | C3      | N2  | 116.37(11) |
| C19               | C20 | Pd1               | 68.61(7)   | C6  | C7      | C8  | 120.67(13) |
| C19               | C20 | C21               | 107.01(11) | C16 | C17     | C12 | 120.85(14) |
| C21               | C20 | Pd1               | 106.96(9)  | C14 | C13     | N1  | 117.05(12) |
| N2                | C2  | C1                | 117.65(12) | C12 | C13     | N1  | 120.19(12) |
| N1                | C1  | C2                | 117.22(12) | C12 | C13     | C14 | 122.73(12) |
| C5                | C4  | C3                | 117.57(13) | 02  | C21     | C20 | 108.41(11) |
| C5                | C4  | C10               | 120.03(12) | 01  | C21     | 02  | 119.20(13) |
| C3                | C4  | C10               | 122.37(12) | 01  | C21     | C20 | 132.38(13) |
| C6                | C5  | C4                | 120.87(13) | C17 | C16     | C15 | 120.89(13) |
| C5                | C6  | C7                | 120.45(13) |     |         |     |            |

| Table S22 Hydrogen Atom Coordinates (Å×10 <sup>4</sup> ) and Isotropic Displacement Parameters (Å <sup>2</sup> ×10 <sup>3</sup> ) for 1. |       |       |       |       |
|------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|
| Atom                                                                                                                                     | X     | у     | Ζ     | U(eq) |
| H20                                                                                                                                      | 3801  | 4543  | 9526  | 17    |
| H2                                                                                                                                       | 10193 | 5407  | 6509  | 20    |
| H1                                                                                                                                       | 9550  | 7598  | 7167  | 19    |
| H5                                                                                                                                       | 10221 | 756   | 6771  | 22    |
| H6                                                                                                                                       | 8953  | 1016  | 5332  | 22    |
| H9A                                                                                                                                      | 5625  | 6006  | 5854  | 28    |
| H9B                                                                                                                                      | 6107  | 5643  | 4591  | 28    |
| H9C                                                                                                                                      | 7185  | 6399  | 4866  | 28    |
| H19                                                                                                                                      | 3317  | 6844  | 9975  | 18    |
| H18A                                                                                                                                     | 4469  | 10899 | 6201  | 36    |
| H18B                                                                                                                                     | 4920  | 9197  | 6642  | 36    |
| H18C                                                                                                                                     | 6247  | 10010 | 5721  | 36    |
| H15                                                                                                                                      | 4653  | 12248 | 7377  | 26    |
| H7                                                                                                                                       | 7268  | 3191  | 4654  | 21    |
| H17                                                                                                                                      | 7164  | 10483 | 9872  | 26    |
| H10A                                                                                                                                     | 10337 | 1560  | 8356  | 32    |
| H10B                                                                                                                                     | 9322  | 3106  | 8546  | 32    |
| H10C                                                                                                                                     | 11047 | 2927  | 7620  | 32    |
| H11A                                                                                                                                     | 9423  | 7859  | 9386  | 30    |
| H11B                                                                                                                                     | 8196  | 6936  | 9573  | 30    |
| H11C                                                                                                                                     | 7900  | 7832  | 10510 | 30    |
| H16                                                                                                                                      | 5544  | 12434 | 8874  | 29    |

#### **Refinement model description**

Number of restraints - 0, number of constraints - unknown. Details: 1. Fixed Uiso At 1.2 times of: All C(H) groups At 1.5 times of: All C(H,H,H) groups 2.a Ternary CH refined with riding coordinates: C20(H20), C19(H19) 2.b Aromatic/amide H refined with riding coordinates: C2(H2), C1(H1), C5(H5), C6(H6), C15(H15), C7(H7), C17(H17), C16(H16) 2.c Idealised Me refined as rotating group: C9(H9A,H9B,H9C), C18(H18A,H18B,H18C), C10(H10A,H10B,H10C), C11(H11A,H11B,H11C) Single crystals of  $C_{44}H_{40}O_5P_2Pd$  **[3•Et<sub>2</sub>O]** were selected using a MiteEGen loop using paratone oil. A suitable crystal was selected run on a Bruker APEX-II CCD diffractometer. The crystal was kept at 273.15 K during data collection. Using Olex2,<sup>12</sup> the structure was solved with the olex2.solve<sup>13</sup> structure solution program using Charge Flipping and refined with the XL<sup>14</sup> refinement package using Least Squares minimization.

# Crystal structure determination of [3]

**Crystal Data** for C<sub>44</sub>H<sub>40</sub>O<sub>5</sub>P<sub>2</sub>Pd (*M* =817.10 g/mol): triclinic, space group P-1 (no. 2), *a* = 11.0488(7) Å, *b* = 12.4133(8) Å, *c* = 15.6581(10) Å, *a* = 99.623(2)°, *b* = 106.450(2)°, *y* = 105.981(2)°, *V* = 1908.8(2) Å<sup>3</sup>, *Z* = 2, *T* = 273.15 K,  $\mu$ (MoK $\alpha$ ) = 0.615 mm<sup>-1</sup>, *Dcalc* = 1.422 g/cm<sup>3</sup>, 75385 reflections measured (5.074° ≤ 2 $\Theta$  ≤ 56.036°), 9217 unique (*R*<sub>int</sub> = 0.0824, R<sub>sigma</sub> = 0.0586) which were used in all calculations. The final *R*<sub>1</sub> was 0.0541 (I > 2 $\sigma$ (I)) and *wR*<sub>2</sub> was 0.1133 (all data).

#### Table S23 Crystal data and structure refinement for 3.

| •                                           |                                                                |
|---------------------------------------------|----------------------------------------------------------------|
| Identification code                         | 3                                                              |
| Empirical formula                           | $C_{44}H_{40}O_5P_2Pd$                                         |
| Formula weight                              | 817.10                                                         |
| Temperature/K                               | 273.15                                                         |
| Crystal system                              | triclinic                                                      |
| Space group                                 | P-1                                                            |
| a/Å                                         | 11.0488(7)                                                     |
| b/Å                                         | 12.4133(8)                                                     |
| c/Å                                         | 15.6581(10)                                                    |
| α/°                                         | 99.623(2)                                                      |
| β/°                                         | 106.450(2)                                                     |
| γ/°                                         | 105.981(2)                                                     |
| Volume/Å <sup>3</sup>                       | 1908.8(2)                                                      |
| Z                                           | 2                                                              |
| ρ <sub>calc</sub> g/cm <sup>3</sup>         | 1.422                                                          |
| µ/mm⁻¹                                      | 0.615                                                          |
| F(000)                                      | 840.0                                                          |
| Crystal size/mm <sup>3</sup>                | $0.15 \times 0.15 \times 0.12$                                 |
| Radiation                                   | ΜοΚα (λ = 0.71073)                                             |
| 20 range for data collection/               | ° 5.074 to 56.036                                              |
| Index ranges                                | $-14 \leq h \leq 14,  -16 \leq k \leq 16,  -20 \leq l \leq 20$ |
| Reflections collected                       | 75385                                                          |
| Independent reflections                     | 9217 [ $R_{int} = 0.0824$ , $R_{sigma} = 0.0586$ ]             |
| Data/restraints/parameters                  | 9217/0/471                                                     |
| Goodness-of-fit on F <sup>2</sup>           | 1.065                                                          |
| Final R indexes [I>=2σ (I)]                 | $R_1 = 0.0541$ , $wR_2 = 0.0983$                               |
| Final R indexes [all data]                  | $R_1 = 0.0931$ , $wR_2 = 0.1133$                               |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 1.18/-0.63                                                     |

| Table S24 Fractional Atomic Coordinates (×10 <sup>4</sup> ) and Equivalent Isotropic Displacement Parameters (Å <sup>2</sup> ×10 <sup>3</sup> |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
| for 3. $U_{eq}$ is defined as 1/3 of of the trace of the orthogonalised U <sub>U</sub> tensor.                                                |

| Atom | X         | У         | Z          | U(eq)    |
|------|-----------|-----------|------------|----------|
| Pd1  | 1950.7(3) | 2579.2(3) | 6130.4(2)  | 30.46(9) |
| P1   | 3063.1(9) | 1378.1(8) | 5689.8(7)  | 29.6(2)  |
| P2   | 3131.2(9) | 3511.8(8) | 7683.7(7)  | 32.5(2)  |
| 01   | 3072(2)   | 1144(2)   | 7613.7(17) | 36.4(6)  |
| 03   | 1661(4)   | 4477(3)   | 5077(3)    | 70.4(10) |
| C17  | 3081(3)   | 121(3)    | 6162(3)    | 32.6(8)  |
| O4   | 1110(4)   | 5314(3)   | 6224(3)    | 90.8(13) |
| C22  | 3006(4)   | 126(3)    | 7034(3)    | 36.9(9)  |
| C5   | 2432(4)   | 687(3)    | 4450(3)    | 35.2(8)  |
| C29  | 3960(4)   | 5066(3)   | 7878(3)    | 40.9(9)  |
| C40  | 2139(4)   | 3455(3)   | 8443(3)    | 37.0(9)  |
| 02   | 1702(5)   | 3189(4)   | 3910(3)    | 92.8(13) |
| C11  | 4809(4)   | 2229(3)   | 5934(3)    | 35.9(9)  |
| C18  | 3073(4)   | -908(3)   | 5638(3)    | 40.9(9)  |
| C1   | 498(4)    | 2548(3)   | 4911(3)    | 39.7(9)  |
| C2   | 366(4)    | 3232(3)   | 5660(3)    | 41.7(10) |
| C12  | 5883(4)   | 1956(4)   | 6422(3)    | 46.1(10) |
| C28  | 4524(4)   | 3080(3)   | 8280(3)    | 36.7(9)  |
| C23  | 4350(4)   | 1909(3)   | 8143(3)    | 36.1(9)  |
| C30  | 4019(5)   | 5899(4)   | 8606(3)    | 57.8(12) |
| C10  | 1084(4)   | 12(4)     | 4035(3)    | 45.7(10) |
| C19  | 2936(4)   | -1890(4)  | 5957(3)    | 48.7(11) |
| C21  | 2838(4)   | -861(4)   | 7349(3)    | 49.8(11) |
| C24  | 5382(4)   | 1532(4)   | 8543(3)    | 51.6(11) |
| C20  | 2794(4)   | -1872(4)  | 6795(3)    | 52.9(12) |
| C35  | 1030(4)   | 3800(4)   | 8212(3)    | 55.5(12) |
| C16  | 5059(4)   | 3243(4)   | 5654(4)    | 53.5(12) |
| C27  | 5791(4)   | 3876(4)   | 8835(3)    | 48.2(11) |
| C3   | 1032(5)   | 4437(4)   | 5733(4)    | 58.2(13) |
| C6   | 3222(5)   | 808(4)    | 3901(3)    | 49.1(11) |
| C39  | 2437(5)   | 3086(4)   | 9227(3)    | 56.8(12) |
| C4   | 1310(5)   | 3343(5)   | 4537(3)    | 56.6(12) |
| C13  | 7186(4)   | 2701(5)   | 6624(4)    | 65.0(14) |
| С9   | 537(5)    | -527(4)   | 3109(3)    | 59.6(13) |
| C8   | 1323(6)   | -397(5)   | 2574(4)    | 68.3(15) |
| C26  | 6827(4)   | 3501(5)   | 9234(3)    | 61.2(13) |
| C15  | 6348(5)   | 3970(4)   | 5859(4)    | 69.9(16) |
| C36  | 237(5)    | 3764(5)   | 8753(4)    | 68.0(15) |
| C25  | 6622(5)   | 2339(5)   | 9088(3)    | 63.5(14) |
| C7   | 2662(6)   | 270(5)    | 2965(3)    | 66.0(14) |
| C34  | 4600(6)   | 5426(5)   | 7287(4)    | 70.4(15) |
| C31  | 4730(6)   | 7054(5)   | 8741(4)    | 79.4(17) |
| C38  | 1639(6)   | 3054(5)   | 9765(4)    | 78.1(17) |
| C37  | 538(5)    | 3386(5)   | 9522(4)    | 71.7(16) |
| C14  | 7403(5)   | 3695(5)   | 6344(4)    | 73.4(17) |
| C32  | 5387(7)   | 7394(5)   | 8167(5)    | 86.1(19) |
| C33  | 5324(7)   | 6584(6)   | 7436(5)    | 91(2)    |
| 05   | 1078(9)   | -1553(9)  | 9039(5)    | 193(3)   |
| C43  | 973(12)   | -590(9)   | 9222(6)    | 139(4)   |
| C42  | -3(12)    | -2374(13) | 8235(6)    | 208(6)   |
| C44  | 2260(20)  | 150(12)   | 10034(12)  | 397(17)  |
| C41  | 599(12)   | -3198(8)  | 8258(6)    | 145(5)   |
|      |           |           |            | S88      |

| Atom       | U <sub>11</sub>      | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------------|----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Pd1        | 24.03(14)            | 31.88(16)       | 34.36(16)       | 8.98(12)        | 8.04(11)        | 9.92(11)        |
| P1         | 23.8(4)              | 30.4(5)         | 34.7(5)         | 8.5(4)          | 11.2(4)         | 8.2(4)          |
| P2         | 28.1(5)              | 33.2(5)         | 33.3(5)         | 5.2(4)          | 7.6(4)          | 11.2(4)         |
| 01         | 33.0(14)             | 34.9(14)        | 36.4(15)        | 6.2(12)         | 7.0(11)         | 11.0(11)        |
| 03         | 69(2)                | 52(2)           | 83(3)           | 39(2)           | 15(2)           | 9.9(18)         |
| C17        | 24.7(17)             | 29.2(19)        | 42(2)           | 9.7(17)         | 9.7(16)         | 7.8(15)         |
| 04         | 94(3)                | 43(2)           | 113(3)          | 3(2)            | 5(3)            | 33(2)           |
| C22        | 31.4(19)             | 32(2)           | 41(2)           | 7.5(17)         | 5.9(17)         | 9.1(16)         |
| C5         | 36(2)                | 34(2)           | 40(2)           | 13.2(17)        | 14.7(17)        | 14.6(17)        |
| C29        | 37(2)                | 39(2)           | 42(2)           | 12.0(19)        | 6.6(18)         | 13.7(18)        |
| C40        | 31.8(19)             | 34(2)           | 38(2)           | 1.0(17)         | 10.0(17)        | 7.6(16)         |
| 02         | 108(3)               | 120(4)          | 65(3)           | 48(3)           | 42(3)           | 34(3)           |
| C11        | 27.1(18)             | 33(2)           | 45(2)           | 4.1(17)         | 16.3(17)        | 6.4(16)         |
| C18        | 34(2)                | 38(2)           | 50(3)           | 6.7(19)         | 13.7(18)        | 16.5(18)        |
| C1         | 25 5(18)             | 38(2)           | 45(2)           | 11 1(19)        | -0.9(17)        | 8 7(16)         |
| (2         | 29 9(19)             | 41(2)           | 53(3)           | 14(2)           | 7 8(18)         | 15 6(18)        |
| C12        | 32(2)                | 49(3)           | 53(3)           | 4(2)            | 14 6(19)        | 11 8(19)        |
| C28        | 29 4(19)             | 45(2)           | 35(2)           | -(2)<br>7 5(18) | 9 4(16)         | 15 9(17)        |
| C23        | 23.4(13)<br>31 0(19) | 43(2)           | 31(2)           | 7.5(10)         | 5.9(16)         | 13.3(17)        |
| C20        | 51.0(13)             | 45(2)           | 58(3)           | (17)<br>(17)    | 17(2)           | 16(2)           |
| C10        | 41(2)                | 44(3)           | JB(J)           | 5(2)<br>7(2)    | 17(2)           | 10(2)           |
| C10        | 41(2)                | 43(2)           | 47(3)<br>62(2)  | 7(2)<br>4(2)    | 2(2)            | 10.7(19)        |
| C19<br>C21 | 41(Z)<br>E2(2)       | 32(2)           | 02(3)<br>40(2)  | 4(2)<br>10(2)   | 3(Z)<br>12(2)   | 12(2)           |
| C21        | 22(2)<br>48(2)       | 45(5)           | 49(S)<br>E0(2)  | 19(2)           | 12(2)           | 15(2)           |
| C24        | 46(3)                | 49(5)           | 50(5)           | 7(2)<br>18(2)   | 5(2)            | 25(2)           |
| C20        | 52(3)                | 32(2)           | 04(3)           | 18(2)           | 5(2)            | 11(2)           |
| C35        | 43(2)                | 83(4)           | 44(3)           | 12(2)           | 14(2)           | 30(2)           |
| C16        | 44(2)                | 43(3)           | 83(4)           | 21(2)           | 35(2)           | 14(2)           |
| C27        | 34(2)                | 46(3)           | 48(3)           | -3(2)           | -0.6(19)        | 11.9(19)        |
| C3         | 51(3)                | 44(3)           | 70(3)           | 17(3)           | -1(2)           | 24(2)           |
| C6         | 49(3)                | 52(3)           | 51(3)           | 15(2)           | 24(2)           | 16(2)           |
| C39        | 58(3)                | 73(3)           | 58(3)           | 29(3)           | 31(2)           | 34(3)           |
| C4         | 52(3)                | 70(4)           | 47(3)           | 28(3)           | 8(2)            | 21(3)           |
| C13        | 28(2)                | 81(4)           | 67(3)           | 1(3)            | 8(2)            | 10(2)           |
| C9         | 55(3)                | 51(3)           | 51(3)           | 1(2)            | 5(2)            | /(2)            |
| C8         | 89(4)                | 58(3)           | 41(3)           | 5(2)            | 8(3)            | 20(3)           |
| C26        | 34(2)                | 68(3)           | 59(3)           | -3(3)           | -4(2)           | 15(2)           |
| C15        | 59(3)                | 43(3)           | 116(5)          | 20(3)           | 55(3)           | 5(2)            |
| C36        | 39(3)                | 99(4)           | 58(3)           | -1(3)           | 15(2)           | 27(3)           |
| C25        | 44(3)                | /3(4)           | 60(3)           | 5(3)            | -4(2)           | 31(3)           |
| C7         | 94(4)                | 69(3)           | 49(3)           | 18(3)           | 41(3)           | 31(3)           |
| C34        | 79(4)                | 58(3)           | 68(4)           | 12(3)           | 36(3)           | 7(3)            |
| C31        | 94(4)                | 40(3)           | 82(4)           | /(3)            | 9(4)            | 16(3)           |
| C38        | 87(4)                | 103(5)          | /1(4)           | 43(3)           | 48(3)           | 41(4)           |
| C37        | 54(3)                | 93(4)           | 64(4)           | 8(3)            | 36(3)           | 12(3)           |
| C14        | 38(3)                | 59(3)           | 103(4)          | -11(3)          | 36(3)           | -7(2)           |
| C32        | 94(5)                | 44(3)           | 101(5)          | 31(4)           | 10(4)           | 10(3)           |
| C33        | 93(5)                | 74(4)           | 99(5)           | 43(4)           | 39(4)           | -2(4)           |
| 05         | 211(8)               | 215(9)          | 102(5)          | 60(6)           | 11(5)           | 27(7)           |
| C43        | 237(12)              | 129(8)          | 84(6)           | 24(5)           | 40(6)           | 134(9)          |
| C42        | 184(11)              | 306(18)         | 55(5)           | 24(8)           | 9(6)            | 12(12)          |
| C44        | 590(40)              | 136(12)         | 242(18)         | 8(12)           | -100(20)        | 67(17)          |
| C41        | 287(14)              | 138(8)          | 135(8)          | 90(7)           | 151(9)          | 150(9)          |

S89

| Table S25 Anisotropic Displacement Parameters (Å <sup>2</sup> ×10 <sup>3</sup> ) for 3. The Anisotropic displacement factor expone | nt |
|------------------------------------------------------------------------------------------------------------------------------------|----|
| takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+]$ .                                                              |    |

