Supporting Information

Inclusion of Amine Isomers with Open-Chain Hosts Having a Partial Structure of p-tert-Butylthiacalixarene

Ikuko Miyoshi, Hayato Sonehara, Jun Ogihara, Tomoaki Matsumoto, Naoya Morohashi, ${ }^{*}$ and Tetsutaro Hattori*
Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan

Contents:
Powder X-ray diffraction (PXRD) analysis of inclusion crystals S2
Crystal structure of 2•6-methylquinoline-acetonitrile S3
Crystal structure of 2•(trans-4-methylcyclohexanamine) ${ }_{3}$ S5
Crystallographic data for inclusion crystals S8
Thermal ellipsoid plots of inclusion crystals S11

Powder X-ray diffraction (PXRD) analysis of inclusion crystals

Figure S1. Comparison of the PXRD patterns of inclusion crystals prepared by inclusion experiments using single guest amines with those simulated from single-crystal XRD data for the corresponding single crystals: PXRD patterns measured for the inclusion crystals of diacid $\mathbf{2}$ with (a) 3-methylpyridine, (b) 4methylpyridine, (c) 2-methylquinoline, and (d) 6-methylquinoline and the inclusion crystal of monoester 3 with (e) trans-4-methylcyclohexanamine. PXRD patterns simulated from the single-crystal XRD data of (f) 2•3-methylpyridine, (g) 2•4-methylpyridine•toluene 0.5 , (h) 2•2-methylquinoline•toluene 0.5 , (i) 2•6-methylquinoline-toluene, and (j) 3-trans-4-methylcyclohexanamine.

Crystal structure of $\mathbf{2 \cdot 6}$-methylquinoline-acetonitrile

Single crystal $2 \cdot 6$-methylquinoline•acetonitrile was prepared by leaving a solution containing diacid 2 $(3.0 \mathrm{mg}, 6.72 \mu \mathrm{~mol})$ and 6-methylquinoline $(1.6 \mathrm{mg}, 16.8 \mu \mathrm{~mol})$ in acetonitrile $(1 \mathrm{~mL})$ at room temperature. The crystal belongs to the triclinic system with the $P \overline{1}$ space group $(Z=2)$. Diacid 2 forms a $1: 1$ salt with 6-methylquinoline (Figure S2a). Two 1:1 salts related by an inversion center are gathered to form a 2:2 self-inclusion complex so as to include each other's phenol units in their concaves (Figure S2b); a couple of complementary $\mathrm{CH}-\pi$ interactions are observed between a tert-butyl group of one host and a benzene ring of the other and vice versa. Two adjacent self-inclusion complexes are connected through a couple of complementary hydrogen bonds between carboxy and carboxylato groups, thereby forming an infinite columnar structure along the b-axis (Figure S2c). The columnar structures are arranged along the c-axis to form a layer parallel to the $b-c$ plane; between adjacent columnar structures, a $\pi-\pi$ interaction and two hydrogen bonds are observed between each amine molecule in one column and a neighboring host molecule in the other column and vice versa. The layer piles up along the a-axis in such a way that amine molecules in the upper and lower layers are stacked alternately along the b-axis (Figure S 2 d); between adjacent layers, each amine molecule is connected to a neighboring host molecule through a $\mathrm{CH}-\pi$ interaction and a hydrogen bond. Between adjacent layers, there are disconnected spatial voids, each of which is filled with two acetonitrile molecules, thereby realizing tight packing; the crystal density is 1.248 $\mathrm{g} / \mathrm{cm}^{3}$.

b)

c)

d)

Figure S2. X-ray structure of 2•6-methylquinoline-acetonitrile: (a) a 1:1 salt between $\mathbf{2}$ and 6-methylquinoline, (b) a 2:2 selfinclusion complex, (c) a parallel cross-section to the $b-c$ plane, and (d) a parallel cross-section to the $a-c$ plane. In (c) and (d), a pair of 1:1 salts are color-corded. In (d), solvent molecules are colored orange and interactions from solvent molecules are omitted for clarity. Selected distances: a) $\mathrm{O} 1 \cdots \mathrm{H} 4(2.088 \AA), \mathrm{O} 2 \cdots \mathrm{H} 1(1.767 \AA), \mathrm{O} 2 \cdots \mathrm{H} 1 \mathrm{~A}(1.860 \AA), \mathrm{O} 3 \cdots \mathrm{H} 1 \mathrm{~A}(2.553 \AA)$, b) $\mathrm{C} 18 \cdots \mathrm{H} 20 \mathrm{~A}(2.886 \AA)$, c) O3 $\cdots \mathrm{H} 5 \mathrm{~A}(1.734 \AA), \mathrm{C} 13 \cdots \mathrm{C} 25(3.134 \AA), \mathrm{C} 14 \cdots \mathrm{C} 25(3.246 \AA), \mathrm{O} 6 \cdots \mathrm{H} 25(2.487 \AA), \mathrm{O} 6 \cdots \mathrm{H} 26$ $(2.628 \AA)$. d) $\mathrm{C} 4 \cdots \mathrm{H} 31(2.876 \AA), \mathrm{C} 5 \cdots \mathrm{H} 31(2.734 \AA), \mathrm{C} 6 \cdots \mathrm{H} 31(2.771 \AA), \mathrm{O} 3 \cdots \mathrm{H} 33(2.598 \AA)$.

