Supplementary information

Achieving highly efficient carbon dioxide electrolysis by in-situ construction of heterostructure

Xiaoxia Yang^a, Wang Sun^{*}, Minjian Ma^a, Chunming Xu^a, Rongzheng Ren^a, Jinshuo Qiao^a, Zhenhua Wang^a, Zesheng Li^b, Shuying Zhen^c and Kening Sun^{*}

a Beijing Institute of Technology, Beijing Key Laboratory for Chemical Power Source and Green Catalysis, Beijing, 100081, People's Republic of China.

b Beijing Institute of Technology, Key Laboratory of Cluster Science of Ministry of Education,100081, People's Republic of China.

c University of Science and Technology Beijing, State Key Laboratory for Advanced Metals and Materials, Beijing 100081, People's Republic of China

*Corresponding author: <u>sunwang@bit.edu.cn</u> (Wang Sun), <u>bitkeningsun@163.com</u> (Kening Sun)

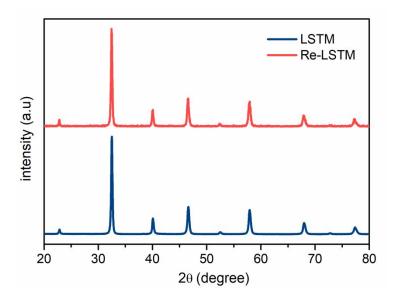


Figure S1. X-ray diffraction patterns of $(La_{0.2}Sr_{0.8})_{0.9}Ti_{0.6}Mn_{0.4}$ (LSTM) calcined at 800 °C for 5 h and after the reduction treatment at 800 °C in 10%H₂/Ar for 5 h.

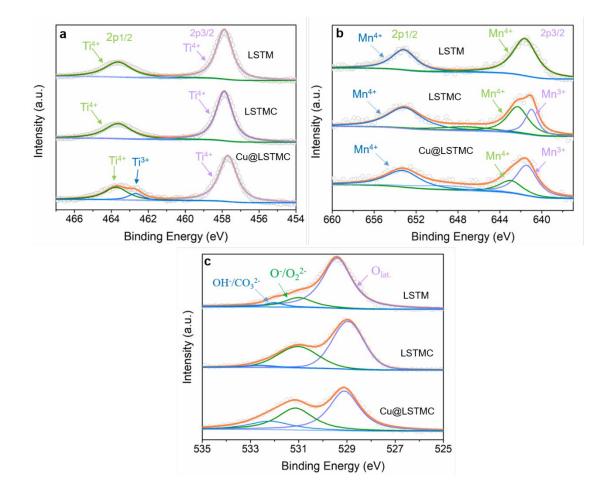
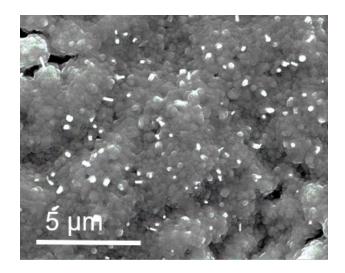
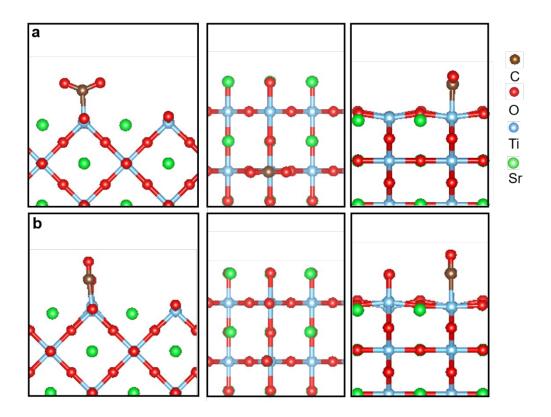
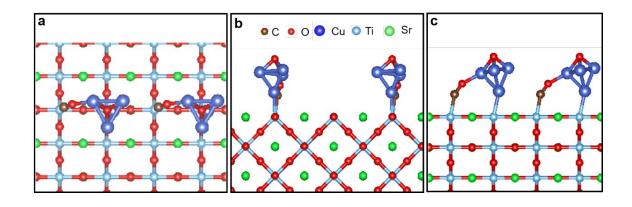
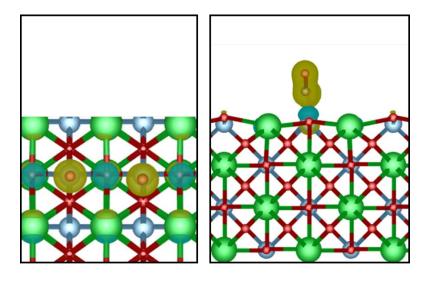