# Table S26 Bond Lengths for 3.

| Atom Atom |     | Length/Å   | Atom Atom |     | Length/Å  |
|-----------|-----|------------|-----------|-----|-----------|
| Pd1       | P1  | 2.3140(10) | C2        | C3  | 1.443(6)  |
| Pd1       | P2  | 2.3211(10) | C12       | C13 | 1.393(6)  |
| Pd1       | C1  | 2.104(4)   | C28       | C23 | 1.383(5)  |
| Pd1       | C2  | 2.125(4)   | C28       | C27 | 1.398(5)  |
| P1        | C17 | 1.837(4)   | C23       | C24 | 1.378(5)  |
| P1        | C5  | 1.827(4)   | C30       | C31 | 1.379(7)  |
| P1        | C11 | 1.819(4)   | C10       | C9  | 1.368(6)  |
| P2        | C29 | 1.824(4)   | C19       | C20 | 1.363(6)  |
| P2        | C40 | 1.829(4)   | C21       | C20 | 1.381(6)  |
| P2        | C28 | 1.827(4)   | C24       | C25 | 1.380(6)  |
| 01        | C22 | 1.398(5)   | C35       | C36 | 1.378(6)  |
| 01        | C23 | 1.385(4)   | C16       | C15 | 1.371(6)  |
| 03        | C3  | 1.393(6)   | C27       | C26 | 1.380(6)  |
| 03        | C4  | 1.401(6)   | C6        | C7  | 1.381(6)  |
| C17       | C22 | 1.390(5)   | C39       | C38 | 1.379(7)  |
| C17       | C18 | 1.394(5)   | C13       | C14 | 1.360(8)  |
| 04        | C3  | 1.190(6)   | C9        | C8  | 1.364(7)  |
| C22       | C21 | 1.382(6)   | C8        | C7  | 1.375(7)  |
| C5        | C10 | 1.387(5)   | C26       | C25 | 1.366(7)  |
| C5        | C6  | 1.386(5)   | C15       | C14 | 1.362(8)  |
| C29       | C30 | 1.378(6)   | C36       | C37 | 1.353(7)  |
| C29       | C34 | 1.376(6)   | C34       | C33 | 1.382(7)  |
| C40       | C35 | 1.381(6)   | C31       | C32 | 1.357(9)  |
| C40       | C39 | 1.366(6)   | C38       | C37 | 1.364(8)  |
| 02        | C4  | 1.188(6)   | C32       | C33 | 1.363(9)  |
| C11       | C12 | 1.379(5)   | 05        | C43 | 1.227(10) |
| C11       | C16 | 1.383(6)   | 05        | C42 | 1.449(12) |
| C18       | C19 | 1.379(6)   | C43       | C44 | 1.534(17) |
| C1        | C2  | 1.396(6)   | C42       | C41 | 1.365(15) |
| C1        | C4  | 1.458(6)   |           |     |           |

# Table S27 Bond Angles for 3.

| Atom Atom Atom |     | n Atom | Angle/°    | Atom Atom Atom |     | n Atom | Angle/°   |
|----------------|-----|--------|------------|----------------|-----|--------|-----------|
| P1             | Pd1 | P2     | 106.32(3)  | C3             | C2  | Pd1    | 104.7(3)  |
| C1             | Pd1 | P1     | 106.38(12) | C11            | C12 | C13    | 119.7(4)  |
| C1             | Pd1 | P2     | 146.24(12) | C23            | C28 | P2     | 118.9(3)  |
| C1             | Pd1 | C2     | 38.55(15)  | C23            | C28 | C27    | 117.8(3)  |
| C2             | Pd1 | P1     | 144.86(12) | C27            | C28 | P2     | 123.2(3)  |
| C2             | Pd1 | P2     | 108.67(12) | C28            | C23 | 01     | 116.2(3)  |
| C17            | P1  | Pd1    | 120.04(12) | C24            | C23 | 01     | 122.2(4)  |
| C5             | P1  | Pd1    | 114.03(12) | C24            | C23 | C28    | 121.5(4)  |
| C5             | P1  | C17    | 101.12(17) | C29            | C30 | C31    | 120.3(5)  |
| C11            | P1  | Pd1    | 109.82(12) | C9             | C10 | C5     | 121.5(4)  |
| C11            | P1  | C17    | 106.39(17) | C20            | C19 | C18    | 120.2(4)  |
| C11            | P1  | C5     | 103.95(17) | C20            | C21 | C22    | 119.0(4)  |
| C29            | P2  | Pd1    | 112.16(14) | C23            | C24 | C25    | 119.4(4)  |
| C29            | P2  | C40    | 103.35(18) | C19            | C20 | C21    | 120.5(4)  |
| C29            | P2  | C28    | 101.66(18) | C36            | C35 | C40    | 120.9(5)  |
| C40            | P2  | Pd1    | 116.15(13) | C15            | C16 | C11    | 121.0(5)  |
| C28            | P2  | Pd1    | 118.03(13) | C26            | C27 | C28    | 120.8(4)  |
| C28            | P2  | C40    | 103.53(18) | 03             | C3  | C2     | 108.0(4)  |
| C23            | 01  | C22    | 115.8(3)   | 04             | C3  | 03     | 120.1(5)  |
| C3             | 03  | C4     | 108.6(4)   | 04             | C3  | C2     | 131.9(6)  |
| C22            | C17 | P1     | 121.3(3)   | C7             | C6  | C5     | 120.0(4)  |
| C22            | C17 | C18    | 117.0(4)   | C40            | C39 | C38    | 120.5(5)  |
| C18            | C17 | P1     | 121.6(3)   | 03             | C4  | C1     | 108.2(4)  |
| C17            | C22 | 01     | 120.1(3)   | 02             | C4  | 03     | 119.4(5)  |
| C21            | C22 | 01     | 118.0(4)   | 02             | C4  | C1     | 132.4(5)  |
| C21            | C22 | C17    | 121.9(4)   | C14            | C13 | C12    | 120.4(5)  |
| C10            | C5  | P1     | 118.1(3)   | C8             | C9  | C10    | 119.8(5)  |
| C6             | C5  | P1     | 123.6(3)   | C9             | C8  | C7     | 120.1(5)  |
| C6             | C5  | C10    | 118.2(4)   | C25            | C26 | C27    | 120.0(4)  |
| C30            | C29 | P2     | 123.4(3)   | C14            | C15 | C16    | 119.9(5)  |
| C34            | C29 | P2     | 118.4(4)   | C37            | C36 | C35    | 120.1(5)  |
| C34            | C29 | C30    | 118.1(4)   | C26            | C25 | C24    | 120.4(4)  |
| C35            | C40 | P2     | 118.3(3)   | C8             | C7  | C6     | 120.3(5)  |
| C39            | C40 | P2     | 123.4(3)   | C29            | C34 | C33    | 121.0(5)  |
| C39            | C40 | C35    | 118.3(4)   | C32            | C31 | C30    | 121.0(6)  |
| C12            | C11 | P1     | 123.9(3)   | C37            | C38 | C39    | 120.6(5)  |
| C12            | C11 | C16    | 118.7(4)   | C36            | C37 | C38    | 119.7(5)  |
| C16            | C11 | P1     | 117.3(3)   | C13            | C14 | C15    | 120.3(4)  |
| C19            | C18 | C17    | 121.3(4)   | C31            | C32 | C33    | 119.5(5)  |
| C2             | C1  | Pd1    | 71.5(2)    | C32            | C33 | C34    | 120.0(6)  |
| C2             | C1  | C4     | 106.6(4)   | C43            | 05  | C42    | 114.0(11) |
| C4             | C1  | Pd1    | 101.6(3)   | 05             | C43 | C44    | 104.9(10) |
| C1             | C2  | Pd1    | 69.9(2)    | C41            | C42 | 05     | 92.7(10)  |
| C1             | C2  | C3     | 108.4(4)   |                |     |        |           |

| Table S28 Hydrogen Atom Coordinates (Å×10 <sup>4</sup> ) and Isotropic Displacement Parameters (Å <sup>2</sup> ×10 <sup>3</sup> ) for 3. |         |          |          |       |  |
|------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------|-------|--|
| Atom                                                                                                                                     | x       | у        | Ζ        | U(eq) |  |
| H18                                                                                                                                      | 3161.31 | -933.12  | 5062.26  | 49    |  |
| H1                                                                                                                                       | -219.76 | 1826.52  | 4514.97  | 48    |  |
| H2                                                                                                                                       | -444.66 | 2994.02  | 5820.68  | 50    |  |
| H12                                                                                                                                      | 5737.26 | 1276.83  | 6614.57  | 55    |  |
| H30                                                                                                                                      | 3576.53 | 5681.53  | 9007.64  | 69    |  |
| H10                                                                                                                                      | 540.68  | -76.33   | 4393.81  | 55    |  |
| H19                                                                                                                                      | 2941.25 | -2565.75 | 5598.72  | 58    |  |
| H21                                                                                                                                      | 2755.01 | -845.85  | 7924.87  | 60    |  |
| H24                                                                                                                                      | 5244.61 | 740.93   | 8446.05  | 62    |  |
| H20                                                                                                                                      | 2666.77 | -2545.4  | 6995.45  | 63    |  |
| H35                                                                                                                                      | 815.02  | 4060.42  | 7683.74  | 67    |  |
| H16                                                                                                                                      | 4343.32 | 3435.24  | 5322.41  | 64    |  |
| H27                                                                                                                                      | 5936.94 | 4668.52  | 8936.74  | 58    |  |
| H6                                                                                                                                       | 4129.59 | 1251.19  | 4162.31  | 59    |  |
| H39                                                                                                                                      | 3183.85 | 2855.88  | 9399.19  | 68    |  |
| H13                                                                                                                                      | 7911.9  | 2518.09  | 6952.54  | 78    |  |
| Н9                                                                                                                                       | -367.5  | -980.84  | 2844.92  | 72    |  |
| H8                                                                                                                                       | 952.33  | -759.31  | 1943.54  | 82    |  |
| H26                                                                                                                                      | 7665.28 | 4039.62  | 9601.6   | 73    |  |
| H15                                                                                                                                      | 6501.03 | 4649.07  | 5667.33  | 84    |  |
| H36                                                                                                                                      | -506.02 | 4000.73  | 8589.51  | 82    |  |
| H25                                                                                                                                      | 7323.04 | 2089.16  | 9358.85  | 76    |  |
| H7                                                                                                                                       | 3192.65 | 359.28   | 2596.88  | 79    |  |
| H34                                                                                                                                      | 4545.07 | 4880.46  | 6778.24  | 84    |  |
| H31                                                                                                                                      | 4760.88 | 7608.92  | 9234     | 95    |  |
| H38                                                                                                                                      | 1853.05 | 2802.84  | 10297.92 | 94    |  |
| H37                                                                                                                                      | -2.67   | 3352.21  | 9883.85  | 86    |  |
| H14                                                                                                                                      | 8276.36 | 4190.21  | 6484.4   | 88    |  |
| H32                                                                                                                                      | 5875.84 | 8174.1   | 8270.39  | 103   |  |
| H33                                                                                                                                      | 5768.33 | 6809.87  | 7037.67  | 110   |  |
| H43A                                                                                                                                     | 188.52  | -635.82  | 9395.76  | 166   |  |
| H43B                                                                                                                                     | 899.41  | -263.91  | 8695.54  | 166   |  |
| H42A                                                                                                                                     | -855.09 | -2612.52 | 8332.89  | 249   |  |
| H42B                                                                                                                                     | -101.37 | -2106.5  | 7680.11  | 249   |  |
| H44A                                                                                                                                     | 3028.38 | 96.26    | 9877.7   | 595   |  |
| H44B                                                                                                                                     | 2263.24 | -128.04  | 10570.01 | 595   |  |
| H44C                                                                                                                                     | 2305.41 | 946.35   | 10161.59 | 595   |  |
| H41A                                                                                                                                     | 714.95  | -3419.69 | 7676.95  | 218   |  |
| H41B                                                                                                                                     | 45.92   | -3866.72 | 8369.05  | 218   |  |
| H41C                                                                                                                                     | 1459.24 | -2887.53 | 8743.92  | 218   |  |

#### Refinement model description

Number of restraints - 0, number of constraints - unknown. Details: 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2.a Ternary CH refined with riding coordinates: C1(H1), C2(H2) 2.b Secondary CH2 refined with riding coordinates: C43(H43A,H43B), C42(H42A,H42B) 2.c Aromatic/amide H refined with riding coordinates: C18(H18), C12(H12), C30(H30), C10(H10), C19(H19), C21(H21), C24(H24), C20(H20), C35(H35), C16(H16), C27(H27), C6(H6), C39(H39), C13(H13), C9(H9), C8(H8), C26(H26), C15(H15), C36(H36), C25(H25), C7(H7), C34(H34), C31(H31), C38(H38), C37(H37), C14(H14), C32(H32), C33(H33) 2.d Idealised Me refined as rotating group: C44(H44A,H44B,H44C), C41(H41A,H41B,H41C)

# XantPhos-Pd-MAH (4)

Single crystals of  $C_{43.5}H_{35}ClO_4P_2Pd$  **[4•0.5DCM]** were selected using a MitEGen loop and paratone oil. A suitable crystal was selected and run on a Bruker APEX-II CCD diffractometer. The crystal was kept at 99.99 K during data collection. Using Olex2,<sup>12</sup> the structure was solved with the olex2.solve<sup>13</sup> structure solution program using Charge Flipping and refined with the XL<sup>14</sup> refinement package using Least Squares minimization.

#### Crystal structure determination of [4•0.5DCM]

**Crystal Data** for  $C_{43.5}H_{35}CIO_4P_2Pd$  (*M* =825.50 g/mol): monoclinic, space group C2/c (no. 15), *a* = 24.7326(18) Å, *b* = 13.2010(8) Å, *c* = 23.4604(17) Å, *b* = 111.779(2)°, *V* = 7113.0(9) Å<sup>3</sup>, *Z* = 8, *T* = 99.99 K,  $\mu$ (MoK $\alpha$ ) = 0.732 mm<sup>-1</sup>, *Dcalc* = 1.542 g/cm<sup>3</sup>, 34983 reflections measured (3.546° ≤ 2 $\Theta$  ≤ 55.946°), 8524 unique ( $R_{int}$  = 0.0645,  $R_{sigma}$  = 0.0608) which were used in all calculations. The final  $R_1$  was 0.0384 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.0830 (all data).

#### Table S29 Crystal data and structure refinement for 4•0.5DCM.

| Identification code                         | 4•0.5DCM                                                    |
|---------------------------------------------|-------------------------------------------------------------|
| Empirical formula                           | $C_{43.5}H_{35}CIO_4P_2Pd$                                  |
| Formula weight                              | 825.50                                                      |
| Temperature/K                               | 99.99                                                       |
| Crystal system                              | monoclinic                                                  |
| Space group                                 | C2/c                                                        |
| a/Å                                         | 24.7326(18)                                                 |
| b/Å                                         | 13.2010(8)                                                  |
| c/Å                                         | 23.4604(17)                                                 |
| α/°                                         | 90                                                          |
| β/°                                         | 111.779(2)                                                  |
| γ/°                                         | 90                                                          |
| Volume/ų                                    | 7113.0(9)                                                   |
| Z                                           | 8                                                           |
| ρ <sub>calc</sub> g/cm <sup>3</sup>         | 1.542                                                       |
| µ/mm⁻¹                                      | 0.732                                                       |
| F(000)                                      | 3368.0                                                      |
| Crystal size/mm <sup>3</sup>                | 0.15 × 0.05 × 0.05                                          |
| Radiation                                   | ΜοΚα (λ = 0.71073)                                          |
| 20 range for data collection/°              | 3.546 to 55.946                                             |
| Index ranges                                | $-32 \le h \le 32$ , $-17 \le k \le 8$ , $-30 \le l \le 30$ |
| Reflections collected                       | 34983                                                       |
| Independent reflections                     | 8524 [ $R_{int} = 0.0645$ , $R_{sigma} = 0.0608$ ]          |
| Data/restraints/parameters                  | 8524/0/467                                                  |
| Goodness-of-fit on F <sup>2</sup>           | 1.019                                                       |
| Final R indexes [I>=2σ (I)]                 | $R_1 = 0.0384$ , $wR_2 = 0.0752$                            |
| Final R indexes [all data]                  | $R_1 = 0.0643$ , $wR_2 = 0.0830$                            |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.81/-0.85                                                  |

# Table S30 Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for 4•0.5DCM. $U_{eq}$ is defined as 1/3 of of the trace of the orthogonalised $U_{U}$ tensor.

| Atom       | X                                 | У                     | Z                        | U(eq)    |
|------------|-----------------------------------|-----------------------|--------------------------|----------|
| Pd1        | 3366.5(2)                         | 3515.7(2)             | 5120.3(2)                | 9.69(6)  |
| P1         | 3468.8(3)                         | 3148.8(5)             | 4185.6(3)                | 9.18(15) |
| P2         | 2997.3(3)                         | 5167.3(5)             | 5030.1(3)                | 9.80(15) |
| Cl1        | 5252.3(5)                         | 6999.2(9)             | 8165.6(5)                | 53.3(3)  |
| 04         | 2520.2(8)                         | 4532.6(13)            | 3752.5(9)                | 9.9(4)   |
| 02         | 4485.9(10)                        | 3111.6(16)            | 6341.6(10)               | 20.9(5)  |
| 03         | 4090.6(11)                        | 4306.8(17)            | 6750.8(10)               | 27.7(6)  |
| 01         | 4629.3(10)                        | 1688.7(17)            | 5894.9(11)               | 29.0(6)  |
| C5         | 3887.0(12)                        | 2013(2)               | 4170.2(13)               | 11.8(6)  |
| C30        | 2782.9(12)                        | 2898.1(19)            | 3547.6(13)               | 9.2(6)   |
| C36        | 1510.5(13)                        | 4952(2)               | 3477.9(13)               | 11.9(6)  |
| C41        | 2078 0(12)                        | 4962 2(19)            | 3902 0(13)               | 10 1(6)  |
| (33        | 1683 0(13)                        | 2674(2)               | 2610 1(13)               | 13 3(6)  |
| C12        | 4285 1(13)                        | 4630(2)               | /228 7(1/)               | 13.3(0)  |
| C3         | 4203.1(13)                        | 2258(2)               | 5966 0(14)               | 16.0(6)  |
| C16        | 4200.2(14)<br>3606 1(1 <i>1</i> ) | 4251(2)               | 3219 1(14)               | 17 3(6)  |
| C10        | 3000.1(14)                        | 42J1(2)<br>5278 6(10) | 3219.1(14)<br>AA86 A(12) | 10.4(6)  |
| C40        | 2247.4(12)                        | 3378.0(19)            | 2854 0(12)               | 10.4(0)  |
| C11<br>C25 | 1200 0(12)                        | 4055(2)               | 284.3(13)                | 11.5(0)  |
| C35        | 1399.0(13)                        | 4483(2)               | 2847.7(13)               | 11.8(0)  |
| C34        | 1807.4(12)                        | 3574(2)               |                          | 11.2(5)  |
| (17        | 2950.0(13)                        | 5723(2)               | 5725.1(13)               | 12.0(6)  |
| C22        | 2649.1(14)                        | 5206(2)               | 6030.2(14)               | 16.8(6)  |
| C23        | 3453.6(13)                        | 6068(2)               | 4827.0(13)               | 12.0(6)  |
| 6          | 3822.2(14)                        | 1144(2)               | 4475.4(14)               | 18.9(7)  |
| C29        | 2358.2(12)                        | 3657.2(19)            | 3403.7(12)               | 9.7(6)   |
| C37        | 1088.9(13)                        | 5405(2)               | 3653.4(14)               | 14.4(6)  |
| C10        | 4272.8(13)                        | 1978(2)               | 3861.3(13)               | 13.6(6)  |
| C31        | 2645.4(13)                        | 2028(2)               | 3189.1(13)               | 12.8(6)  |
| C39        | 1812.7(13)                        | 5849(2)               | 4638.2(14)               | 13.8(6)  |
| C24        | 3260.6(13)                        | 6661(2)               | 4300.9(14)               | 15.2(6)  |
| C1         | 3649.2(14)                        | 2258(2)               | 5736.6(13)               | 15.4(6)  |
| C19        | 3095.6(15)                        | 7094(2)               | 6448.7(15)               | 21.1(7)  |
| C32        | 2100.7(13)                        | 1920(2)               | 2726.9(13)               | 14.8(6)  |
| C27        | 4403.2(14)                        | 6835(2)               | 5115.4(15)               | 19.0(7)  |
| C8         | 4518.0(14)                        | 251(2)                | 4175.1(15)               | 21.2(7)  |
| C28        | 4033.1(13)                        | 6158(2)               | 5231.5(14)               | 16.3(6)  |
| C9         | 4589.4(14)                        | 1108(2)               | 3870.0(14)               | 19.0(7)  |
| C43        | 763.8(13)                         | 4199(2)               | 2513.6(14)               | 18.1(7)  |
| C4         | 4008.1(14)                        | 3604(2)               | 6411.3(13)               | 17.8(6)  |
| C26        | 4208.1(15)                        | 7422(2)               | 4584.3(16)               | 21.8(7)  |
| C15        | 3895.8(14)                        | 4912(2)               | 2972.6(15)               | 19.8(7)  |
| C42        | 1576.3(14)                        | 5279(2)               | 2461.3(14)               | 17.6(7)  |
| C2         | 3477.1(14)                        | 3079(2)               | 6022.2(13)               | 14.8(6)  |
| C13        | 4572.8(14)                        | 5293(2)               | 3975.9(15)               | 17.8(7)  |
| C38        | 1241.8(13)                        | 5857(2)               | 4224.5(14)               | 15.6(6)  |
| C18        | 3177.2(14)                        | 6677(2)               | 5944.8(14)               | 16.7(6)  |
| C14        | 4379.7(14)                        | 5431(2)               | 3348.2(15)               | 18.3(7)  |
| C25        | 3640.4(14)                        | 7331(2)               | 4180.5(15)               | 19.7(7)  |
| C20        | 2775.9(14)                        | 6589(2)               | 6727.5(14)               | 21.1(7)  |
| C7         | 4131.2(16)                        | 268(2)                | 4472.9(15)               | 24.4(8)  |
| C21        | 2552.8(15)                        | 5635(2)               | 6519.3(15)               | 21.7(7)  |
| C44        | 5000                              | 6293(4)               | 7500                     | 49.5(18) |
|            |                                   |                       |                          | 595      |