Crystal structure of 2•(trans-4-methylcyclohexanamine) ${ }_{3}$

Single crystal 2•(trans-4-methylcyclohexaneamine) 3 was prepared by leaving a solution containing monoester $3(2.0 \mathrm{mg}, 4.48 \mu \mathrm{~mol})$ and trans-4-cyclohexanamine ($30.4 \mathrm{mg}, 0.269 \mathrm{mmol}$) in benzene (2 mL) at $30^{\circ} \mathrm{C}$. The crystal belongs to the triclinic system with the $P \overline{1}$ space group $(\mathrm{Z}=2)$. In the crystal, diacid $\mathbf{2}$ with a syn conformation forms a 1:3 salt with three amine molecules using the two carboxy groups and a hydroxy group (Figure S3a). One of the amine molecules connected with a carboxyl group (amine A) is embedded in the concave of the host molecule, while the other two amine molecules connected with another carboxy group (amine B) and a hydroxy group (amine C) are placed outside the cavity; the inclusion of amine A is stabilized by a hydrogen bond between its ammonio group and another hydroxy group and a $\mathrm{CH}-\pi$ interaction between its methylene hydrogen at the 2-position [6-position] and a benzene ring. Two 1:3 salts related by an inversion center are connected through two couples of complementary hydrogen bonds between the ammonio groups of amines A and B in one 1:3 salt and the two carboxylato groups in the other 1:3 salt and vice versa, thereby forming a 2:6 inclusion complex (Figure S3b); a couple of complementary hydrogen bonds are also observed between methylene hydrogens at the 6-position [2position] of amine A and carboxylato groups. Two adjacent 2:6 inclusion complexes are connected through a couple of complementary hydrogen bonds between the ammonio groups of amine B and the carboxylato groups paired with amine A, thereby forming an infinite columnar structure along the b-axis (Figures S3c and S4). The columnar structures are arranged along the a-axis to form a layer parallel to the $a-b$ plane. Each molecule of amine C tightly connects two adjacent columns through hydrogen bonds between its ammonio group and two carboxylato groups paired with amine A and amine B in different 2:6 complexes and $\mathrm{CH}-\pi$ interactions between its hydrogen atoms at the 2 - and 4 -positions and a benzene ring; between adjacent columns, $\mathrm{CH}-\mathrm{S}$ interactions are also observed between hydrogen atoms of amine A at the 5 position [3-position] and a sulfur atom. The layer piles up along the c-axis (Figure S3d). There are no spatial voids in the crystal.

Figure S3. X-ray structure of $\mathbf{2} \cdot(\text { trans-4-methylcyclohexanamine) })_{3}$: (a) a $1: 3$ salt between $\mathbf{2}$ and trans-4methylcyclohexanamine, (b) a 2:6 inclusion complex, (c) a parallel cross-section to the $a-b$ plane. and (d) a parallel crosssection to the $a-c$ plane. In (c) and (d), a pair of 1:3 salts are color-corded. Selected distances: a) O4 $\cdots \mathrm{H} 1$ ($1.595 \AA$), O5 $\cdots \mathrm{H} 1 \mathrm{~B}$ (1.838 $\AA), ~ \mathrm{O} 3 \cdots \mathrm{H} 2 \mathrm{~A}(1.819 \AA), \mathrm{O} 4 \cdots \mathrm{H} 3 \mathrm{C}(1.821 \AA), \mathrm{O} 1 \cdots \mathrm{H} 33 \mathrm{~B}(2.535 \AA), \mathrm{O} 1 \cdots \mathrm{H} 1 \mathrm{C}(2.040 \AA), \mathrm{C} 10 \cdots \mathrm{H} 26 \mathrm{~A}(2.690 \AA)$, $\mathrm{C} 14 \cdots \mathrm{H} 26 \mathrm{~A}(2.832 \AA), \mathrm{C} 15 \cdots \mathrm{H} 26 \mathrm{~A}(2.560 \AA)$, b) $\mathrm{O} 2 \cdots \mathrm{H} 1 \mathrm{~A}(1.836 \AA), \mathrm{O} 5 \cdots \mathrm{H} 2 \mathrm{~B}(1.927 \AA), \mathrm{O} 3 \cdots \mathrm{H} 27 \mathrm{~B}(2.692 \AA)$.