| Table S31 Anisotropic Displacement Parameters (Å <sup>2</sup> ×10 <sup>3</sup> ) for 4•0.5DCM. The Anisotropic displacement facto | r |
|-----------------------------------------------------------------------------------------------------------------------------------|---|
| exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+]$ .                                                            |   |

| Atom | <b>U</b> <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub>     | U <sub>23</sub>    | U <sub>13</sub>    | U <sub>12</sub>     |
|------|------------------------|-----------------|---------------------|--------------------|--------------------|---------------------|
| Pd1  | 11.43(11)              | 8.67(10)        | 9.97(10)            | 0.92(9)            | 5.12(8)            | 1.34(9)             |
| P1   | 10.3(4)                | 8.7(3)          | 9.0(4)              | 0.0(3)             | 4.1(3)             | 1.5(3)              |
| P2   | 10.9(4)                | 9.2(3)          | 9.7(4)              | -0.1(3)            | 4.3(3)             | 0.9(3)              |
| Cl1  | 45.2(7)                | 74.4(8)         | 32.7(6)             | -16.0(5)           | 5.5(5)             | 2.8(6)              |
| 04   | 8.0(10)                | 9.0(9)          | 12.1(10)            | -1.4(8)            | 3.1(8)             | 1.1(8)              |
| 02   | 17.0(12)               | 22.9(11)        | 20.8(12)            | -3.0(9)            | 4.6(10)            | 1.1(10)             |
| 03   | 31.9(15)               | 30.3(13)        | 18.8(12)            | -9.3(10)           | 7.0(11)            | 1.1(11)             |
| 01   | 24.3(13)               | 28.0(13)        | 33.4(14)            | 0.6(11)            | 9.2(12)            | 12.5(11)            |
| C5   | 8.4(14)                | 11.2(13)        | 12.1(14)            | -2.3(11)           | -0.6(12)           | 2.6(11)             |
| C30  | 10.3(15)               | 10.0(13)        | 9.7(14)             | 1.7(11)            | 6.5(12)            | 1.1(11)             |
| C36  | 13.1(15)               | 10.0(13)        | 13.8(15)            | 2.3(11)            | 6.2(13)            | -1.2(11)            |
| C41  | 11.6(15)               | 6.8(12)         | 13.8(14)            | 1.7(11)            | 7.0(12)            | 1.4(11)             |
| C33  | 10.9(15)               | 17.4(14)        | 10.4(14)            | -0.3(12)           | 2.7(12)            | -3.9(12)            |
| C12  | 15 2(16)               | 12 5(13)        | 12 0(14)            | 0.1(11)            | 5 4(13)            | 2 8(12)             |
| C3   | 20 5(17)               | 13 9(1/)        | 14 1(15)            | 2 5(12)            | 7 2(14)            | 2.8(12)             |
| C16  | 12 1(16)               | 23 7(16)        | 13 6(15)            | 2.5(12)            | 1 0(13)            | -2.8(13)            |
| C10  | 11.0(15)               | 23.7(10)        | 13.0(13)            | 3.3(12)<br>2.7(11) | 1.9(13)            | -2.8(13)            |
| C40  | 11.6(15)               | 0.5(13)         | 12 2(15)            | -0.2(11)           | 4.0(12)            | 2.2(11)             |
| C25  | 11.0(13)               | 12 2(14)        | 13.3(13)            | -0.3(11)           | 4.J(12)            | 2.2(11)             |
| C34  | 10.0(14)               | 13.3(14)        | Σ1.7(14)<br>Ο Ε(12) | 5.4(11)<br>0.4(11) | 5.7(12)            | 2.0(11)             |
| C17  | 12.4(14)               | 12 2(12)        | 0.5(13)             | 0.4(11)            | 2.0(12)            | -5.1(12)<br>5.0(11) |
| C17  | 12.2(13)               | 13.2(13)        | 9.0(14)<br>17.2(16) | 0.2(11)            | 5.0(12)<br>0.7(14) | 3.0(11)<br>3.2(12)  |
| C22  | 21.4(17)               | 14.0(14)        | 17.2(10)            | 2.1(12)            | 9.7(14)            | 0.7(13)             |
| C25  | 11.0(15)               | 9.4(12)         | 17.5(15)            | -5.5(11)           | 0.2(15)            | -0.7(11)            |
| CB   | 24.8(18)               | 15.7(14)        | 18.9(10)            | 1.9(12)            | 11.3(15)           | 7.5(13)             |
| C29  | 11.2(14)               | 9.8(13)         | 8.7(13)             | 0.3(10)            | 4.4(11)            | -1.6(11)            |
| C37  | 10.2(15)               | 16.0(14)        | 17.1(16)            | 3.5(12)            | 5.3(13)            | 0.0(12)             |
| C10  | 10.3(15)               | 13.1(14)        | 15.0(15)            | -3.3(12)           | 1.8(13)            | 0.6(12)             |
| C31  | 15.2(16)               | 9.8(13)         | 15.8(15)            | 0.6(11)            | 8.6(13)            | 0.4(11)             |
| C39  | 16.3(16)               | 12.6(14)        | 14.0(15)            | 0.4(11)            | 7.3(13)            | 2.3(12)             |
| C24  | 12.1(15)               | 14.8(15)        | 17.8(16)            | 1.8(12)            | 4.5(13)            | 1.0(12)             |
| C1   | 19.7(17)               | 12.4(14)        | 15.8(15)            | 5.0(12)            | 8.7(14)            | 0.9(12)             |
| C19  | 21.8(18)               | 16.6(15)        | 22.2(17)            | -6.7(13)           | 5.2(15)            | 4.8(13)             |
| C32  | 19.4(17)               | 12.6(13)        | 13.8(15)            | -3.4(12)           | 7.9(13)            | -4.2(12)            |
| C27  | 12.3(16)               | 17.4(14)        | 27.2(18)            | -7.5(13)           | 7.2(14)            | -1.2(13)            |
| C8   | 19.8(18)               | 17.5(15)        | 20.5(17)            | -5.4(13)           | 0.6(14)            | 8.5(13)             |
| C28  | 15.3(16)               | 16.9(14)        | 16.4(16)            | -1.3(12)           | 5.4(13)            | 5.5(12)             |
| C9   | 12.6(16)               | 23.6(16)        | 19.6(17)            | -10.2(13)          | 4.5(14)            | 1.2(13)             |
| C43  | 12.0(16)               | 25.0(16)        | 14.6(16)            | -0.9(13)           | 1.9(13)            | -1.2(13)            |
| C4   | 21.4(17)               | 22.3(15)        | 12.0(15)            | 4.9(13)            | 8.8(13)            | 3.9(14)             |
| C26  | 24.1(19)               | 12.6(14)        | 37(2)               | -2.9(14)           | 20.2(17)           | -2.0(13)            |
| C15  | 16.1(17)               | 26.9(17)        | 15.9(16)            | 7.9(13)            | 5.6(14)            | 2.0(14)             |
| C42  | 19.1(17)               | 20.4(15)        | 13.7(15)            | 5.1(12)            | 6.5(14)            | 1.0(13)             |
| C2   | 17.1(16)               | 17.5(14)        | 12.5(15)            | 3.7(12)            | 8.8(13)            | 2.1(13)             |
| C13  | 15.6(17)               | 15.4(15)        | 22.0(17)            | -3.0(13)           | 6.6(14)            | -3.3(13)            |
| C38  | 13.9(16)               | 17.2(15)        | 19.0(16)            | 0.7(12)            | 10.0(14)           | 4.6(12)             |
| C18  | 19.1(17)               | 14.8(15)        | 16.9(15)            | -0.5(12)           | 7.5(14)            | 0.9(12)             |
| C14  | 16.7(17)               | 14.8(14)        | 25.4(18)            | 6.0(13)            | 10.2(15)           | 1.2(13)             |
| C25  | 20.9(18)               | 17.6(15)        | 24.3(18)            | 5.6(13)            | 12.6(15)           | 0.5(13)             |
| C20  | 27.8(18)               | 23.4(16)        | 11.6(15)            | 0.4(13)            | 7.0(14)            | 14.1(15)            |
| C7   | 37(2)                  | 14.1(15)        | 20.6(17)            | 2.4(13)            | 9.5(16)            | 8.1(14)             |
| C21  | 27.5(19)               | 21.7(16)        | 21.4(18)            | 7.8(13)            | 15.3(16)           | 8.3(14)             |
| C44  | 97(6)                  | 31(3)           | 30(3)               | 0                  | 34(4)              | 0                   |

#### Table S32 Bond Lengths for 4•0.5DCM.

| Atom Atom |     | Length/Å  | Atom Atom |     | Length/Å |  |
|-----------|-----|-----------|-----------|-----|----------|--|
| Pd1       | P1  | 2.3492(7) | C16       | C11 | 1.401(4) |  |
| Pd1       | P2  | 2.3427(7) | C16       | C15 | 1.384(4) |  |
| Pd1       | C1  | 2.141(3)  | C40       | C39 | 1.397(4) |  |
| Pd1       | C2  | 2.111(3)  | C35       | C34 | 1.529(4) |  |
| P1        | C5  | 1.830(3)  | C35       | C43 | 1.520(4) |  |
| P1        | C30 | 1.829(3)  | C35       | C42 | 1.554(4) |  |
| P1        | C11 | 1.825(3)  | C34       | C29 | 1.388(4) |  |
| P2        | C40 | 1.841(3)  | C17       | C22 | 1.389(4) |  |
| P2        | C17 | 1.831(3)  | C17       | C18 | 1.397(4) |  |
| P2        | C23 | 1.821(3)  | C22       | C21 | 1.377(4) |  |
| Cl1       | C44 | 1.724(3)  | C23       | C24 | 1.388(4) |  |
| 04        | C41 | 1.388(3)  | C23       | C28 | 1.400(4) |  |
| 04        | C29 | 1.387(3)  | C6        | C7  | 1.388(4) |  |
| 02        | C3  | 1.402(4)  | C37       | C38 | 1.385(4) |  |
| 02        | C4  | 1.410(4)  | C10       | C9  | 1.385(4) |  |
| 03        | C4  | 1.190(4)  | C31       | C32 | 1.388(4) |  |
| 01        | C3  | 1.187(3)  | C39       | C38 | 1.385(4) |  |
| C5        | C6  | 1.393(4)  | C24       | C25 | 1.393(4) |  |
| C5        | C10 | 1.397(4)  | C1        | C2  | 1.420(4) |  |
| C30       | C29 | 1.399(4)  | C19       | C18 | 1.385(4) |  |
| C30       | C31 | 1.390(4)  | C19       | C20 | 1.372(4) |  |
| C36       | C41 | 1.387(4)  | C27       | C28 | 1.377(4) |  |
| C36       | C35 | 1.531(4)  | C27       | C26 | 1.392(4) |  |
| C36       | C37 | 1.390(4)  | C8        | C9  | 1.385(4) |  |
| C41       | C40 | 1.390(4)  | C8        | C7  | 1.378(5) |  |
| C33       | C34 | 1.399(4)  | C4        | C2  | 1.466(4) |  |
| C33       | C32 | 1.386(4)  | C26       | C25 | 1.377(5) |  |
| C12       | C11 | 1.381(4)  | C15       | C14 | 1.377(4) |  |
| C12       | C13 | 1.392(4)  | C13       | C14 | 1.381(4) |  |
| C3        | C1  | 1.468(4)  | C20       | C21 | 1.389(4) |  |

# Table S33 Bond Angles for 4•0.5DCM.

| Atom Atom Atom |     | n Atom | Angle/°    | Atom Atom Atom   |     | n Atom | Angle/°    |
|----------------|-----|--------|------------|------------------|-----|--------|------------|
| P2             | Pd1 | P1     | 106.32(3)  | C43              | C35 | C34    | 112.5(2)   |
| C1             | Pd1 | P1     | 110.43(8)  | C43              | C35 | C42    | 109.1(2)   |
| C1             | Pd1 | P2     | 143.25(8)  | C33              | C34 | C35    | 125.7(3)   |
| C2             | Pd1 | P1     | 149.39(8)  | C29              | C34 | C33    | 116.8(3)   |
| C2             | Pd1 | P2     | 104.24(8)  | C29              | C34 | C35    | 117.4(2)   |
| C2             | Pd1 | C1     | 39.01(11)  | C22              | C17 | P2     | 119.0(2)   |
| C5             | P1  | Pd1    | 116.42(10) | C22              | C17 | C18    | 118.2(3)   |
| C30            | P1  | Pd1    | 114.39(9)  | C18              | C17 | P2     | 122.7(2)   |
| C30            | P1  | C5     | 101.25(12) | C21              | C22 | C17    | 121.2(3)   |
| C11            | P1  | Pd1    | 118.52(9)  | C24              | C23 | P2     | 124.0(2)   |
| C11            | P1  | C5     | 101.92(13) | C24              | C23 | C28    | 118.9(3)   |
| C11            | P1  | C30    | 101.83(13) | C28              | C23 | P2     | 117.1(2)   |
| C40            | P2  | Pd1    | 117.54(9)  | C7               | C6  | C5     | 121.0(3)   |
| C17            | P2  | Pd1    | 116.37(9)  | 04               | C29 | C30    | 115.3(2)   |
| C17            | P2  | C40    | 100.11(13) | 04               | C29 | C34    | 120.4(2)   |
| C23            | P2  | Pd1    | 111.90(9)  | C34              | C29 | C30    | 124.3(3)   |
| C23            | P2  | C40    | 106.41(13) | C38              | C37 | C36    | 120.4(3)   |
| C23            | P2  | C17    | 102.81(13) | C9               | C10 | C5     | 120.7(3)   |
| C29            | 04  | C41    | 114.1(2)   | C32              | C31 | C30    | 120.4(3)   |
| C3             | 02  | C4     | 109.4(2)   | C38              | C39 | C40    | 120.4(3)   |
| C6             | C5  | P1     | 119.4(2)   | C23              | C24 | C25    | 120.2(3)   |
| C6             | C5  | C10    | 118.1(3)   | C3               | C1  | Pd1    | 106.55(19) |
| C10            | C5  | P1     | 122.5(2)   | C2               | C1  | Pd1    | 69.33(16)  |
| C29            | C30 | P1     | 117.0(2)   | C2               | C1  | C3     | 107.3(3)   |
| C31            | C30 | P1     | 126.1(2)   | C20              | C19 | C18    | 120.4(3)   |
| C31            | C30 | C29    | 116.9(3)   | C33              | C32 | C31    | 121.1(3)   |
| C41            | C36 | C35    | 117.9(3)   | C28              | C27 | C26    | 120.2(3)   |
| C41            | C36 | C37    | 117.0(3)   | C7               | C8  | C9     | 119.6(3)   |
| C37            | C36 | C35    | 125.0(3)   | C27              | C28 | C23    | 120.6(3)   |
| 04             | C41 | C40    | 115.7(3)   | C8               | C9  | C10    | 120.3(3)   |
| C36            | C41 | 04     | 119.8(2)   | 02               | C4  | C2     | 107.8(2)   |
| C36            | C41 | C40    | 124.5(3)   | 03               | C4  | 02     | 119.6(3)   |
| C32            | C33 | C34    | 120.4(3)   | 03               | C4  | C2     | 132.6(3)   |
| C11            | C12 | C13    | 120.4(3)   | C25              | C26 | C27    | 119.6(3)   |
| 02             | C3  | C1     | 107.9(2)   | C14              | C15 | C16    | 120.5(3)   |
| 01             | C3  | 02     | 119.8(3)   | C1               | C2  | Pd1    | 71.66(16)  |
| 01             | C3  | C1     | 132.3(3)   | C1               | C2  | C4     | 107.4(3)   |
| C15            | C16 | C11    | 120.4(3)   | C4               | C2  | Pd1    | 104.36(19) |
| C41            | C40 | P2     | 118.8(2)   | C14              | C13 | C12    | 120.5(3)   |
| C41            | C40 | C39    | 116.6(3)   | C37              | C38 | C39    | 121.0(3)   |
| C39            | C40 | P2     | 124.3(2)   | C19              | C18 | C17    | 120.5(3)   |
| C12            | C11 | P1     | 120.0(2)   | C15              | C14 | C13    | 119.4(3)   |
| C12            | C11 | C16    | 118.7(3)   | C26              | C25 | C24    | 120.5(3)   |
| C16            | C11 | P1     | 121.2(2)   | C19              | C20 | C21    | 119.8(3)   |
| C36            | C35 | C42    | 107.5(2)   | C8               | C7  | C6     | 120.2(3)   |
| C34            | C35 | C36    | 107.1(2)   | C22              | C21 | C20    | 119.8(3)   |
| C34            | C35 | C42    | 108.0(2)   | Cl1 <sup>1</sup> | C44 | Cl1    | 114.6(3)   |
| C43            | C35 | C36    | 112.3(2)   |                  |     |        |            |

<sup>1</sup>1-X,+Y,3/2-Z

| Table S34 Hydrogen Atom Coordinates (Å×10 <sup>4</sup> ) and Isotropic Displacement Parameters (Å <sup>2</sup> ×10 <sup>3</sup> ) for |  |
|---------------------------------------------------------------------------------------------------------------------------------------|--|
| 4•0.5DCM.                                                                                                                             |  |

| Atom | X       | У       | Ζ       | U(eq) |
|------|---------|---------|---------|-------|
| H33  | 1309.93 | 2578.74 | 2297.63 | 16    |
| H12  | 4421.27 | 4542.79 | 4661.19 | 16    |
| H16  | 3271.82 | 3899.45 | 2955.55 | 21    |
| H22  | 2507.01 | 4543.18 | 5899.16 | 20    |
| H6   | 3562.32 | 1151.35 | 4688.81 | 23    |
| H37  | 693.53  | 5404.12 | 3379.86 | 17    |
| H10  | 4318.67 | 2556.76 | 3642.9  | 16    |
| H31  | 2925.86 | 1503.29 | 3260.71 | 15    |
| H39  | 1909.24 | 6164.77 | 5027.3  | 17    |
| H24  | 2868.36 | 6610.28 | 4022.15 | 18    |
| H1   | 3426.31 | 1607.37 | 5650.22 | 18    |
| H19  | 3262.13 | 7733.9  | 6602.16 | 25    |
| H32  | 2012.58 | 1319.61 | 2486.56 | 18    |
| H27  | 4792.73 | 6902.86 | 5398.56 | 23    |
| H8   | 4734.48 | -345.39 | 4179.01 | 25    |
| H28  | 4172.41 | 5748.15 | 5589.48 | 20    |
| Н9   | 4856.73 | 1100.25 | 3665.64 | 23    |
| H43A | 649.02  | 3699.04 | 2756.47 | 27    |
| H43B | 712.14  | 3908.79 | 2112.15 | 27    |
| H43C | 520.68  | 4804.95 | 2456.68 | 27    |
| H26  | 4465.03 | 7881.35 | 4500.92 | 26    |
| H15  | 3759.84 | 5007.13 | 2540.77 | 24    |
| H42A | 1338.4  | 5889.83 | 2415.03 | 26    |
| H42B | 1514.04 | 4997.24 | 2055.37 | 26    |
| H42C | 1988.34 | 5452.86 | 2669.83 | 26    |
| H2   | 3135.3  | 3016.59 | 6150.25 | 18    |
| H13  | 4904.75 | 5653.58 | 4237.2  | 21    |
| H38  | 950.4   | 6177.61 | 4334.27 | 19    |
| H18  | 3389.18 | 7042.29 | 5747.12 | 20    |
| H14  | 4578.89 | 5880.89 | 3177.14 | 22    |
| H25  | 3506.65 | 7728.7  | 3817.04 | 24    |
| H20  | 2707.15 | 6890.92 | 7062.04 | 25    |
| H7   | 4075.92 | -322.36 | 4676.83 | 29    |
| H21  | 2334.53 | 5279.57 | 6713.72 | 26    |
| H44A | 5318.84 | 5850.41 | 7488.73 | 59    |
| H44B | 4681.16 | 5850.4  | 7511.26 | 59    |

| Table S35   | Atomic Occu      | pancy for 4    | •0.5DCM.                  |                |                    |
|-------------|------------------|----------------|---------------------------|----------------|--------------------|
| Atom        | Occupancy        | Atom           | Occupancy                 | Atom           | Occupancy          |
| H44A        |                  | 0.5 H44B       |                           | 0.5            |                    |
| Refineme    | nt model des     | cription       |                           |                |                    |
| Nur         | nber of restra   | aints - 0, nun | nber of constrain         | its - unknown. |                    |
| Details:    |                  |                |                           |                |                    |
| 1. Fixed U  | iso              |                |                           |                |                    |
| At 1.2 tim  | nes of:          |                |                           |                |                    |
| All C(H) g  | roups, All C(۲   | H,H) groups    |                           |                |                    |
| At 1.5 tim  | nes of:          |                |                           |                |                    |
| All C(H,H   | ,H) groups       |                |                           |                |                    |
| 2. Others   |                  |                |                           |                |                    |
| Fixed Sof:  | : H44A(0.5) H    | 44B(0.5)       |                           |                |                    |
| 3.a Ternar  | ry CH refined    | with riding c  | coordinates:              |                |                    |
| C1(H1), C   | 2(H2)            |                |                           |                |                    |
| 3.b Secon   | dary CH2 refii   | ned with rid   | ing coordinates:          |                |                    |
| C44(H44A    | ч <i>,</i> Н44В) |                |                           |                |                    |
| 3.c Aroma   | itic/amide H r   | efined with    | riding coordinate         | es:            |                    |
| C33(H33)    | , C12(H12), C    | 16(H16), C22   | 2(H22) <i>,</i> C6(H6), C | 37(H37), C10(  | H10), C31(H31),    |
| C39(H39)    | , C24(H24), C    | 19(H19), C32   | 2(H32), C27(H27)          | , C8(H8), C28( | H28), C9(H9),      |
| C26(H26)    | , C15(H15), C    | 13(H13), C38   | 8(H38), C18(H18)          | , C14(H14), C2 | 25(H25), C20(H20), |
| C7(H7), C   | C21(H21)         |                |                           |                |                    |
| 3.d Idealis | ed Me refine     | d as rotating  | g group:                  |                |                    |
| C43(H43A    | ч,H43B,H43C)     | , C42(H42A,    | H42B,H42C)                |                |                    |

Single crystals of  $C_{38}H_{30}FeO_3P_2Pd$  [**5**] were selected using a MiteEGen loop using paratone oil. A suitable crystal was selected and run on Bruker APEX-II CCD diffractometer. The crystal was kept at 273.15 K during data collection. Using Olex2,<sup>12</sup> the structure was solved with the olex2.solve<sup>13</sup> structure solution program using Charge Flipping and refined with the XL<sup>14</sup> refinement package using Least Squares minimization.

## Crystal structure determination of [5]

**Crystal Data** for  $C_{38}H_{30}FeO_3P_2Pd$  (*M* =758.81 g/mol): monoclinic, space group Cc (no. 9), *a* = 26.339(12) Å, *b* = 8.380(4) Å, *c* = 17.649(9) Å, *b* = 124.36(2)°, *V* = 3216(3) Å<sup>3</sup>, *Z* = 4, *T* = 273.15 K,  $\mu$ (MoK $\alpha$ ) = 1.147 mm<sup>-1</sup>, *Dcalc* = 1.567 g/cm<sup>3</sup>, 52738 reflections measured (5.21° ≤ 2 $\Theta$  ≤ 56.218°), 7730 unique ( $R_{int}$  = 0.1286,  $R_{sigma}$  = 0.1243) which were used in all calculations. The final  $R_1$  was 0.1147 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.1548 (all data).

#### Table S36 Crystal data and structure refinement for 5.

| •                                     |                                                                |
|---------------------------------------|----------------------------------------------------------------|
| Identification code                   | 5                                                              |
| Empirical formula                     | $C_{38}H_{30}FeO_3P_2Pd$                                       |
| Formula weight                        | 758.81                                                         |
| Temperature/K                         | 273.15                                                         |
| Crystal system                        | monoclinic                                                     |
| Space group                           | Cc                                                             |
| a/Å                                   | 26.339(12)                                                     |
| b/Å                                   | 8.380(4)                                                       |
| c/Å                                   | 17.649(9)                                                      |
| α/°                                   | 90                                                             |
| β/°                                   | 124.36(2)                                                      |
| γ/°                                   | 90                                                             |
| Volume/ų                              | 3216(3)                                                        |
| Z                                     | 4                                                              |
| ρ <sub>calc</sub> g/cm <sup>3</sup>   | 1.567                                                          |
| µ/mm <sup>-1</sup>                    | 1.147                                                          |
| F(000)                                | 1536.0                                                         |
| Crystal size/mm <sup>3</sup>          | 0.075 × 0.05 × 0.05                                            |
| Radiation                             | ΜοΚα (λ = 0.71073)                                             |
| 20 range for data collection/         | 5.21 to 56.218                                                 |
| Index ranges                          | $-34 \leq h \leq 34,  -11 \leq k \leq 11,  -23 \leq l \leq 23$ |
| Reflections collected                 | 52738                                                          |
| Independent reflections               | 7730 [ $R_{int}$ = 0.1286, $R_{sigma}$ = 0.1243]               |
| Data/restraints/parameters            | 7730/2/407                                                     |
| Goodness-of-fit on F <sup>2</sup>     | 1.271                                                          |
| Final R indexes [I>=2σ (I)]           | R <sub>1</sub> = 0.1147, wR <sub>2</sub> = 0.1435              |
| Final R indexes [all data]            | R <sub>1</sub> = 0.1594, wR <sub>2</sub> = 0.1548              |
| Largest diff. peak/hole / e Å $^{-3}$ | 2.56/-1.19                                                     |
| Flack parameter                       | 0.06(6)                                                        |

| Table S37 Fractional Atomic Coordinates (×10 <sup>4</sup> ) and Equivalent Isotropic Displacement Parameters (Å <sup>2</sup> ×10 <sup>3</sup> |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
| for 5. $U_{eq}$ is defined as 1/3 of of the trace of the orthogonalised $U_{\mu}$ tensor.                                                     |

| Atom | X          | У          | Z          | U(eq)   |
|------|------------|------------|------------|---------|
| Pd1  | 5058.1(4)  | 8481.8(11) | 5028.7(5)  | 28.4(3) |
| Fe1  | 5060.9(9)  | 4843(2)    | 6678.4(13) | 32.0(5) |
| P1   | 4256.5(16) | 6750(5)    | 4639(2)    | 30.6(9) |
| P2   | 5876.0(16) | 7608(4)    | 6434(2)    | 27.5(8) |
| 02   | 5311(7)    | 9438(16)   | 3513(9)    | 73(4)   |
| 01   | 4289(8)    | 9721(18)   | 2511(10)   | 92(5)   |
| C10  | 3766(8)    | 9190(20)   | 5093(12)   | 46(4)   |
| C28  | 6964(7)    | 5861(18)   | 7090(11)   | 41(4)   |
| C23  | 5205(7)    | 7050(17)   | 7225(10)   | 34(3)   |
| C27  | 6384(7)    | 6241(16)   | 6338(10)   | 32(4)   |
| C5   | 3659(6)    | 7701(16)   | 4701(8)    | 27(3)   |
| C25  | 5638(8)    | 4760(20)   | 8071(9)    | 50(5)   |
| C17  | 4435(6)    | 4945(17)   | 5308(9)    | 34(3)   |
| C33  | 6394(6)    | 9214(17)   | 7177(10)   | 33(3)   |
| C11  | 3827(6)    | 5970(19)   | 3458(9)    | 31(3)   |
| C34  | 6350(7)    | 9846(17)   | 7857(10)   | 38(4)   |
| C3   | 4713(11)   | 9868(19)   | 3272(13)   | 60(5)   |
| C32  | 6178(8)    | 5570(19)   | 5503(10)   | 47(4)   |
| C1   | 4787(8)    | 10441(19)  | 4098(11)   | 48(4)   |
| C2   | 5413(8)    | 10527(19)  | 4791(11)   | 48(4)   |
| C38  | 6821(7)    | 9832(18)   | 7033(12)   | 45(4)   |
| C26  | 5964(7)    | 5154(18)   | 7680(10)   | 42(4)   |
| C12  | 3847(7)    | 4440(20)   | 3241(11)   | 52(5)   |
| C22  | 5701(6)    | 6596(18)   | 7160(9)    | 35(3)   |
| C37  | 7192(8)    | 11047(19)  | 7572(13)   | 54(5)   |
| C8   | 2782(8)    | 9230(20)   | 4840(11)   | 53(5)   |
| C7   | 2670(7)    | 7770(20)   | 4474(10)   | 48(4)   |
| C21  | 4151(7)    | 4340(20)   | 5739(11)   | 50(4)   |
| C24  | 5186(7)    | 5930(20)   | 7809(11)   | 49(4)   |
| C29  | 7327(8)    | 4820(20)   | 7002(14)   | 56(5)   |
| C31  | 6552(10)   | 4500(30)   | 5430(13)   | 74(6)   |
| C6   | 3098(7)    | 6982(19)   | 4408(10)   | 44(4)   |
| C4   | 5737(11)   | 9940(20)   | 4398(14)   | 64(5)   |
| С9   | 3331(8)    | 10000(20)  | 5147(12)   | 59(5)   |
| C18  | 4926(6)    | 3889(16)   | 5528(9)    | 33(3)   |
| C15  | 3157(9)    | 6510(30)   | 1850(12)   | 74(6)   |
| C19  | 4936(8)    | 2664(18)   | 6092(11)   | 48(4)   |
| C14  | 3180(9)    | 5000(30)   | 1652(13)   | 73(7)   |
| C35  | 6734(8)    | 11085(18)  | 8385(12)   | 53(4)   |
| C30  | 7129(10)   | 4140(20)   | 6190(15)   | 71(6)   |
| 03   | 6282(8)    | 9820(20)   | 4738(12)   | 104(6)  |
| C36  | 7152(7)    | 11690(20)  | 8237(13)   | 56(5)   |
| C20  | 4475(8)    | 2945(19)   | 6226(11)   | 55(5)   |
| C16  | 3484(8)    | 7060(20)   | 2756(12)   | 65(5)   |
| C13  | 3536(9)    | 3940(30)   | 2352(14)   | 69(6)   |
|      | 5555(5)    | 55 10(55)  | 2002(11)   | 55(0)   |

| takes the |                        |                 | ].              |                 |                 |                 |
|-----------|------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Atom      | <b>U</b> <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
| Pd1       | 29.3(5)                | 31.0(5)         | 28.4(5)         | 7.2(6)          | 18.4(4)         | 6.8(6)          |
| Fe1       | 35.3(11)               | 32.6(12)        | 27.1(11)        | -0.3(9)         | 16.9(9)         | -5.5(9)         |
| P1        | 31(2)                  | 30(2)           | 29(2)           | -2.9(17)        | 15.3(17)        | 2.6(17)         |
| P2        | 25.7(18)               | 30(2)           | 28.6(19)        | 2.4(16)         | 16.6(16)        | 1.7(16)         |
| 02        | 101(11)                | 81(10)          | 65(9)           | -2(8)           | 65(9)           | 3(9)            |
| 01        | 129(13)                | 91(11)          | 42(8)           | 4(8)            | 40(9)           | -3(10)          |
| C10       | 37(9)                  | 52(10)          | 52(11)          | -12(9)          | 27(9)           | 2(8)            |
| C28       | 36(9)                  | 42(9)           | 44(10)          | 6(8)            | 21(8)           | 3(7)            |
| C23       | 38(8)                  | 35(8)           | 39(9)           | -11(7)          | 27(7)           | -6(7)           |
| C27       | 35(8)                  | 30(8)           | 40(9)           | 6(7)            | 27(8)           | -2(7)           |
| C5        | 29(8)                  | 31(8)           | 10(6)           | -10(6)          | 3(6)            | -1(6)           |
| C25       | 61(11)                 | 67(12)          | 16(8)           | 1(8)            | 17(8)           | -21(10)         |
| C17       | 37(9)                  | 31(8)           | 26(8)           | -3(6)           | 13(7)           | -5(7)           |
| C33       | 34(8)                  | 32(8)           | 34(8)           | 8(7)            | 19(7)           | 10(7)           |
| C11       | 25(8)                  | 52(10)          | 12(7)           | -10(7)          | 9(6)            | -6(7)           |
| C34       | 39(9)                  | 29(8)           | 50(10)          | -3(7)           | 27(8)           | -4(7)           |
| C3        | 105(16)                | 32(9)           | 41(11)          | 4(9)            | 39(12)          | -9(11)          |
| C32       | 67(11)                 | 51(10)          | 30(9)           | 11(8)           | 31(8)           | 18(9)           |
| C1        | 68(13)                 | 33(9)           | 50(11)          | 6(8)            | 38(10)          | 12(8)           |
| C2        | 68(12)                 | 32(9)           | 53(11)          | 9(8)            | 40(10)          | 7(8)            |
| C38       | 49(10)                 | 35(9)           | 65(11)          | 8(8)            | 41(9)           | -4(8)           |
| C26       | 50(10)                 | 43(9)           | 32(8)           | 11(7)           | 23(8)           | 4(8)            |
| C12       | 39(9)                  | 64(12)          | 41(10)          | -22(9)          | 15(8)           | 5(8)            |
| C22       | 34(8)                  | 35(8)           | 32(8)           | -4(7)           | 17(7)           | -7(7)           |
| C37       | 52(10)                 | 35(9)           | 82(14)          | 2(9)            | 42(11)          | -8(8)           |
| C8        | 44(10)                 | 78(13)          | 42(10)          | -15(10)         | 27(8)           | 0(10)           |
| C7        | 26(8)                  | 79(13)          | 38(10)          | 0(9)            | 18(8)           | -4(8)           |
| C21       | 34(9)                  | 52(11)          | 51(10)          | 3(9)            | 15(8)           | -21(8)          |
| C24       | 45(10)                 | 67(12)          | 49(10)          | -25(9)          | 35(9)           | -21(9)          |
| C29       | 39(10)                 | 57(12)          | 67(13)          | 16(10)          | 28(10)          | 11(8)           |
| C31       | 111(17)                | 89(15)          | 50(11)          | 3(11)           | 63(13)          | 34(13)          |
| C6        | 44(10)                 | 42(10)          | 33(9)           | -11(7)          | 14(8)           | -8(8)           |
| C4        | 92(16)                 | 63(12)          | 60(13)          | 6(10)           | 57(13)          | 10(12)          |
| С9        | 55(12)                 | 57(12)          | 65(12)          | -21(9)          | 34(10)          | 0(10)           |
| C18       | 36(8)                  | 31(8)           | 27(7)           | -11(6)          | 14(7)           | -2(6)           |
| C15       | 78(14)                 | 100(18)         | 35(10)          | 13(12)          | 26(10)          | 4(14)           |
| C19       | 59(11)                 | 26(9)           | 40(9)           | 3(7)            | 17(9)           | 7(8)            |
| C14       | 51(12)                 | 140(20)         | 36(11)          | -31(13)         | 28(10)          | -21(13)         |
| C35       | 60(11)                 | 36(10)          | 60(11)          | -8(8)           | 32(9)           | -3(8)           |
| C30       | 84(15)                 | 80(14)          | 76(14)          | 32(12)          | 61(13)          | 52(12)          |
| 03        | 89(12)                 | 150(17)         | 109(13)         | 10(12)          | 77(11)          | 16(12)          |
| C36       | 49(10)                 | 25(9)           | 85(13)          | -8(9)           | 33(10)          | -16(8)          |
| C20       | 74(13)                 | 40(10)          | 41(10)          | -3(8)           | 27(9)           | -33(9)          |
| C16       | 78(13)                 | 70(13)          | 44(11)          | 2(10)           | 33(10)          | 6(11)           |
| C13       | 60(12)                 | 77(14)          | 73(14)          | -36(12)         | 40(12)          | -7(11)          |

Table S38 Anisotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for 5. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

#### Table S39 Bond Lengths for 5.

| Atom | Atom | Length/Å  | Atom | Atom | Length/Å  |
|------|------|-----------|------|------|-----------|
| Pd1  | P1   | 2.324(4)  | C25  | C26  | 1.41(2)   |
| Pd1  | P2   | 2.302(4)  | C25  | C24  | 1.41(2)   |
| Pd1  | C1   | 2.140(16) | C17  | C21  | 1.43(2)   |
| Pd1  | C2   | 2.105(16) | C17  | C18  | 1.429(19) |
| Fe1  | C23  | 2.020(14) | C33  | C34  | 1.38(2)   |
| Fe1  | C25  | 2.034(14) | C33  | C38  | 1.39(2)   |
| Fe1  | C17  | 2.019(13) | C11  | C12  | 1.34(2)   |
| Fe1  | C26  | 2.025(15) | C11  | C16  | 1.39(2)   |
| Fe1  | C22  | 2.026(14) | C34  | C35  | 1.38(2)   |
| Fe1  | C21  | 2.047(15) | C3   | C1   | 1.44(2)   |
| Fe1  | C24  | 2.045(15) | C32  | C31  | 1.39(2)   |
| Fe1  | C18  | 2.019(13) | C1   | C2   | 1.39(2)   |
| Fe1  | C19  | 2.032(16) | C2   | C4   | 1.46(2)   |
| Fe1  | C20  | 2.038(15) | C38  | C37  | 1.36(2)   |
| P1   | C5   | 1.822(14) | C26  | C22  | 1.44(2)   |
| P1   | C17  | 1.809(14) | C12  | C13  | 1.36(2)   |
| P1   | C11  | 1.842(14) | C37  | C36  | 1.35(2)   |
| P2   | C27  | 1.840(15) | C8   | C7   | 1.33(2)   |
| P2   | C33  | 1.836(15) | C8   | C9   | 1.38(2)   |
| P2   | C22  | 1.800(14) | C7   | C6   | 1.37(2)   |
| 02   | C3   | 1.43(2)   | C21  | C20  | 1.41(2)   |
| 02   | C4   | 1.38(2)   | C29  | C30  | 1.34(3)   |
| 01   | C3   | 1.17(2)   | C31  | C30  | 1.38(3)   |
| C10  | C5   | 1.37(2)   | C4   | 03   | 1.21(2)   |
| C10  | C9   | 1.38(2)   | C18  | C19  | 1.42(2)   |
| C28  | C27  | 1.38(2)   | C15  | C14  | 1.32(3)   |
| C28  | C29  | 1.37(2)   | C15  | C16  | 1.40(3)   |
| C23  | C22  | 1.426(19) | C19  | C20  | 1.38(2)   |
| C23  | C24  | 1.42(2)   | C14  | C13  | 1.38(3)   |
| C27  | C32  | 1.37(2)   | C35  | C36  | 1.37(2)   |
| C5   | C6   | 1.40(2)   |      |      |           |