Figure S4. Expansion of Figure S3(c). Selected distances: O6 $\cdots \mathrm{H} 2(1.968 \AA), \mathrm{O} \cdots \mathrm{H} 3 \mathrm{~B}(1.946 \AA), \mathrm{O} 3 \cdots \mathrm{H} 3 \mathrm{~A}(1.864 \AA)$, $\mathrm{C} 1 \cdots \mathrm{H} 33 \mathrm{~A}(2.869 \AA), \mathrm{C} 6 \cdots \mathrm{H} 33 \mathrm{~A}(2.747 \AA), \mathrm{C} 3 \cdots \mathrm{H} 35 \mathrm{~A}(2.801 \AA), \mathrm{S} 1 \cdots \mathrm{H} 29 \mathrm{~A}(2.988 \AA), \mathrm{S} 1 \cdots \mathrm{H} 29 \mathrm{~B}(2.928 \AA)$.

Crystallographic data for inclusion crystals

Table S1. Crystallographic Data for the Inclusion Crystals of Diacid 2 with 3- and 4-Methylpyridine

	2-3-methylpyridine	2.4-methylpyridine-toluene ${ }_{0.5}$
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{NO}_{6} \mathrm{~S}$	$\mathrm{C}_{33.5} \mathrm{H}_{41} \mathrm{NO}_{6} \mathrm{~S}$
Formula weight	539.66	585.73
Crystal system	triclinic	monoclinic
Space group	$P \overline{1}$	$P 2{ }_{1} / c$
$a, b, c / \AA$	9.637(3), 9.748(4), 16.361(6)	19.389(4), 15.669(3), 10.438(2)
$\alpha, \beta, \gamma /{ }^{\circ}$	86.333(5), 75.287(5), 69.792(5)	90,101.635(3), 90
V / \AA^{3}	1394.6(9)	3106.2(10)
Z	2	4
F(000)	576	1252
T / K	100(2)	100(2)
$\rho_{\text {calc }} / \mathrm{gcm}^{-3}$	1.285	1.253
Reflections collected	8065	17673
Independent reflections	$6113\left[R_{\text {int }}=0.0453\right]$	$7075\left[R_{\text {int }}=0.0701\right]$
$\mu(\mathrm{Mo} \mathrm{K} \alpha) / \mathrm{mm}^{-1}$	0.160	0.149
Data / restraints / parameters	6113/4/359	7075 / 200 / 437
$R_{1}, w R_{2}(I>2 \sigma(I))$	0.0737, 0.1617	0.0577, 0.1063
$R_{1}, w R_{2}$ (all data)	0.1570, 0.2164	0.1222, 0.1321
Goodness-of-fit on F^{2}	1.010	1.010
Largest diff. peak and hole / $\mathrm{e} \cdot \AA^{3}$	0.420 and -0.396	0.421 and -0.369

Table S2. Crystallographic Data for the Inclusion Crystals of Diacid 2 with 2- and 6-Methylquinoline.