# Table S40 Bond Angles for 5.

| Aton | 1 Atom | n Atom | Angle/°    | Ator | n Aton | n Atom | Angle/°   |
|------|--------|--------|------------|------|--------|--------|-----------|
| P2   | Pd1    | P1     | 105.16(13) | C10  | C5     | P1     | 119.2(11) |
| C1   | Pd1    | P1     | 113.5(5)   | C10  | C5     | C6     | 116.8(14) |
| C1   | Pd1    | P2     | 140.8(5)   | C6   | C5     | P1     | 123.9(11) |
| C2   | Pd1    | P1     | 151.8(5)   | C26  | C25    | Fe1    | 69.3(8)   |
| C2   | Pd1    | P2     | 102.9(5)   | C24  | C25    | Fe1    | 70.2(9)   |
| C2   | Pd1    | C1     | 38.3(6)    | C24  | C25    | C26    | 108.0(14) |
| C23  | Fe1    | C25    | 69.2(7)    | Ρ1   | C17    | Fe1    | 123.5(7)  |
| C23  | Fe1    | C26    | 69.7(6)    | C21  | C17    | Fe1    | 70.5(8)   |
| C23  | Fe1    | C22    | 41.3(6)    | C21  | C17    | P1     | 128.6(12) |
| C23  | Fe1    | C21    | 113.3(7)   | C18  | C17    | Fe1    | 69.3(8)   |
| C23  | Fe1    | C24    | 40.8(6)    | C18  | C17    | P1     | 123.9(11) |
| C23  | Fe1    | C19    | 176.9(7)   | C18  | C17    | C21    | 107.5(13) |
| C23  | Fe1    | C20    | 143.0(7)   | C34  | C33    | P2     | 120.8(11) |
| C25  | Fe1    | C21    | 134.9(6)   | C34  | C33    | C38    | 119.5(14) |
| C25  | Fe1    | C24    | 40.4(7)    | C38  | C33    | P2     | 119.7(12) |
| C25  | Fe1    | C20    | 109.2(7)   | C12  | C11    | P1     | 124.2(12) |

| C17 | Fe1        | C23 | 109.9(6)  | C12 | C11 | C16        | 118.9(14)            |
|-----|------------|-----|-----------|-----|-----|------------|----------------------|
| C17 | Fe1        | C25 | 175.7(7)  | C16 | C11 | P1         | 116.8(13)            |
| C17 | Fe1        | C26 | 143.4(6)  | C33 | C34 | C35        | 119.3(15)            |
| C17 | Fe1        | C22 | 113.3(6)  | 02  | C3  | C1         | 106.6(16)            |
| C17 | Fe1        | C21 | 41.2(6)   | 01  | C3  | 02         | 119.5(18)            |
| C17 | Fe1        | C24 | 136.3(7)  | 01  | C3  | C1         | 134(2)               |
| C17 | Fe1        | C18 | 41.4(6)   | C27 | C32 | C31        | 119.5(15)            |
| C17 | Fe1        | C19 | 68.9(6)   | C3  | C1  | Pd1        | 108.5(11)            |
| C17 | Fe1        | C20 | 68.8(6)   | C2  | C1  | Pd1        | 69.5(9)              |
| C26 | Fe1        | C25 | 40.7(6)   | C2  | C1  | C3         | 108.9(17)            |
| C26 | Fe1        | C22 | 41.5(6)   | C1  | C2  | Pd1        | 72.2(10)             |
| C26 | Fe1        | C21 | 174.3(6)  | C1  | C2  | C4         | 106.6(16)            |
| C26 | Fe1        | C24 | 68.2(6)   | C4  | C2  | Pd1        | 105.2(11)            |
| C26 | Fe1        | C19 | 109.4(7)  | C37 | C38 | C33        | 119.3(16)            |
| C26 | Fe1        | C20 | 134 3(7)  | C25 | C26 | Fe1        | 70 0(9)              |
| C22 | Fe1        | C25 | 69.0(6)   | C25 | C26 | (22        | 107 8(14)            |
| C22 | Fe1        | C21 | 143 8(6)  | C22 | C26 | Fe1        | 69 3(8)              |
| C22 | Fe1        | C24 | 68 3(6)   | C11 | C12 | (13        | 121 9(18)            |
| C22 | Fo1        | C19 | 136 2(7)  | D2  | C22 | E15<br>Fo1 | 122.0(10)            |
| C22 | Fo1        | C20 | 175 1(7)  | C23 | C22 | Fo1        | 69 1(8)              |
| C24 | Fo1        | C21 | 110 6(7)  | C23 | C22 | P7         | 123 1(11)            |
| C19 | Fo1        | C21 | 126 2(6)  | C23 | C22 | C26        | 107 8(13)            |
| C10 | Fei<br>Foi | C25 | 142 0(7)  | C25 | C22 | C20        | 107.8(13)<br>60.2(0) |
| C10 | Fei        | C25 | 142.0(7)  | C20 | C22 | P2         | 129.2(9)             |
| C10 | rei<br>Fol | C20 | 100.0(6)  | C20 | C2Z | PZ         | 120.0(11)            |
| C10 | rei        | C22 | 109.9(0)  | C30 | C37 | C36        | 121.9(16)            |
| C18 | Fei        | C21 | 09.1(7)   | C7  | C8  | C9         | 120.9(16)            |
| C18 | Fe1        | C24 | 1/6.8(/)  | 647 | C7  | C6         | 120.9(16)            |
| C18 | Fe1        | C19 | 41.0(6)   | C17 | C21 | Fel        | 68.4(8)              |
| C18 | Fel        | C20 | 68.4(7)   | C20 | C21 | Fel        | 69.4(9)              |
| C19 | ⊦e1        | C25 | 112.3(7)  | C20 | C21 | C1/        | 107.4(15)            |
| C19 | Fe1        | C21 | 67.8(7)   | C23 | C24 | Fe1        | 68.7(8)              |
| C19 | ⊦e1        | C24 | 142.0(7)  | C25 | C24 | Fel        | 69.4(9)              |
| C19 | Fe1        | C20 | 39.7(7)   | C25 | C24 | C23        | 109.2(13)            |
| C20 | Fe1        | C21 | 40.5(7)   | C30 | C29 | C28        | 121.1(17)            |
| C20 | Fe1        | C24 | 113.5(7)  | C30 | C31 | C32        | 120.1(16)            |
| C5  | P1         | Pd1 | 112.3(5)  | C7  | C6  | C5         | 120.8(15)            |
| C5  | P1         | C11 | 103.0(6)  | 02  | C4  | C2         | 108.8(18)            |
| C17 | P1         | Pd1 | 118.1(5)  | 03  | C4  | 02         | 121.2(18)            |
| C17 | P1         | C5  | 104.0(7)  | 03  | C4  | C2         | 130(2)               |
| C17 | P1         | C11 | 102.1(7)  | C10 | C9  | C8         | 117.8(17)            |
| C11 | P1         | Pd1 | 115.5(5)  | C17 | C18 | Fe1        | 69.3(8)              |
| C27 | P2         | Pd1 | 112.7(5)  | C19 | C18 | Fe1        | 70.0(8)              |
| C33 | P2         | Pd1 | 113.7(5)  | C19 | C18 | C17        | 107.1(13)            |
| C33 | P2         | C27 | 103.7(6)  | C14 | C15 | C16        | 122(2)               |
| C22 | P2         | Pd1 | 117.2(5)  | C18 | C19 | Fe1        | 69.0(8)              |
| C22 | P2         | C27 | 105.3(7)  | C20 | C19 | Fe1        | 70.4(9)              |
| C22 | P2         | C33 | 102.9(7)  | C20 | C19 | C18        | 109.1(14)            |
| C4  | 02         | C3  | 108.5(14) | C15 | C14 | C13        | 119.5(17)            |
| C5  | C10        | C9  | 122.6(16) | C36 | C35 | C34        | 120.7(17)            |
| C29 | C28        | C27 | 120.2(16) | C29 | C30 | C31        | 119.8(16)            |
| C22 | C23        | Fe1 | 69.6(8)   | C37 | C36 | C35        | 119.2(16)            |
| C24 | C23        | Fe1 | 70.6(9)   | C21 | C20 | Fe1        | 70.1(8)              |
| C24 | C23        | C22 | 107.1(14) | C19 | C20 | Fe1        | 69.9(9)              |
| C28 | C27        | P2  | 121.5(12) | C19 | C20 | C21        | 109.0(14)            |
| C32 | C27        | P2  | 119.1(11) | C11 | C16 | C15        | 118.3(19)            |
| C32 | C27        | C28 | 119.4(14) | C12 | C13 | C14        | 119.6(19)            |
|     |            |     |           |     |     |            |                      |

| Table S41 Hydrogen Atom Coordinates (Å×10 <sup>4</sup> ) and Isotropic Displacement Parameters (Å <sup>2</sup> ×10 <sup>3</sup> ) for 5. |         |          |         |       |  |
|------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|---------|-------|--|
| Atom                                                                                                                                     | x       | У        | Z       | U(eq) |  |
| H10                                                                                                                                      | 4146.01 | 9663.36  | 5331.57 | 55    |  |
| H28                                                                                                                                      | 7107.54 | 6314.58  | 7658.6  | 50    |  |
| H23                                                                                                                                      | 4943.88 | 7917.24  | 6937.47 | 41    |  |
| H25                                                                                                                                      | 5710.21 | 3872.05  | 8437.55 | 61    |  |
| H34                                                                                                                                      | 6065.74 | 9442.75  | 7960.86 | 46    |  |
| H32                                                                                                                                      | 5790.29 | 5826.57  | 4989.32 | 56    |  |
| H1                                                                                                                                       | 4506.03 | 11253.68 | 4060.19 | 57    |  |
| H2                                                                                                                                       | 5579.14 | 11414.74 | 5228.57 | 57    |  |
| H38                                                                                                                                      | 6853.42 | 9420.47  | 6572.07 | 54    |  |
| H26                                                                                                                                      | 6289.82 | 4585.43  | 7746.22 | 50    |  |
| H12                                                                                                                                      | 4080.03 | 3711.66  | 3709.76 | 62    |  |
| H37                                                                                                                                      | 7482.69 | 11447.22 | 7479.32 | 65    |  |
| H8                                                                                                                                       | 2487.8  | 9731.14  | 4889.92 | 64    |  |
| H7                                                                                                                                       | 2294.39 | 7281.19  | 4260.35 | 58    |  |
| H21                                                                                                                                      | 3814.28 | 4774.38  | 5705.73 | 60    |  |
| H24                                                                                                                                      | 4916.28 | 5967.07  | 7991.47 | 59    |  |
| H29                                                                                                                                      | 7718.12 | 4577.43  | 7511.7  | 67    |  |
| H31                                                                                                                                      | 6412.3  | 4031.88  | 4867.38 | 89    |  |
| H6                                                                                                                                       | 3014.67 | 5955.63  | 4165.72 | 53    |  |
| H9                                                                                                                                       | 3404.72 | 11028.52 | 5381.81 | 71    |  |
| H18                                                                                                                                      | 5190.2  | 3985.33  | 5337.71 | 40    |  |
| H15                                                                                                                                      | 2917.6  | 7229.83  | 1373.61 | 89    |  |
| H19                                                                                                                                      | 5208.9  | 1809.28  | 6332.25 | 58    |  |
| H14                                                                                                                                      | 2957.63 | 4662.53  | 1044.47 | 87    |  |
| H35                                                                                                                                      | 6706.74 | 11515.12 | 8846.88 | 64    |  |
| H30                                                                                                                                      | 7380.05 | 3430.99  | 6140.27 | 86    |  |
| H36                                                                                                                                      | 7406.41 | 12530.66 | 8590.04 | 67    |  |
| H20                                                                                                                                      | 4392.41 | 2320.36  | 6579.33 | 66    |  |
| H16                                                                                                                                      | 3472.62 | 8133.17  | 2884.77 | 77    |  |
| H13                                                                                                                                      | 3564.26 | 2881.34  | 2219.64 | 83    |  |

#### **Refinement model description**

Number of restraints - 2, number of constraints - unknown. Details: 1. Twinned data refinement Scales: 0.94(6) 0.06(6) 2. Fixed Uiso At 1.2 times of: All C(H) groups 3.a Ternary CH refined with riding coordinates: C1(H1), C2(H2) 3.b Aromatic/amide H refined with riding coordinates: C10(H10), C28(H28), C23(H23), C25(H25), C34(H34), C32(H32), C38(H38), C26(H26), C12(H12), C37(H37), C8(H8), C7(H7), C21(H21), C24(H24), C29(H29), C31(H31), C6(H6), C9(H9), C18(H18), C15(H15), C19(H19), C14(H14), C35(H35), C30(H30), C36(H36), C20(H20), C16(H16), C13(H13)

# XPhos-Pd-MAH (8)

Single crystals of  $C_{37}H_{51}O_3PPd$  **[8]** were selected using a MiteEgen loop on a Bruker APEX-II CCD diffractometer. The crystal was kept at 273.15 K during data collection. Using Olex2,<sup>12</sup> the structure was solved with the olex2.solve<sup>13</sup> structure solution program using Charge Flipping and refined with the XL<sup>14</sup> refinement package using Least Squares minimization.

#### Crystal structure determination of [8]

**Crystal Data** for  $C_{37}H_{51}O_3PPd$  (*M* =680.14 g/mol): orthorhombic, space group Pbca (no. 61), *a* = 18.282(4) Å, *b* = 18.506(4) Å, *c* = 20.018(4) Å, *V* = 6773(2) Å<sup>3</sup>, *Z* = 8, *T* = 273.15 K,  $\mu$ (MoK $\alpha$ ) = 0.629 mm<sup>-1</sup>, *Dcalc* = 1.334 g/cm<sup>3</sup>, 193553 reflections measured (5.136° ≤ 2 $\Theta$  ≤ 52.968°), 6977 unique ( $R_{int}$  = 0.0435,  $R_{sigma}$  = 0.0163) which were used in all calculations. The final  $R_1$  was 0.0415 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.1104 (all data).

#### Table S42 Crystal data and structure refinement for 8.

| Identification code                          | 8                                                          |
|----------------------------------------------|------------------------------------------------------------|
| Empirical formula                            | $C_{37}H_{51}O_3PPd$                                       |
| Formula weight                               | 680.14                                                     |
| Temperature/K                                | 273.15                                                     |
| Crystal system                               | orthorhombic                                               |
| Space group                                  | Pbca                                                       |
| a/Å                                          | 18.282(4)                                                  |
| b/Å                                          | 18.506(4)                                                  |
| c/Å                                          | 20.018(4)                                                  |
| α/°                                          | 90                                                         |
| β/°                                          | 90                                                         |
| γ/°                                          | 90                                                         |
| Volume/Å <sup>3</sup>                        | 6773(2)                                                    |
| Z                                            | 8                                                          |
| $\rho_{calc}g/cm^3$                          | 1.334                                                      |
| µ/mm⁻¹                                       | 0.629                                                      |
| F(000)                                       | 2856.0                                                     |
| Crystal size/mm <sup>3</sup>                 | 0.175 × 0.15 × 0.15                                        |
| Radiation                                    | ΜοΚα (λ = 0.71073)                                         |
| 20 range for data collection/                | 5.136 to 52.968                                            |
| Index ranges                                 | $-22 \leq h \leq 22,-23 \leq k \leq 23,-25 \leq l \leq 24$ |
| Reflections collected                        | 193553                                                     |
| Independent reflections                      | $6977 [R_{int} = 0.0435, R_{sigma} = 0.0163]$              |
| Data/restraints/parameters                   | 6977/105/440                                               |
| Goodness-of-fit on F <sup>2</sup>            | 1.118                                                      |
| Final R indexes [I>=2σ (I)]                  | $R_1 = 0.0415$ , $wR_2 = 0.0946$                           |
| Final R indexes [all data]                   | $R_1 = 0.0624$ , $wR_2 = 0.1104$                           |
| Largest diff. peak/hole / e Å $^{\text{-}3}$ | 0.54/-0.93                                                 |

| Table S43 Fractional Atomic Coordinates (×10 <sup>4</sup> ) and Equivalent Isotropic Displacement Parameters (Å <sup>2</sup> ×10 <sup>3</sup> |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
| for 8. $U_{eq}$ is defined as 1/3 of of the trace of the orthogonalised $U_{IJ}$ tensor.                                                      |

| Atom | X          | У          | Z          | U(eq)     |
|------|------------|------------|------------|-----------|
| Pd1  | 4763.2(2)  | 6520.8(2)  | 5850.6(2)  | 43.50(10) |
| P1   | 3706.0(4)  | 7089.5(4)  | 5517.6(4)  | 36.53(18) |
| C23  | 4238.0(16) | 6607.3(16) | 6929.6(14) | 35.0(6)   |
| C24  | 4894.9(17) | 6977.2(18) | 7098.8(16) | 39.9(7)   |
| C22  | 3533.6(16) | 7026.3(16) | 6883.6(14) | 35.1(6)   |
| 02   | 6398.5(16) | 6896(2)    | 5315.1(17) | 89.9(10)  |
| C17  | 3234.7(15) | 7306.0(16) | 6296.3(14) | 34.4(6)   |
| C28  | 4230.5(17) | 5844.9(17) | 6985.4(16) | 41.2(7)   |
| C25  | 5492.4(19) | 6584.4(19) | 7335.5(18) | 48.1(8)   |
| C29  | 4934.9(18) | 7797.8(18) | 7112.0(17) | 44.4(8)   |
| 01   | 6814.2(18) | 6378(2)    | 6248.4(19) | 99.7(12)  |
| C19  | 2266.5(19) | 7857(2)    | 6928.7(19) | 54.0(9)   |
| C18  | 2601.2(17) | 7723.5(18) | 6327.3(17) | 46.0(8)   |
| C32  | 3546.9(18) | 5412.0(19) | 6839.6(18) | 48.7(8)   |
| C21  | 3167.6(19) | 7154(2)    | 7482.6(17) | 51.2(8)   |
| C26  | 5473.4(19) | 5848(2)    | 7425.1(19) | 52.3(9)   |
| C20  | 2541(2)    | 7565(2)    | 7507.1(18) | 58.1(9)   |
| C5   | 3731(2)    | 7962.6(18) | 5075.4(15) | 46.0(8)   |
| C27  | 4848.0(19) | 5490.8(19) | 7234.5(19) | 51.5(8)   |
| 03   | 5839(2)    | 7085(3)    | 4340(2)    | 138(2)    |
| C35  | 6150(2)    | 5468(2)    | 7702(2)    | 69.8(12)  |
| C30  | 5594(2)    | 8089(2)    | 6733(2)    | 61.8(10)  |
| C12  | 3390(7)    | 6148(9)    | 4456(8)    | 63(3)     |
| C1   | 5423(2)    | 6139(3)    | 5084(2)    | 72.2(13)  |
| C31  | 4936(3)    | 8062(2)    | 7834(2)    | 70.2(12)  |
| C2   | 5740(2)    | 5914(2)    | 5689(2)    | 65.8(11)  |
| C33  | 3673(2)    | 4839(2)    | 6306(2)    | 66.8(11)  |
| C34  | 3243(2)    | 5078(3)    | 7475(2)    | 75.5(12)  |
| C11  | 3025(5)    | 6660(6)    | 4936(5)    | 54(2)     |
| C6   | 4047(3)    | 7896(2)    | 4374.6(18) | 64.4(11)  |
| C3   | 6361(2)    | 6379(3)    | 5823(2)    | 72.3(13)  |
| C36  | 6385(3)    | 5779(3)    | 8357(3)    | 97.1(17)  |
| C15  | 1811(7)    | 6209(6)    | 4643(6)    | 61(3)     |
| C7   | 4079(3)    | 8627(3)    | 4029(2)    | 77.1(13)  |
| C8   | 4486(3)    | 9178(3)    | 4435(2)    | 88.6(16)  |
| C10  | 4149(3)    | 8516(2)    | 5477.4(19) | 66.3(11)  |
| C4   | 5860(2)    | 6742(4)    | 4841(2)    | 89.8(17)  |
| C9   | 4156(3)    | 9246(2)    | 5122(2)    | 87.7(15)  |
| C37  | 6108(3)    | 4677(3)    | 7705(4)    | 133(3)    |
| C16  | 2337(4)    | 6785(4)    | 4911(4)    | 45.7(19)  |
| C14  | 2146(5)    | 5788(6)    | 4099(5)    | 65(2)     |
| C13  | 2841(6)    | 5820(7)    | 3959(5)    | 79(3)     |
| C11A | 3052(4)    | 6436(4)    | 5139(4)    | 46(2)     |
| C16A | 2420(4)    | 6270(5)    | 5279(4)    | 70(3)     |
| C15A | 1851(6)    | 5972(6)    | 4788(5)    | 71(4)     |
| C14A | 2216(6)    | 5480(7)    | 4301(6)    | 91(4)     |
| C13A | 2832(5)    | 5405(4)    | 4348(4)    | 68(3)     |
| C12A | 3398(6)    | 5987(6)    | 4580(6)    | 61(4)     |
| Table S44 Anisotropic Displacement Parameters (Å <sup>2</sup> ×10 <sup>3</sup> ) for 8 | . The Anisotropic displacement factor exponent |
|----------------------------------------------------------------------------------------|------------------------------------------------|
| takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+]$ .                  |                                                |

| Atom | <b>U</b> <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Pd1  | 35.87(14)              | 55.50(17)       | 39.11(15)       | -7.68(11)       | 2.99(10)        | 11.26(11)       |
| P1   | 35.4(4)                | 42.1(4)         | 32.1(4)         | -6.7(3)         | -0.3(3)         | 3.9(3)          |
| C23  | 32.6(15)               | 43.3(17)        | 28.9(14)        | -1.3(12)        | -1.2(12)        | 5.7(13)         |
| C24  | 37.0(16)               | 43.7(18)        | 39.1(16)        | 0.6(14)         | -4.3(13)        | 5.2(13)         |
| C22  | 31.6(14)               | 37.6(16)        | 36.1(15)        | -6.0(12)        | -0.9(12)        | 2.4(12)         |
| 02   | 51.1(17)               | 142(3)          | 77(2)           | -6(2)           | 3.9(16)         | -10.1(19)       |
| C17  | 29.9(14)               | 37.4(16)        | 35.8(15)        | -4.6(13)        | 3.6(12)         | 2.6(12)         |
| C28  | 38.1(16)               | 42.4(17)        | 43.2(17)        | -5.2(14)        | -2.0(14)        | 4.7(14)         |
| C25  | 37.4(16)               | 53(2)           | 54(2)           | -0.2(16)        | -13.1(15)       | 2.3(15)         |
| C29  | 43.2(17)               | 44.7(18)        | 45.2(18)        | -0.8(15)        | -10.1(14)       | 2.2(14)         |
| 01   | 57.9(19)               | 152(4)          | 89(2)           | -26(2)          | -23.4(18)       | 18(2)           |
| C19  | 40.5(18)               | 54(2)           | 67(2)           | -4.4(18)        | 13.0(17)        | 15.3(16)        |
| C18  | 38.9(17)               | 48.4(19)        | 50.6(19)        | 2.2(16)         | 0.7(15)         | 10.3(14)        |
| C32  | 43.6(18)               | 44.8(19)        | 58(2)           | 1.7(16)         | -7.9(16)        | 1.3(15)         |
| C21  | 46.8(19)               | 70(2)           | 37.1(16)        | -1.1(17)        | 5.3(15)         | 11.5(17)        |
| C26  | 45.3(18)               | 51(2)           | 61(2)           | 0.1(17)         | -12.6(17)       | 10.2(16)        |
| C20  | 50.9(19)               | 74(3)           | 49.6(19)        | -6.6(19)        | 18.0(17)        | 12.4(19)        |
| C5   | 55(2)                  | 48.7(19)        | 33.7(16)        | -0.5(14)        | -2.6(14)        | 4.5(16)         |
| C27  | 51(2)                  | 41.8(18)        | 62(2)           | 3.1(16)         | -8.5(17)        | 10.6(16)        |
| 03   | 76(2)                  | 266(6)          | 73(2)           | 46(3)           | 17(2)           | -8(3)           |
| C35  | 52(2)                  | 65(3)           | 92(3)           | 13(2)           | -19(2)          | 15(2)           |
| C30  | 51(2)                  | 63(2)           | 72(3)           | 10(2)           | -10.8(19)       | -9.4(19)        |
| C12  | 65(5)                  | 66(6)           | 59(5)           | -20(5)          | 1(4)            | -4(4)           |
| C1   | 39.1(19)               | 117(4)          | 60(2)           | -43(3)          | 10.0(18)        | 13(2)           |
| C31  | 95(3)                  | 54(2)           | 62(2)           | -10(2)          | -14(2)          | 2(2)            |
| C2   | 43(2)                  | 74(3)           | 81(3)           | -25(2)          | 3.0(19)         | 22.4(19)        |
| C33  | 72(3)                  | 52(2)           | 77(3)           | -10(2)          | -9(2)           | -5(2)           |
| C34  | 64(3)                  | 87(3)           | 75(3)           | 13(3)           | 4(2)            | -10(2)          |
| C11  | 54(4)                  | 52(5)           | 54(5)           | -9(4)           | -6(4)           | 0(4)            |
| C6   | 85(3)                  | 70(3)           | 38.0(18)        | -2.4(18)        | 6.5(19)         | -5(2)           |
| C3   | 44(2)                  | 109(4)          | 64(3)           | -27(3)          | 2(2)            | 20(2)           |
| C36  | 84(3)                  | 124(4)          | 83(3)           | 11(3)           | -35(3)          | 28(3)           |
| C15  | 60(4)                  | 62(5)           | 60(5)           | 0(4)            | -20(4)          | -4(4)           |
| C7   | 98(4)                  | 91(3)           | 43(2)           | 15(2)           | 0(2)            | -15(3)          |
| C8   | 116(4)                 | 84(3)           | 66(3)           | 21(3)           | -4(3)           | -40(3)          |
| C10  | 94(3)                  | 62(2)           | 42(2)           | 1.1(18)         | -6(2)           | -16(2)          |
| C4   | 48(2)                  | 171(6)          | 50(2)           | -9(3)           | 12(2)           | 10(3)           |
| C9   | 135(5)                 | 63(3)           | 65(3)           | 0(2)            | -5(3)           | -27(3)          |
| C37  | 82(4)                  | 72(3)           | 244(9)          | 23(4)           | -66(5)          | 23(3)           |
| C16  | 47(3)                  | 41(3)           | 49(4)           | 1(3)            | -16(3)          | 10(3)           |
| C14  | 73(4)                  | 65(4)           | 56(4)           | -10(4)          | -29(3)          | -3(4)           |
| C13  | 91(4)                  | 82(5)           | 65(4)           | -26(4)          | -7(4)           | -12(4)          |
| C11A | 42(4)                  | 41(4)           | 54(5)           | -11(4)          | -16(4)          | 8(3)            |
| C16A | 71(6)                  | 78(6)           | 62(5)           | -25(5)          | 11(4)           | -24(5)          |
| C15A | 63(6)                  | 87(8)           | 64(6)           | -7(6)           | -4(5)           | -33(6)          |
| C14A | 91(4)                  | 90(4)           | 90(4)           | -0.9(10)        | 0.2(10)         | -1.8(10)        |
| C13A | 96(7)                  | 46(4)           | 60(5)           | -25(4)          | -15(5)          | 25(4)           |
| C12A | 69(6)                  | 55(6)           | 60(7)           | -26(5)          | -22(5)          | 18(5)           |

## Table S45 Bond Lengths for 8.

| Atom | n Atom | Length/Å  | Atom | Atom | Length/Å  |
|------|--------|-----------|------|------|-----------|
| Pd1  | P1     | 2.2995(9) | C32  | C34  | 1.520(5)  |
| Pd1  | C23    | 2.369(3)  | C21  | C20  | 1.376(5)  |
| Pd1  | C24    | 2.648(3)  | C26  | C27  | 1.375(5)  |
| Pd1  | C1     | 2.077(3)  | C26  | C35  | 1.528(5)  |
| Pd1  | C2     | 2.135(3)  | C5   | C6   | 1.522(5)  |
| P1   | C17    | 1.826(3)  | C5   | C10  | 1.510(5)  |
| P1   | C5     | 1.843(3)  | 03   | C4   | 1.188(6)  |
| P1   | C11    | 1.881(9)  | C35  | C36  | 1.495(7)  |
| P1   | C11A   | 1.862(7)  | C35  | C37  | 1.465(7)  |
| C23  | C24    | 1.423(4)  | C12  | C11  | 1.505(11) |
| C23  | C22    | 1.506(4)  | C12  | C13  | 1.538(12) |
| C23  | C28    | 1.415(4)  | C1   | C2   | 1.406(6)  |
| C24  | C25    | 1.395(4)  | C1   | C4   | 1.454(8)  |
| C24  | C29    | 1.521(5)  | C2   | C3   | 1.449(6)  |
| C22  | C17    | 1.396(4)  | C11  | C16  | 1.281(10) |
| C22  | C21    | 1.393(4)  | C6   | C7   | 1.521(6)  |
| 02   | C3     | 1.398(6)  | C15  | C16  | 1.532(11) |
| 02   | C4     | 1.397(6)  | C15  | C14  | 1.473(12) |
| C17  | C18    | 1.394(4)  | C7   | C8   | 1.501(6)  |
| C28  | C32    | 1.513(5)  | C8   | C9   | 1.508(7)  |
| C28  | C27    | 1.397(4)  | C10  | C9   | 1.527(6)  |
| C25  | C26    | 1.375(5)  | C14  | C13  | 1.303(11) |
| C29  | C30    | 1.523(5)  | C11A | C16A | 1.229(9)  |
| C29  | C31    | 1.526(5)  | C11A | C12A | 1.530(10) |
| 01   | C3     | 1.188(5)  | C16A | C15A | 1.535(10) |
| C19  | C18    | 1.373(5)  | C15A | C14A | 1.491(11) |
| C19  | C20    | 1.373(5)  | C14A | C13A | 1.140(11) |
| C32  | C33    | 1.523(5)  | C13A | C12A | 1.563(11) |

### Table S46 Bond Angles for 8.

| Atom | n Aton | n Atom | Angle/°    | Atom Atom Atom |      | Atom | Angle/°   |
|------|--------|--------|------------|----------------|------|------|-----------|
| P1   | Pd1    | C23    | 83.84(7)   | C28            | C32  | C34  | 110.9(3)  |
| P1   | Pd1    | C24    | 101.77(7)  | C34            | C32  | C33  | 111.1(3)  |
| C23  | Pd1    | C24    | 32.35(10)  | C20            | C21  | C22  | 121.6(3)  |
| C1   | Pd1    | P1     | 115.45(13) | C25            | C26  | C35  | 118.9(3)  |
| C1   | Pd1    | C23    | 158.84(16) | C27            | C26  | C25  | 117.5(3)  |
| C1   | Pd1    | C24    | 138.86(13) | C27            | C26  | C35  | 123.6(3)  |
| C1   | Pd1    | C2     | 38.98(17)  | C19            | C20  | C21  | 119.5(3)  |
| C2   | Pd1    | P1     | 154.17(12) | C6             | C5   | P1   | 112.4(3)  |
| C2   | Pd1    | C23    | 120.86(14) | C10            | C5   | P1   | 110.5(2)  |
| C2   | Pd1    | C24    | 103.58(13) | C10            | C5   | C6   | 110.7(3)  |
| C17  | Ρ1     | Pd1    | 104.45(10) | C26            | C27  | C28  | 123.1(3)  |
| C17  | Ρ1     | C5     | 103.26(14) | C36            | C35  | C26  | 111.9(4)  |
| C17  | Ρ1     | C11    | 108.0(3)   | C37            | C35  | C26  | 114.7(4)  |
| C17  | Ρ1     | C11A   | 100.8(3)   | C37            | C35  | C36  | 113.4(5)  |
| C5   | Ρ1     | Pd1    | 121.33(12) | C11            | C12  | C13  | 111.8(9)  |
| C5   | Ρ1     | C11    | 95.2(4)    | C2             | C1   | Pd1  | 72.7(2)   |
| C5   | Ρ1     | C11A   | 112.9(3)   | C2             | C1   | C4   | 106.8(4)  |
| C11  | Ρ1     | Pd1    | 122.8(3)   | C4             | C1   | Pd1  | 107.8(3)  |
| C11A | Ρ1     | Pd1    | 111.1(3)   | C1             | C2   | Pd1  | 68.3(2)   |
| C24  | C23    | Pd1    | 84.69(18)  | C1             | C2   | C3   | 107.8(4)  |
| C24  | C23    | C22    | 119.2(3)   | C3             | C2   | Pd1  | 108.4(3)  |
| C22  | C23    | Pd1    | 109.00(18) | C12            | C11  | P1   | 111.6(7)  |
| C28  | C23    | Pd1    | 90.49(19)  | C16            | C11  | P1   | 126.8(7)  |
| C28  | C23    | C24    | 118.0(3)   | C16            | C11  | C12  | 121.6(8)  |
| C28  | C23    | C22    | 120.7(3)   | C7             | C6   | C5   | 111.2(3)  |
| C23  | C24    | Pd1    | 62.96(16)  | 02             | C3   | C2   | 108.1(4)  |
| C23  | C24    | C29    | 121.7(3)   | 01             | C3   | 02   | 119.2(5)  |
| C25  | C24    | Pd1    | 103.0(2)   | 01             | C3   | C2   | 132.7(5)  |
| C25  | C24    | C23    | 119.4(3)   | C14            | C15  | C16  | 111.5(9)  |
| C25  | C24    | C29    | 118.5(3)   | C8             | C7   | C6   | 112.2(4)  |
| C29  | C24    | Pd1    | 109.8(2)   | C7             | C8   | C9   | 110.6(4)  |
| C17  | C22    | C23    | 125.3(3)   | C5             | C10  | C9   | 110.9(3)  |
| C21  | C22    | C23    | 116.4(3)   | 02             | C4   | C1   | 108.5(4)  |
| C21  | C22    | C17    | 118.3(3)   | 03             | C4   | 02   | 119.1(6)  |
| C4   | 02     | C3     | 108.6(4)   | 03             | C4   | C1   | 132.4(5)  |
| C22  | C17    | P1     | 116.9(2)   | C8             | C9   | C10  | 110.8(4)  |
| C18  | C17    | P1     | 123.5(2)   | C11            | C16  | C15  | 120.3(8)  |
| C18  | C17    | C22    | 119.6(3)   | C13            | C14  | C15  | 122.7(8)  |
| C23  | C28    | C32    | 121.4(3)   | C14            | C13  | C12  | 121.1(9)  |
| C27  | C28    | C23    | 119.2(3)   | C16A           | C11A | P1   | 132.3(7)  |
| C27  | C28    | C32    | 119.2(3)   | C16A           | C11A | C12A | 114.9(7)  |
| C26  | C25    | C24    | 122.7(3)   | C12A           | C11A | P1   | 112.7(6)  |
| C24  | C29    | C30    | 112.5(3)   | C11A           | C16A | C15A | 125.5(8)  |
| C24  | C29    | C31    | 109.7(3)   | C14A           | C15A | C16A | 109.6(8)  |
| C30  | C29    | C31    | 110.9(3)   | C13A           | C14A | C15A | 117.5(10) |
| C18  | C19    | C20    | 120.4(3)   | C14A           | C13A | C12A | 126.6(9)  |
| C19  | C18    | C17    | 120.6(3)   | C11A           | C12A | C13A | 108.5(8)  |
| C28  | C32    | C33    | 112.3(3)   |                |      |      |           |

| Table S47 Hydrog | gen Atom Coordinates | s (Å×10⁴) and Isotropic D | isplacement Paramete | rs (Ų×10³) for 8. |
|------------------|----------------------|---------------------------|----------------------|-------------------|
| Atom             | X                    | у                         | Z                    | U(eq)             |
| H25              | 5921.55              | 6830.97                   | 7436.95              | 58                |
| H29              | 4493.2               | 7985.32                   | 6895.42              | 53                |
| H19              | 1851.51              | 8147.33                   | 6944.43              | 65                |
| H18              | 2403.29              | 7913.45                   | 5937.01              | 55                |
| H32              | 3177.96              | 5748.13                   | 6667.74              | 58                |
| H21              | 3351.13              | 6955.83                   | 7875.4               | 61                |
| H20              | 2305.54              | 7643.8                    | 7912.23              | 70                |
| H5               | 3225.77              | 8134.48                   | 5032.49              | 55                |
| H27              | 4835.35              | 4990.19                   | 7273.23              | 62                |
| H35              | 6545.53              | 5585.62                   | 7389.85              | 84                |
| H30A             | 6034.83              | 7949.63                   | 6959.77              | 93                |
| H30B             | 5566.57              | 8606.89                   | 6712.38              | 93                |
| H30C             | 5596.89              | 7895.33                   | 6288.36              | 93                |
| H12A             | 3623.44              | 5761.74                   | 4705.4               | 76                |
| H12B             | 3767.08              | 6404.02                   | 4211.06              | 76                |
| H1               | 5232.92              | 5780.18                   | 4768.54              | 87                |
| H31A             | 4477.94              | 7941.55                   | 8040.89              | 105               |
| H31B             | 5002.01              | 8576.51                   | 7841.81              | 105               |
| H31C             | 5327.75              | 7834.11                   | 8073.66              | 105               |
| H2               | 5759.46              | 5399.47                   | 5803.84              | 79                |
| H33A             | 3857.73              | 5063.88                   | 5908.02              | 100               |
| H33B             | 3219.89              | 4599.86                   | 6207.9               | 100               |
| H33C             | 4022.17              | 4491.74                   | 6465.65              | 100               |
| H34A             | 3597.44              | 4753                      | 7662.06              | 113               |
| H34B             | 2802.96              | 4816.35                   | 7373.28              | 113               |
| H34C             | 3135.24              | 5452.55                   | 7791.94              | 113               |
| H11              | 2944.55              | 6264.99                   | 5254.29              | 64                |
| H6A              | 4535.85              | 7693.84                   | 4400.55              | 77                |
| H6B              | 3747                 | 7568.58                   | 4113.6               | 77                |
| H36A             | 6514.66              | 6277.95                   | 8298.25              | 146               |
| H36B             | 6799.75              | 5516.75                   | 8522.53              | 146               |
| H36C             | 5989.92              | 5743.61                   | 8671.88              | 146               |
| H15A             | 1673.27              | 5885.85                   | 5002.98              | 73                |
| H15B             | 1369.81              | 6441.5                    | 4479.68              | 73                |
| H7A              | 4317.04              | 8572.53                   | 3598.86              | 92                |
| H7B              | 3584.78              | 8797.79                   | 3949.86              | 92                |
| H8A              | 4466.73              | 9642.5                    | 4210.45              | 106               |
| H8B              | 4994.78              | 9036.32                   | 4472.6               | 106               |
| H10A             | 4647.3               | 8350.43                   | 5542.3               | 80                |
| H10B             | 3923.77              | 8568.69                   | 5913.46              | 80                |
| H9A              | 3660.14              | 9427.77                   | 5085.84              | 105               |
| H9B              | 4437.97              | 9589.19                   | 5383.02              | 105               |
| H37A             | 5724.66              | 4525.18                   | 8000.78              | 199               |
| Н37В             | 6565.73              | 4480.68                   | 7853.92              | 199               |
| H37C             | 6005.99              | 4507.77                   | 7261.18              | 199               |
| H16A             | 2268.65              | 7215.35                   | 4641.52              | 55                |
| H16B             | 2178.84              | 6904.08                   | 5360.04              | 55                |
| H14A             | 2034.78              | 5284.45                   | 4186.8               | 78                |

| H14B | 1886.42 | 5916.27 | 3692.77 | 78  |
|------|---------|---------|---------|-----|
| H13A | 2888.41 | 6087.68 | 3544.91 | 95  |
| H13B | 3001.5  | 5330.23 | 3867.55 | 95  |
| H11A | 2883.03 | 6799.11 | 4817.79 | 55  |
| H16C | 2201.9  | 6698.83 | 5475    | 84  |
| H16D | 2454.6  | 5917.47 | 5636.36 | 84  |
| H15C | 1475.88 | 5709.62 | 5030.04 | 86  |
| H15D | 1618.53 | 6367.69 | 4551.18 | 86  |
| H14C | 1988.37 | 5008.16 | 4337.92 | 109 |
| H14D | 2113.9  | 5658.88 | 3854.72 | 109 |
| H13C | 2997.83 | 5246.19 | 3912.01 | 81  |
| H13D | 2898.98 | 4997.2  | 4646.14 | 81  |
| H12C | 3838.92 | 5752.77 | 4742.02 | 74  |
| H12D | 3529.25 | 6296.39 | 4208.19 | 74  |

### Table S48 Atomic Occupancy for 8.

| Atom | Occupancy | Atom | Occupancy | Atom | Occupancy |
|------|-----------|------|-----------|------|-----------|
| C12  | 0.477(8)  | H12A | 0.477(8)  | H12B | 0.477(8)  |
| C11  | 0.477(8)  | H11  | 0.477(8)  | C15  | 0.477(8)  |
| H15A | 0.477(8)  | H15B | 0.477(8)  | C16  | 0.477(8)  |
| H16A | 0.477(8)  | H16B | 0.477(8)  | C14  | 0.477(8)  |
| H14A | 0.477(8)  | H14B | 0.477(8)  | C13  | 0.477(8)  |
| H13A | 0.477(8)  | H13B | 0.477(8)  | C11A | 0.523(8)  |
| H11A | 0.523(8)  | C16A | 0.523(8)  | H16C | 0.523(8)  |
| H16D | 0.523(8)  | C15A | 0.523(8)  | H15C | 0.523(8)  |
| H15D | 0.523(8)  | C14A | 0.523(8)  | H14C | 0.523(8)  |
| H14D | 0.523(8)  | C13A | 0.523(8)  | H13C | 0.523(8)  |
| H13D | 0.523(8)  | C12A | 0.523(8)  | H12C | 0.523(8)  |
| H12D | 0.523(8)  |      |           |      |           |
|      |           |      |           |      |           |

### **Refinement model description**

C11-C16  $\approx$  C11A-C16A with sigma of 0.02

Number of restraints - 105, number of constraints - unknown. Details: 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2. Restrained distances P1-C11  $\approx$  P1-C11A with sigma of 0.02 C12-C11  $\approx$  C12A-C11A with sigma of 0.02 C12-C13  $\approx$  C12A-C13A with sigma of 0.02

C15-C16 ≈ C15A-C16A with sigma of 0.02 C15-C14 ≈ C15A-C14A with sigma of 0.02 C14-C13 ≈ C14A-C13A with sigma of 0.02 P1-C12 ≈ P1-C12A with sigma of 0.04 P1-C16 ≈ P1-C16A with sigma of 0.04 C12-C16 ≈ C12A-C16A with sigma of 0.04 C12-C14 ≈ C12A-C14A with sigma of 0.04 C11-C15 ≈ C11A-C15A with sigma of 0.04 C11-C13 ≈ C11A-C13A with sigma of 0.04 C15-C13 ≈ C15A-C13A with sigma of 0.04 C16-C14 ≈ C16A-C14A with sigma of 0.04 3. Rigid bond restraints C11, C16, C15, C14, C13, C12 with sigma for 1-2 distances of 0.01 and sigma for 1-3 distances of 0.01 4. Uiso/Uaniso restraints and constraints C16  $\approx$  C15  $\approx$  C14  $\approx$  C13  $\approx$  C12  $\approx$  C11: within 2A with sigma of 0.01 and sigma for terminal atoms of 2  $Uanis(C11) \approx Ueg, Uanis(C16) \approx Ueg, Uanis(C15) \approx Ueg, Uanis(C14)$  $\approx$  Ueq, Uanis(C13)  $\approx$  Ueq, Uanis(C12)  $\approx$  Ueq: with sigma of 0.01 and sigma for terminal atoms of 0.02 Uanis(C14A)  $\approx$  Ueq: with sigma of 0.001 and sigma for terminal atoms of 0.002 5. Others Sof(C11A)=Sof(H11A)=Sof(C16A)=Sof(H16C)=Sof(H16D)=Sof(C15A)=Sof(H15C)= Sof(H15D)=Sof(C14A)=Sof(H14C)=Sof(H14D)=Sof(C13A)=Sof(H13C)=Sof(H13D)= Sof(C12A)=Sof(H12C)=Sof(H12D)=1-FVAR(1) Sof(C12)=Sof(H12A)=Sof(H12B)=Sof(C11)=Sof(H11)=Sof(C15)=Sof(H15A)=Sof(H15B)= Sof(C16)=Sof(H16A)=Sof(H16B)=Sof(C14)=Sof(H14A)=Sof(H14B)=Sof(C13)=Sof(H13A)= Sof(H13B)=FVAR(1) 6.a Ternary CH refined with riding coordinates: C29(H29), C32(H32), C5(H5), C35(H35), C1(H1), C2(H2), C11(H11), C11A(H11A) 6.b Secondary CH2 refined with riding coordinates: C12(H12A,H12B), C6(H6A,H6B), C15(H15A,H15B), C7(H7A,H7B), C8(H8A,H8B), C10(H10A,H10B), C9(H9A,H9B), C16(H16A,H16B), C14(H14A,H14B), C13(H13A,H13B), C16A(H16C,H16D), C15A(H15C,H15D), C14A(H14C,H14D), C13A(H13C,H13D), C12A(H12C, H12D) 6.c Aromatic/amide H refined with riding coordinates: C25(H25), C19(H19), C18(H18), C21(H21), C20(H20), C27(H27) 6.d Idealised Me refined as rotating group: C30(H30A,H30B,H30C), C31(H31A,H31B,H31C), C33(H33A,H33B,H33C), C34(H34A,H34B, H34C), C36(H36A,H36B,H36C), C37(H37A,H37B,H37C)

# Bippyphos-Pd-MAH (12)

Single crystals of C<sub>39.5</sub>H<sub>46.5</sub>Cl<sub>2</sub>N<sub>4</sub>O<sub>3.5</sub>PPd **[12•0.5Et2O•DCM]** were selected using a MitEGen loop using paratone oil. A suitable crystal was selected and run on a Bruker APEX-II CCD diffractometer. The crystal was kept at 100.0 K during data collection. Using Olex2,<sup>12</sup> the structure was solved with the olex2.solve<sup>13</sup> structure solution program using Charge Flipping and refined with the XL<sup>14</sup> refinement package using Least Squares minimization.