	2-2-methylquinoline-toluene 0.5	2•6-methylquinoline toluene	2•6-methylquinoline-acetonitrile
Empirical formula	$\mathrm{C}_{75} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}_{2}$	$\mathrm{C}_{41} \mathrm{H}_{47} \mathrm{NO}_{6} \mathrm{~S}$	$\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$
Formula weight	1271.57	681.85	630.77
Crystal system	triclinic	triclinic	triclinic
Space group	$P \overline{1}$	$P \overline{1}$	$P \overline{1}$
$a, b, c / \AA$	19.965(3), 13.086(3), 23.497(5)	$\begin{aligned} & \text { 11.4571(16), 12.8125(18), } \\ & 14.789(2) \end{aligned}$	9.589(3), 12.356(3), 15.066(4)
$\alpha, \beta, \gamma /{ }^{\circ}$	$\begin{aligned} & 92.721(3), 93.698(3), \\ & 110.195(3) \end{aligned}$	$\begin{aligned} & 72.1642(17), 67.7107(16), \\ & 71.2796(17) \end{aligned}$	104.914(4), 101.789(4), 92.677(4)
V / \AA^{3}	3435.9(12)	1859.8(4)	1679.2(8)
Z	2	2	2
F(000)	1356	728	672
T / K	100(2)	100(2)	100(2)
$\rho_{\text {calc }} / \mathrm{gcm}^{-3}$	1.229	1.218	1.248
Reflections collected	19775	10683	9667
Independent reflections	$15022\left[R_{\text {int }}=0.0186\right]$	$8094\left[R_{\text {int }}=0.0160\right]$	$7324\left[R_{\text {int }}=0.0282\right]$
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) / mm^{-1}	0.140	0.134	0.144
Data / restraints / parameters	15022 / 219 / 933	8094 / 262 / 500	7324 / 4 / 423
$R_{1}, w R_{2}(I>2 \sigma(I))$	0.0637, 0.1524	0.0410, 0.1042	0.0569, 0.1282
$R_{1}, w R_{2}$ (all data)	0.0900, 0.1717	0.0486, 0.1104	0.0908, 0.1491
Goodness-of-fit on F^{2}	1.030	1.029	1.019
Largest diff. peak and hole / e \AA^{3}	1.369 and -0.481	0.326 and -0.343	0.575 and -0.558

Table S3. Crystallographic Data for the Inclusion Crystals of Diacid 2 and Monoester 3 with 4Methylcyclohexanamine

	$\mathbf{2} \cdot\left(\right.$ trans -4-methylcyclohexanamine) ${ }_{3}$	3-trans-4-methylcyclohexanamine
Empirical formula	$\mathrm{C}_{45} \mathrm{H}_{75} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$	$\mathrm{C}_{68} \mathrm{H}_{102} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}_{2}$
Formula weight	786.14	1203.62
Crystal system	triclinic	triclinic
Space group	$P \overline{1}$	$P \overline{1}$
$a, b, c / \AA$	10.1308(15), 14.411(2), 16.965(2)	12.3387(19), 15.126(2), 18.749(3)
$\alpha, \beta, \gamma /{ }^{\circ}$	109.550(2), 90.174(2), 96.343(2)	$\begin{aligned} & \text { 100.1088(19), 103.8252(19), } \\ & 90.740(2) \end{aligned}$
V / \AA^{3}	2317.8(6)	3339.7(9)
Z	2	2
$\mathrm{F}(000)$	860	1304
T / K	100(2)	100(2)
$\rho_{\text {calc }} / \mathrm{gcm}^{-3}$	1.126	1.197
Reflections collected	26689	19329
Independent reflections	10461 [$R_{\text {int }}=0.0304$]	$14615\left[R_{\text {int }}=0.0189\right]$
$\mu(\mathrm{Mo} \mathrm{K} \alpha) / \mathrm{mm}^{-1}$	0.117	0.140
Data / restraints / parameters	10461/613 / 716	14615 / 73 / 820
$R_{1}, w R_{2}(I>2 \sigma(I))$	0.0502, 0.1254	0.0639, 0.1792
$R_{1}, w R_{2}$ (all data)	0.0738, 0.1420	0.0878, 0.1992
Goodness-of-fit on F^{2}	1.026	1.309
Largest diff. peak and hole / e $\cdot \AA^{3}$	0.390 and -0.429	1.169 and -0.487

Thermal ellipsoid plots of inclusion crystals

Figure S5. ORTEP drawing of 2•3-methylpyridine with 50\% probability ellipsoids (CCDC 2059346).

Figure S6. ORTEP drawing of 2•4-methylpyridine toluene 0.5 with 50% probability ellipsoids (CCDC 2059348).

Figure S7. ORTEP drawing of 2•2-methylquinoline•toluene 0.5 with 50% probability ellipsoids (CCDC 2059345).

Figure S8. ORTEP drawing of 2•6-methylquinoline•toluene with 50% probability ellipsoids (CCDC 2059350).

Figure S9. ORTEP drawing of 2•6-methylquinoline•acetonitrile with 50% probability ellipsoids (CCDC 2059349).

Figure S10. ORTEP drawing of 2•(trans-4-methylcyclohexanamine) ${ }_{3}$ with 50% probability ellipsoids (CCDC 2059347).

Figure S11. ORTEP drawing of 3-trans-4-methylcyclohexanamine with 50% probability ellipsoids (CCDC 2059351).