### Crystal structure determination of [12•0.5Et2O•DCM]

**Crystal Data** for  $C_{39.5}H_{46.5}Cl_2N_4O_{3.5}PPd$  (*M* =841.57 g/mol): monoclinic, space group P2<sub>1</sub>/n (no. 14), *a* = 12.848(2) Å, *b* = 18.223(3) Å, *c* = 16.659(3) Å, *b* = 99.686(4)°, *V* = 3844.9(12) Å<sup>3</sup>, *Z* = 4, *T* = 100.0 K,  $\mu$ (MoK $\alpha$ ) = 0.708 mm<sup>-1</sup>, *Dcalc* = 1.454 g/cm<sup>3</sup>, 35443 reflections measured (3.338° ≤ 2 $\Theta$  ≤ 56.038°), 9241 unique ( $R_{int}$  = 0.0341,  $R_{sigma}$  = 0.0344) which were used in all calculations. The final  $R_1$  was 0.0393 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.1046 (all data).

### Table S49 Crystal data and structure refinement for 12•0.5Et2O•DCM.

| •                                           |                                                                |
|---------------------------------------------|----------------------------------------------------------------|
| Identification code                         | 12•0.5Et2O•DCM                                                 |
| Empirical formula                           | $C_{39.5}H_{46.5}CI_2N_4O_{3.5}PPd\\$                          |
| Formula weight                              | 841.57                                                         |
| Temperature/K                               | 100.0                                                          |
| Crystal system                              | monoclinic                                                     |
| Space group                                 | P21/n                                                          |
| a/Å                                         | 12.848(2)                                                      |
| b/Å                                         | 18.223(3)                                                      |
| c/Å                                         | 16.659(3)                                                      |
| α/°                                         | 90                                                             |
| β/°                                         | 99.686(4)                                                      |
| γ/°                                         | 90                                                             |
| Volume/ų                                    | 3844.9(12)                                                     |
| Z                                           | 4                                                              |
| ρ <sub>calc</sub> g/cm <sup>3</sup>         | 1.454                                                          |
| µ/mm <sup>-1</sup>                          | 0.708                                                          |
| F(000)                                      | 1738.0                                                         |
| Crystal size/mm <sup>3</sup>                | $0.15 \times 0.15 \times 0.1$                                  |
| Radiation                                   | ΜοΚα (λ = 0.71073)                                             |
| 20 range for data collection/°              | 3.338 to 56.038                                                |
| Index ranges                                | $-16 \leq h \leq 16,  -15 \leq k \leq 23,  -21 \leq l \leq 21$ |
| Reflections collected                       | 35443                                                          |
| Independent reflections                     | 9241 [ $R_{int} = 0.0341$ , $R_{sigma} = 0.0344$ ]             |
| Data/restraints/parameters                  | 9241/48/497                                                    |
| Goodness-of-fit on F <sup>2</sup>           | 1.033                                                          |
| Final R indexes [I>=2σ (I)]                 | R <sub>1</sub> = 0.0393, wR <sub>2</sub> = 0.0975              |
| Final R indexes [all data]                  | $R_1 = 0.0525$ , $wR_2 = 0.1046$                               |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 1.42/-1.42                                                     |

# Table S50 Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for 12•0.5Et2O•DCM. $U_{eq}$ is defined as 1/3 of of the trace of the orthogonalised $U_{ll}$ tensor.

| Atom      | x          | У          | Z                        | U(eq)     |
|-----------|------------|------------|--------------------------|-----------|
| Pd1       | 4114.8(2)  | 7046.9(2)  | 3717.8(2)                | 13.84(7)  |
| P1        | 3384.1(6)  | 8203.0(4)  | 3704.3(4)                | 16.36(14) |
| Cl2       | 8067.4(10) | 8833.8(7)  | 5236.4(7)                | 60.3(3)   |
| Cl1       | 8829.0(11) | 7681.3(10) | 4266.8(8)                | 82.0(5)   |
| 02        | 3821.8(16) | 5936.4(11) | 5156.8(12)               | 21.0(4)   |
| 03        | 3954.5(17) | 5036.8(11) | 4256.7(13)               | 25.1(5)   |
| 01        | 4187.5(18) | 6912.4(12) | 5984.1(13)               | 27.7(5)   |
| N4        | 3286.8(18) | 5759.4(12) | 2334.9(13)               | 15.4(4)   |
| N3        | 4237.4(18) | 6022.3(12) | 2194.6(13)               | 15.4(4)   |
| N1        | 2858.2(18) | 7717.3(12) | 2144.8(13)               | 13.8(4)   |
| N2        | 2436(2)    | 7871.2(13) | 1355.2(14)               | 19.2(5)   |
| C34       | 5060(2)    | 6756.0(15) | 4811.4(16)               | 18.4(5)   |
| C14       | 2698(2)    | 6348.6(14) | 2405.1(15)               | 13.9(5)   |
| C15       | 1593(2)    | 6267.2(14) | 2524.3(16)               | 16.1(5)   |
| C16       | 797(2)     | 6703.4(16) | 2096.2(17)               | 20.1(6)   |
| C12       | 4288(2)    | 6766.4(15) | 2202.4(16)               | 15.9(5)   |
| C9        | 2767(2)    | 8296.1(14) | 2654.4(16)               | 15.4(5)   |
| C36       | 4248(2)    | 5631.7(15) | 4507.7(17)               | 18.9(6)   |
| C11       | 2086(2)    | 8558 5(15) | 1380 1(17)               | 20.3(6)   |
| C27       | 5048(2)    | 5504 2(15) | 2100 8(17)               | 18 6(5)   |
| C33       | 5017(2)    | 6144 6(15) | 4276 2(16)               | 17.6(5)   |
| C10       | 2268(2)    | 88/9 1(15) | 2168 6(17)               | 19.9(6)   |
| C6        | 3866(3)    | 9738 1(15) | 3857(2)                  | 29.8(7)   |
| C0        | 5190(2)    | 7198 8(16) | 2024 3(18)               | 22.8(7)   |
| C21       | 3130(2)    | 7138.8(10) | 2024.5(15)               | 12 7(5)   |
| C15       | 1225(2)    | F721 0(17) | 2550.8(15)               | 15.7(5)   |
| C20       | 1333(2)    | 9212 6(17) | 3033.3(13)<br>4202 1(17) | 23.0(0)   |
| C1<br>C25 | 2203(2)    | 6512.0(17) | 4302.1(17)               | 25.0(0)   |
| (3)       | 4547(2)    | 4022 2(16) | 5569.6(17)<br>2640.2(10) | 20.2(6)   |
| C32       | 5252(2)    | 4925.2(10) | 2040.3(19)               | 25.9(0)   |
| Co        | 5007(3)    | 8917.0(17) | 3104(2)                  | 27.5(7)   |
| C28       | 5014(3)    | 5584.9(17) | 1408(2)                  | 27.2(7)   |
| C22       | 5021(3)    | //11./(19) | 1398(2)                  | 32.5(8)   |
|           | 4362(2)    | 8973.3(10) | 3857.3(18)               | 23.0(6)   |
| C3        | 1490(3)    | 6924.8(19) | 3997(2)<br>2107 7(10)    | 31.1(7)   |
|           | -242(2)    | 8428(2)    | 2197.7(19)               | 20.8(7)   |
| C4        | 2/4/(3)    | 8438(2)    | 5203.4(18)               | 32.3(8)   |
| C18       | -491(3)    | 5069(2)    | 2/18(2)                  | 34.3(8)   |
| C26       | 6203(3)    | /104(2)    | 2468(2)                  | 33.9(8)   |
| C7        | 5115(3)    | 8844.3(18) | 4664(2)                  | 32.2(7)   |
| C29       | 6400(3)    | 5081.3(19) | 1393(2)                  | 37.5(8)   |
| C19       | 296(3)     | 5634(2)    | 3144(2)                  | 36.2(8)   |
| C30       | 6606(3)    | 4503(2)    | 1936(2)                  | 38.0(8)   |
| C2        | 1694(3)    | /5/5.6(18) | 4223(2)                  | 27.9(7)   |
| C31       | 6016(3)    | 4420.5(19) | 2551(2)                  | 32.4(7)   |
| C25       | 7030(3)    | /526(3)    | 2267(3)                  | 53.5(13)  |
| C37       | 7749(3)    | 8034(2)    | 4659(2)                  | 41.8(9)   |
| C24       | 6859(4)    | 8021(3)    | 1643(3)                  | 63.2(16)  |
| C23       | 5860(4)    | 8122(3)    | 1212(3)                  | 57.0(14)  |
| C3S       | 52(7)      | 4971(7)    | 5043(17)                 | 37.6(14)  |
| 015       | 1133(4)    | 5158(3)    | 5179(3)                  | 44.7(11)  |
| C2S       | 1826(5)    | 4617(4)    | 5390(5)                  | 48.8(15)  |
| C4S       | -735(5)    | 5615(4)    | 4982(5)                  | 52.6(17)  |
| C5S       | 1861(7)    | 3822(3)    | 5526(5)                  | 72(2)     |
| C5T       | 2389(7)    | 4927(5)    | 6257(4)                  | 42(2)     |

| Table S51 Anisotropic Displacement Parameters (Å <sup>2</sup> ×10 <sup>3</sup> ) for 12•0.5Et2O•DCM. The Anisotropic displacement |
|-----------------------------------------------------------------------------------------------------------------------------------|
| factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+]$ .                                                     |

| Atom | <b>U</b> 11 | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Pd1  | 16.37(11)   | 11.98(10)       | 12.04(10)       | -0.76(7)        | -0.86(7)        | 1.73(7)         |
| P1   | 21.2(4)     | 13.1(3)         | 13.3(3)         | -3.1(3)         | -1.4(3)         | 3.0(3)          |
| CI2  | 72.3(8)     | 60.1(7)         | 41.0(6)         | 12.0(5)         | -12.0(5)        | -10.1(6)        |
| Cl1  | 58.4(8)     | 143.5(14)       | 46.5(6)         | 23.5(8)         | 15.3(6)         | 49.6(9)         |
| 02   | 22.4(11)    | 21.3(10)        | 19.9(10)        | 1.2(8)          | 5.2(8)          | 0.7(8)          |
| 03   | 31.1(12)    | 16.7(10)        | 25.8(11)        | 0.9(8)          | -0.2(9)         | -2.0(8)         |
| 01   | 35.1(13)    | 30.2(12)        | 17.8(10)        | -2.2(9)         | 4.8(9)          | 4.8(9)          |
| N4   | 17.5(11)    | 13.2(10)        | 16.0(11)        | 0.3(8)          | 4.0(9)          | 0.7(8)          |
| N3   | 16.4(11)    | 13.7(11)        | 15.6(11)        | -2.7(8)         | 1.6(9)          | 1.6(8)          |
| N1   | 18.7(11)    | 10.6(10)        | 11.0(10)        | -0.3(8)         | -1.0(8)         | 1.0(8)          |
| N2   | 26.6(13)    | 16.4(11)        | 12.3(11)        | 1.6(9)          | -3.1(9)         | -1.1(9)         |
| C34  | 18.3(13)    | 19.4(13)        | 15.3(13)        | 1.9(10)         | -3.1(10)        | 0.8(10)         |
| C14  | 18.1(13)    | 12.5(12)        | 10.3(12)        | -0.3(9)         | 0.2(10)         | -0.2(9)         |
| C15  | 18.9(13)    | 13.9(12)        | 16.3(13)        | -1.8(10)        | 4.9(10)         | -0.5(10)        |
| C16  | 21.0(14)    | 21.2(14)        | 18.0(13)        | 1.5(11)         | 3.0(11)         | 0.6(11)         |
| C12  | 18.8(13)    | 14.7(12)        | 13.5(12)        | -3.5(10)        | 0.3(10)         | -1.6(10)        |
| C9   | 18.5(13)    | 13.0(12)        | 13.7(12)        | -2.5(10)        | 0.0(10)         | 0.3(10)         |
| C36  | 20.6(14)    | 17.7(13)        | 16.8(13)        | 3.7(11)         | -1.2(11)        | 3.8(10)         |
| C11  | 27.0(15)    | 12.6(12)        | 18.2(13)        | 2.7(10)         | -4.8(11)        | -2.4(11)        |
| C27  | 17.5(13)    | 17.0(13)        | 21.5(14)        | -4.3(11)        | 3.5(11)         | 2.1(10)         |
| C33  | 16.2(13)    | 18.1(13)        | 17.4(13)        | 3.0(10)         | -0.6(10)        | 3.6(10)         |
| C10  | 24.5(15)    | 13.3(12)        | 20.2(14)        | 0.9(11)         | -1.4(11)        | 0.7(11)         |
| C6   | 37.5(19)    | 16.6(14)        | 32.6(17)        | -6.3(12)        | -1.9(14)        | -0.2(12)        |
| C21  | 19.6(14)    | 23.2(14)        | 25.1(15)        | -14.0(12)       | 9.0(11)         | -7.2(11)        |
| C13  | 15.5(12)    | 11.8(11)        | 12.6(12)        | -1.5(9)         | -1.0(9)         | 1.0(10)         |
| C20  | 24.4(16)    | 23.9(15)        | 29.7(16)        | 7.5(12)         | 8.4(12)         | 3.1(12)         |
| C1   | 28.8(16)    | 24.3(15)        | 15.9(13)        | -2.0(11)        | 3.5(11)         | 8.6(12)         |
| C35  | 22.4(14)    | 20.2(13)        | 15.8(13)        | 3.0(11)         | -3.1(11)        | 4.6(11)         |
| C32  | 23.8(15)    | 23.8(15)        | 24.6(15)        | -0.4(12)        | 5.5(12)         | 5.4(12)         |
| C8   | 25.9(16)    | 20.5(15)        | 34.7(17)        | -6.2(13)        | 1.6(13)         | -5.8(12)        |
| C28  | 35.0(18)    | 18.6(14)        | 30.8(16)        | -2.2(12)        | 13.3(14)        | 3.6(12)         |
| C22  | 40.3(19)    | 35.3(17)        | 24.2(16)        | -6.8(14)        | 12.4(14)        | -21.3(15)       |
| C5   | 28.0(16)    | 16.1(13)        | 23.1(15)        | -6.6(11)        | -1.4(12)        | -0.3(11)        |
| C3   | 32.8(18)    | 32.6(17)        | 28.9(17)        | 0.4(14)         | 8.8(14)         | 14.5(14)        |
| C17  | 19.5(15)    | 36.5(17)        | 24.9(15)        | 2.8(13)         | 4.9(12)         | 5.4(13)         |
| C4   | 44(2)       | 35.2(18)        | 17.0(15)        | -4.9(13)        | 4.5(14)         | 11.6(15)        |
| C18  | 20.1(16)    | 46(2)           | 40.0(19)        | 6.8(16)         | 15.2(14)        | 0.5(14)         |
| C26  | 18.7(15)    | 40.6(19)        | 43(2)           | -22.4(16)       | 7.8(14)         | 0.4(13)         |
| C7   | 35.6(18)    | 25.8(16)        | 29.4(17)        | -7.4(13)        | -11.4(14)       | 0.5(14)         |
| C29  | 42(2)       | 29.8(17)        | 48(2)           | -2.5(16)        | 27.5(17)        | 7.2(15)         |
| C19  | 31.4(18)    | 38.9(19)        | 42(2)           | 15.3(16)        | 18.0(16)        | -1.1(15)        |
| C30  | 33.3(19)    | 31.4(18)        | 53(2)           | 0.8(16)         | 19.6(17)        | 14.5(15)        |
| C2   | 29.5(17)    | 30.3(17)        | 25.8(16)        | -0.1(13)        | 9.8(13)         | 3.3(13)         |
| C31  | 33.0(18)    | 28.1(16)        | 37.2(18)        | 4.6(14)         | 9.0(15)         | 14.4(14)        |
| C25  | 22.0(18)    | 75(3)           | 67(3)           | -51(3)          | 19.2(18)        | -18.6(18)       |
| C37  | 33(2)       | 61(3)           | 30.7(18)        | 9.1(17)         | 3.5(15)         | 2.8(17)         |
| C24  | 57(3)       | 81(3)           | 63(3)           | -43(3)          | 43(2)           | -53(3)          |
| C23  | 76(3)       | 61(3)           | 42(2)           | -20(2)          | 34(2)           | -50(2)          |
| C3S  | 41(2)       | 33(3)           | 41(4)           | 10(2)           | 12(2)           | -8(2)           |
| 01S  | 45(2)       | 38(2)           | 53(3)           | 4(2)            | 14(2)           | 4.3(19)         |
| C2S  | 40(3)       | 54(3)           | 59(3)           | 13(3)           | 26(3)           | 0(3)            |
| C4S  | 49(4)       | 50(4)           | 53(4)           | 22(3)           | -7(3)           | -14(3)          |
| C5S  | 100(6)      | 53(3)           | 81(5)           | -20(4)          | 69(4)           | -23(4)          |
| C5T  | 51(5)       | 42(5)           | 42(4)           | 3(4)            | 34(4)           | -16(4)          |

# Table S52 Bond Lengths for 12•0.5Et2O•DCM.

| Aton | n Atom | Length/Å  | Ator | n Atom           | Length/Å  |
|------|--------|-----------|------|------------------|-----------|
| Pd1  | P1     | 2.3051(8) | C9   | C10              | 1.381(4)  |
| Pd1  | C34    | 2.081(3)  | C36  | C33              | 1.458(4)  |
| Pd1  | C12    | 2.622(3)  | C11  | C10              | 1.399(4)  |
| Pd1  | C33    | 2.133(3)  | C27  | C32              | 1.383(4)  |
| Pd1  | C13    | 2.367(3)  | C27  | C28              | 1.385(4)  |
| P1   | C9     | 1.803(3)  | C6   | C5               | 1.533(4)  |
| P1   | C1     | 1.873(3)  | C21  | C22              | 1.390(5)  |
| P1   | C5     | 1.873(3)  | C21  | C26              | 1.396(4)  |
| Cl2  | C37    | 1.757(4)  | C20  | C19              | 1.380(5)  |
| Cl1  | C37    | 1.752(4)  | C1   | C3               | 1.538(4)  |
| 02   | C36    | 1.406(3)  | C1   | C4               | 1.537(4)  |
| 02   | C35    | 1.398(3)  | C1   | C2               | 1.536(4)  |
| 03   | C36    | 1.200(3)  | C32  | C31              | 1.388(4)  |
| 01   | C35    | 1.195(4)  | C8   | C5               | 1.534(4)  |
| N4   | N3     | 1.368(3)  | C28  | C29              | 1.386(4)  |
| N4   | C14    | 1.330(3)  | C22  | C23              | 1.389(5)  |
| N3   | C12    | 1.358(3)  | C5   | C7               | 1.536(4)  |
| N3   | C27    | 1.434(3)  | C17  | C18              | 1.375(5)  |
| N1   | N2     | 1.365(3)  | C18  | C19              | 1.383(5)  |
| N1   | C9     | 1.371(3)  | C26  | C25              | 1.398(5)  |
| N1   | C13    | 1.427(3)  | C29  | C30              | 1.385(5)  |
| N2   | C11    | 1.334(4)  | C30  | C31              | 1.381(5)  |
| C34  | C33    | 1.422(4)  | C25  | C24              | 1.366(7)  |
| C34  | C35    | 1.467(4)  | C24  | C23              | 1.374(7)  |
| C14  | C15    | 1.474(4)  | C3S  | 01S              | 1.411(9)  |
| C14  | C13    | 1.431(4)  | C3S  | C4S              | 1.541(9)  |
| C15  | C16    | 1.393(4)  | 01S  | C2S              | 1.336(6)  |
| C15  | C20    | 1.392(4)  | C2S  | C5S              | 1.467(7)  |
| C16  | C17    | 1.387(4)  | C2S  | C5T              | 1.606(8)  |
| C12  | C21    | 1.472(4)  | C4S  | C5S <sup>1</sup> | 1.858(11) |
| C12  | C13    | 1.409(4)  |      |                  |           |

Table S52 footnotes: <sup>1</sup>-X,1-Y,1-Z

# Table S53 Bond Angles for 12•0.5Et2O•DCM.

| Atom Atom Atom |     | n Atom | Angle/°    | Atom Atom Atom |     |     | Angle/°    |
|----------------|-----|--------|------------|----------------|-----|-----|------------|
| Ρ1             | Pd1 | C12    | 105.63(6)  | C9             | C10 | C11 | 105.2(2)   |
| Ρ1             | Pd1 | C13    | 84.55(6)   | C22            | C21 | C12 | 118.9(3)   |
| C34            | Pd1 | P1     | 114.71(8)  | C22            | C21 | C26 | 119.7(3)   |
| C34            | Pd1 | C12    | 131.42(10) | C26            | C21 | C12 | 121.5(3)   |
| C34            | Pd1 | C33    | 39.43(11)  | N1             | C13 | Pd1 | 106.36(16) |
| C34            | Pd1 | C13    | 160.51(10) | N1             | C13 | C14 | 126.0(2)   |
| C33            | Pd1 | P1     | 154.07(8)  | C14            | C13 | Pd1 | 96.15(16)  |
| C33            | Pd1 | C12    | 98.15(10)  | C12            | C13 | Pd1 | 83.86(15)  |
| C33            | Pd1 | C13    | 121.37(10) | C12            | C13 | N1  | 125.1(2)   |
| C13            | Pd1 | C12    | 32.29(9)   | C12            | C13 | C14 | 105.4(2)   |

| C9  | P1  | Pd1 | 101.97(9)  | C              | 19              | C20 | C15              | 119.8(3)   |
|-----|-----|-----|------------|----------------|-----------------|-----|------------------|------------|
| C9  | P1  | C1  | 104.93(13) | C              | 3               | C1  | P1               | 114.8(2)   |
| C9  | Ρ1  | C5  | 103.70(13) | C              | 4               | C1  | P1               | 109.4(2)   |
| C1  | P1  | Pd1 | 115.80(10) | C              | 4               | C1  | C3               | 110.0(2)   |
| C5  | P1  | Pd1 | 114.89(10) | C              | 2               | C1  | P1               | 105.42(19) |
| C5  | P1  | C1  | 113.42(14) | C              | 2               | C1  | C3               | 108.5(3)   |
| C35 | 02  | C36 | 108.6(2)   | C              | 2               | C1  | C4               | 108.6(3)   |
| C14 | N4  | N3  | 105.7(2)   | 0              | 2               | C35 | C34              | 108.4(2)   |
| N4  | N3  | C27 | 118.3(2)   | 0              | 1               | C35 | 02               | 120.3(3)   |
| C12 | N3  | N4  | 113.0(2)   | 0              | 1               | C35 | C34              | 131.3(3)   |
| C12 | N3  | C27 | 128.6(2)   | C              | 27              | C32 | C31              | 118.9(3)   |
| N2  | N1  | C9  | 112.2(2)   | C              | 27              | C28 | C29              | 118.8(3)   |
| N2  | N1  | C13 | 118.6(2)   | C              | 23              | C22 | C21              | 120.0(4)   |
| C9  | N1  | C13 | 129.2(2)   | C              | 6               | C5  | P1               | 114.3(2)   |
| C11 | N2  | N1  | 104.1(2)   | C              | 6               | C5  | C8               | 109.7(3)   |
| C33 | C34 | Pd1 | 72.25(15)  | C              | 6               | C5  | C7               | 109.9(2)   |
| C33 | C34 | C35 | 106.9(2)   | C              | 8               | C5  | P1               | 106.39(19) |
| C35 | C34 | Pd1 | 106.81(18) | C              | 8               | C5  | C7               | 108.0(3)   |
| N4  | C14 | C15 | 120.4(2)   | C <sup>.</sup> | 7               | C5  | P1               | 108.3(2)   |
| N4  | C14 | C13 | 110.5(2)   | C              | 18              | C17 | C16              | 120.1(3)   |
| C13 | C14 | C15 | 129.1(2)   | C              | 17              | C18 | C19              | 120.1(3)   |
| C16 | C15 | C14 | 120.9(2)   | C              | 21              | C26 | C25              | 118.9(4)   |
| C20 | C15 | C14 | 119.6(2)   | C              | 30              | C29 | C28              | 120.5(3)   |
| C20 | C15 | C16 | 119.5(3)   | C              | 20              | C19 | C18              | 120.5(3)   |
| C17 | C16 | C15 | 120.0(3)   | C              | 31              | C30 | C29              | 119.9(3)   |
| N3  | C12 | Pd1 | 101.08(17) | C              | 30              | C31 | C32              | 120.5(3)   |
| N3  | C12 | C21 | 124.8(2)   | C              | 24              | C25 | C26              | 121.0(4)   |
| N3  | C12 | C13 | 105.4(2)   | C              | 1               | C37 | Cl2              | 112.5(2)   |
| C21 | C12 | Pd1 | 106.67(17) | C              | 25              | C24 | C23              | 120.2(4)   |
| C13 | C12 | Pd1 | 63.85(14)  | C              | 24              | C23 | C22              | 120.2(4)   |
| C13 | C12 | C21 | 129.5(3)   | 0              | 1S              | C3S | C4S              | 116.3(9)   |
| N1  | C9  | Ρ1  | 117.31(19) | C              | 2S              | 01S | C3S              | 117.3(7)   |
| N1  | C9  | C10 | 106.1(2)   | 0              | 1S              | C2S | C5S              | 140.5(7)   |
| C10 | C9  | Ρ1  | 136.2(2)   | 0              | 1S              | C2S | C5T              | 99.0(6)    |
| 02  | C36 | C33 | 108.6(2)   | C              | 3S1             | C4S | C3S              | 6(2)       |
| 03  | C36 | 02  | 119.0(3)   | C              | 3S1             | C4S | $O1S^1$          | 58.2(6)    |
| 03  | C36 | C33 | 132.4(3)   | C              | 3S1             | C4S | $C2S^1$          | 108.9(9)   |
| N2  | C11 | C10 | 112.4(2)   | C              | 3S              | C4S | $C5S^1$          | 154.5(11)  |
| C32 | C27 | N3  | 118.7(3)   | C              | 3S1             | C4S | $C5S^1$          | 149.3(13)  |
| C32 | C27 | C28 | 121.4(3)   | 0              | $1S^1$          | C4S | C3S              | 59.9(6)    |
| C28 | C27 | N3  | 119.8(3)   | 0              | 1S <sup>1</sup> | C4S | C5S <sup>1</sup> | 102.7(5)   |
| C34 | C33 | Pd1 | 68.33(15)  | C              | 2S <sup>1</sup> | C4S | C3S              | 111.8(7)   |
| C34 | C33 | C36 | 107.1(2)   | C              | 2S <sup>1</sup> | C4S | $O1S^1$          | 52.8(4)    |
| C36 | C33 | Pd1 | 105.51(18) | C              | 2S <sup>1</sup> | C4S | $C5S^1$          | 50.5(4)    |

Table S53 footnotes: <sup>1</sup>-X,1-Y,1-Z

| Table S54 Hydrogen Atom Coordinates (Å×10 <sup>4</sup> ) and Isotropic Displacement Parameters (Å <sup>2</sup> ×10 <sup>3</sup> ) for |
|---------------------------------------------------------------------------------------------------------------------------------------|
| 12•0.5Et2O•DCM.                                                                                                                       |

| Atom | x        | у        | Z       | U(eq) |
|------|----------|----------|---------|-------|
| H34  | 5744.26  | 7015.14  | 4997.79 | 22    |
| H16  | 967.26   | 7070.48  | 1734.39 | 24    |
| H11  | 1751.98  | 8821.15  | 914.82  | 24    |
| H33  | 5660.28  | 5967.58  | 4070.95 | 21    |
| H10  | 2086.21  | 9324.46  | 2334.17 | 24    |
| H6A  | 3355.05  | 9805.42  | 3355.14 | 45    |
| H6B  | 4420.13  | 10111.67 | 3886.97 | 45    |
| H6C  | 3506.38  | 9786.17  | 4328.29 | 45    |
| H20  | 1872.77  | 5434.44  | 3351.68 | 31    |
| H32  | 4828.59  | 4869.11  | 3065.05 | 29    |
| H8A  | 5294.01  | 8419.94  | 3149.4  | 41    |
| H8B  | 5587.56  | 9271.9   | 3254.26 | 41    |
| H8C  | 4549.67  | 9023.18  | 2643.98 | 41    |
| H28  | 5466.24  | 5978.49  | 1092.51 | 33    |
| H22  | 4331.35  | 7781.74  | 1097.79 | 39    |
| H3A  | 1863.45  | 9394.69  | 4007.77 | 47    |
| НЗВ  | 954.8    | 8953.69  | 4351.27 | 47    |
| H3C  | 1148.03  | 8816.18  | 3438.99 | 47    |
| H17  | -783.57  | 6901.81  | 1907.15 | 32    |
| H4A  | 3294.53  | 8070.42  | 5380.47 | 48    |
| H4B  | 2186.15  | 8393.76  | 5532.72 | 48    |
| H4C  | 3057.54  | 8930.07  | 5271.93 | 48    |
| H18  | -1203.83 | 5999.88  | 2785.36 | 41    |
| H26  | 6328.71  | 6757.31  | 2900.01 | 41    |
| H7A  | 4720.74  | 8879.45  | 5117.34 | 48    |
| H7B  | 5674.15  | 9216.01  | 4729.28 | 48    |
| H7C  | 5430.67  | 8354.99  | 4659.56 | 48    |
| H29  | 6800.69  | 5133.1   | 966.3   | 45    |
| H19  | 119.6    | 5265.79  | 3501.61 | 43    |
| H30  | 7152.85  | 4163.67  | 1885.55 | 46    |
| H2A  | 1405.4   | 7483.97  | 3648.78 | 42    |
| H2B  | 1117.35  | 7591.81  | 4539.3  | 42    |
| H2C  | 2185.12  | 7180.88  | 4429.32 | 42    |
| H31  | 6147.43  | 4016.87  | 2914.44 | 39    |
| H25  | 7721.46  | 7468.04  | 2569.4  | 64    |
| H37A | 7489.76  | 7656.45  | 5004.67 | 50    |
| H37B | 7170.76  | 8144.25  | 4202.19 | 50    |
| H24  | 7433.01  | 8296.36  | 1507.25 | 76    |
| H23  | 5742.18  | 8473.16  | 785.28  | 68    |
| H3SA | -79.86   | 4645.31  | 5491.54 | 45    |
| H3SB | -100.75  | 4684.01  | 4532.24 | 45    |
| H2SA | 2232.04  | 4803.23  | 5907.74 | 59    |
| H2SB | 2307.21  | 4676.55  | 4988.28 | 59    |
| H2SC | 2327.98  | 4568     | 5002.37 | 59    |
| H2SD | 1472.35  | 4140.92  | 5441.27 | 59    |
| H4SC | -575.72  | 6001.04  | 4611.92 | 79    |
| H4SA | -646.3   | 5808.54  | 5538.51 | 79    |
| H4SB | -1464.18 | 5448.58  | 4815    | 79    |
| H5SC | 1649.98  | 3712.1   | 6051.48 | 108   |
| H5SA | 2580.54  | 3642.66  | 5526.81 | 108   |
| H5SB | 1375.71  | 3578.44  | 5089.6  | 108   |
| H5TA | 2170.82  | 5436.05  | 6318.58 | 63    |
| Н5ТВ | 3157.47  | 4906.61  | 6289.3  | 63    |
| H5TC | 2183.45  | 4626.63  | 6692.72 | 63    |

### Table S55 Atomic Occupancy for 12•0.5Et2O•DCM.

| Atom | Occupancy | Atom | Occupancy | Atom | Occupancy |
|------|-----------|------|-----------|------|-----------|
| C3S  | 0.5       | H3SA | 0.5       | H3SB | 0.5       |
| 01S  | 0.5       | C2S  | 0.5       | H2SA | 0.615(8)  |
| H2SB | 0.615(8)  | H2SC | 0.385(8)  | H2SD | 0.385(8)  |
| C4S  | 0.5       | H4SC | 0.5       | H4SA | 0.5       |
| H4SB | 0.5       | C5S  | 0.615(8)  | H5SC | 0.615(8)  |
| H5SA | 0.615(8)  | H5SB | 0.615(8)  | C5T  | 0.385(8)  |
| H5TA | 0.385(8)  | H5TB | 0.385(8)  | H5TC | 0.385(8)  |

#### **Refinement model description**

```
Number of restraints - 48, number of constraints - unknown.
Details:
1. Fixed Uiso
At 1.2 times of:
 All C(H) groups, All C(H,H) groups, All C(H,H,H,H) groups
At 1.5 times of:
 All C(H,H,H) groups
2. Restrained distances
C4S-C3S = C5S-C2S = C2S-C5T
1.54 with sigma of 0.01
O1S-C3S = O1S-C2S
1.45 with sigma of 0.01
C4S-01S
2.44 with sigma of 0.01
01S-C5S
2.44 with sigma of 0.01
01S-C5T
2.44 with sigma of 0.01
C3S-C2S
2.29 with sigma of 0.01
3. Rigid bond restraints
C4S, C3S, O1S, C2S, C5S, C5T
with sigma for 1-2 distances of 0.005 and sigma for 1-3 distances of 0.01
4. Uiso/Uaniso restraints and constraints
C4S \approx C3S \approx O1S \approx C2S \approx C5S \approx C5T: within 2A with sigma of
0.005 and sigma for terminal atoms of 0.01
5. Others
Sof(H2SD)=Sof(H2SC)=Sof(C5T)=Sof(H5TA)=Sof(H5TB)=Sof(H5TC)=1-FVAR(1)
Sof(H2SA)=Sof(H2SB)=Sof(C5S)=Sof(H5SA)=Sof(H5SB)=Sof(H5SC)=FVAR(1)
Fixed Sof: C3S(0.5) H3SA(0.5) H3SB(0.5) O1S(0.5) C2S(0.5) C4S(0.5) H4SA(0.5)
H4SC(0.5) H4SB(0.5)
6.a Ternary CH refined with riding coordinates:
C34(H34), C33(H33)
6.b Secondary CH2 refined with riding coordinates:
C37(H37A,H37B), C3S(H3SA,H3SB), C2S(H2SA,H2SB), C2S(H2SD,H2SC)
6.c Aromatic/amide H refined with riding coordinates:
C16(H16), C11(H11), C10(H10), C20(H20), C32(H32), C28(H28), C22(H22),
C17(H17), C18(H18), C26(H26), C29(H29), C19(H19), C30(H30), C31(H31), C25(H25),
 C24(H24), C23(H23)
6.d Idealised Me refined as rotating group:
C6(H6A,H6B,H6C), C8(H8A,H8B,H8C), C3(H3A,H3B,H3C), C4(H4A,H4B,H4C), C7(H7A,
H7B,H7C), C2(H2A,H2B,H2C), C4S(H4SA,H4SC,H4SB), C5S(H5SA,H5SB,H5SC), C5T(H5TA,
H5TB,H5TC)
```

# **VI: References**

- Zalesskiy, S. S.; Ananikov, V. P. Pd<sub>2</sub>(dba)<sub>3</sub> as a Precursor of Soluble Metal Complexes and Nanoparticles: Determination of Palladium Active Species for Catalysis and Synthesis. *Organometallics* 2012, *31*, 2302–2309.
- (2) Zheng, J.; Yao, Y.; Li, M.; Wang, L.; Zhang, X. A Non-MPD-Type Reverse Osmosis Membrane with Enhanced Permselectivity for Brackish Water Desalination. *J. Membrane Sci.* **2018**, *565*, 104–111.
- (3) Cavell, K. J.; Stufkens, D. J.; Vrieze, K. 1,4-Diazabutadiene Olefin Complexes of Zerovalent Palladium: Preparation and Characterization. *Inorg. Chim. Acta* **1981**, *47*, 67–76.
- (4) Lee, J.-Y.; Shen, J.-S.; Tzeng, R.-J.; Lu, I.-C.; Lii, J.-H.; Hu, C.-H.; Lee, H. M. Well-Defined Palladium(0) Complexes Bearing N-Heterocyclic Carbene and Phosphine Moieties: Efficient Catalytic Applications in the Mizoroki–Heck Reaction and Direct C–H Functionalization. *Dalton Trans.* **2016**, *45*, 10375–10388.
- (5) Wang, D.; Zheng, Y.; Yang, M.; Zhang, F.; Mao, F.; Yu, J.; Xia, X. Room-Temperature Cu-Catalyzed N-Arylation of Aliphatic Amines in Neat Water. *Org. Biomol. Chem.* **2017**, *15*, 8009–8012.
- (6) DeAngelis, A. J.; Gildner, P. G.; Chow, R.; Colacot, T. J. Generating Active "L-Pd(0)" via Neutral or Cationic π-Allylpalladium Complexes Featuring Biaryl/Bipyrazolylphosphines: Synthetic, Mechanistic, and Structure–Activity Studies in Challenging Cross-Coupling Reactions. J. Org. Chem. 2015, 80, 6794–6813.
- (7) Jiang, Y.; Wang, Q.-Q.; Liang, S.; Hu, L.-M.; Little, R. D.; Zeng, C.-C. Electrochemical Oxidative Amination of Sodium Sulfinates: Synthesis of Sulfonamides Mediated by NH₄I as a Redox Catalyst. J. Org. Chem. 2016, 81, 4713–4719.
- (8) Ueda, S.; Su, M.; Buchwald, S. L. Completely N1-Selective Palladium-Catalyzed Arylation of Unsymmetric Imidazoles: Application to the Synthesis of Nilotinib. *J. Am. Chem. Soc.* **2012**, *134*, 700–706.
- (9) Littke, A. F.; Fu, G. C. A Versatile Catalyst for Heck Reactions of Aryl Chlorides and Aryl Bromides under Mild Conditions. *J. Am. Chem. Soc.* **2001**, *123*, 6989–7000.
- (10) Gowrisankar, S.; Sergeev, A. G.; Anbarasan, P.; Spannenberg, A.; Neumann, H.; Beller, M. A General and Efficient Catalyst for Palladium-Catalyzed C–O Coupling Reactions of Aryl Halides with Primary Alcohols. J. Am. Chem. Soc. 2010, 132, 11592–11598.
- (11) Abate, A.; Hollman, D. J.; Teuscher, J.; Pathak, S.; Avolio, R.; D'Errico, G.; Vitiello, G.; Fantacci, S.; Snaith, H.
   J. Protic Ionic Liquids as P-Dopant for Organic Hole Transporting Materials and Their Application in High Efficiency Hybrid Solar Cells. J. Am. Chem. Soc. 2013, 135, 13538–13548.
- (12) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. a. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. *J Appl. Cryst.* **2009**, *42*, 339–341.
- (13) Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. a. K.; Puschmann, H. The Anatomy of a Comprehensive Constrained, Restrained Refinement Program for the Modern Computing Environment – Olex2 Dissected. Acta Cryst. A 2015, 71, 59–75.
- (14) Sheldrick, G. M. A Short History of SHELX. Acta Cryst. A 2008, 64, 112–122.