Figure S2. XPS spectra of LSTM, LSTMC and Cu@LSTMC powders (a) Ti 2p, (b) Mn 2p, (c) O

1s.


Figure S3. SEM image of LSTMC after reduction treatment at 800 °C in 10%H₂/Ar for 5 h.

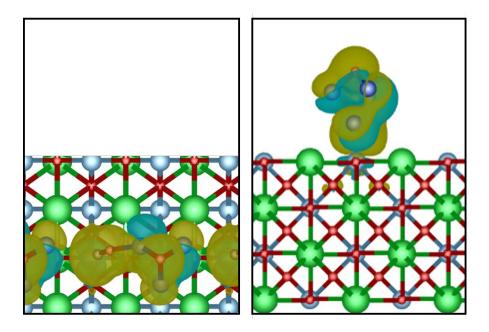
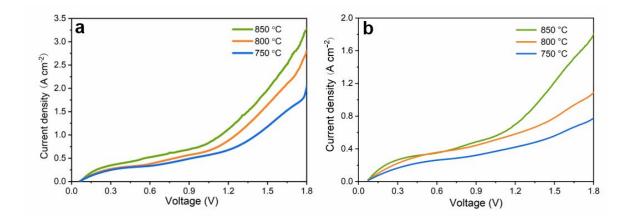
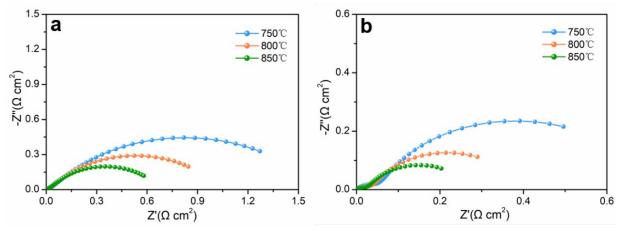
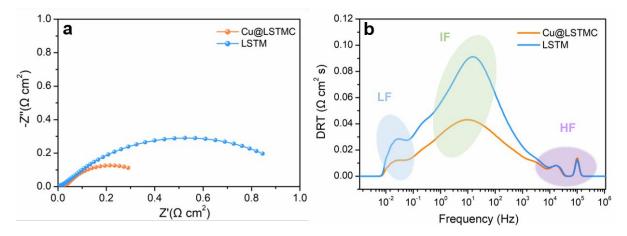

Figure S4. Optimized the different perspectives of clean STO system surface, (a) Surface after CO_2 adsorption. (b) structures of the CO_2RR to CO process including amplified CO^* intermediates. the left panels show front views, the middle panels show top views while right panels give side views.

Figure S5. DFT calculation results. Optimized geometry structures of the CO₂RR to CO process including amplified CO* intermediates on Cu@STO interfaces. (a) top views. (b) front views. (c) side views.

Figure S6. Charge density difference iso-surfaces of CO* and O* on STO surface. The isosurfaces in yellow and blue represent charge repulsion and accumulation, respectively.

Figure S7. Charge density difference iso-surfaces of CO* and O* on Cu@STO surface. The isosurfaces in yellow and blue represent charge repulsion and accumulation, respectively.

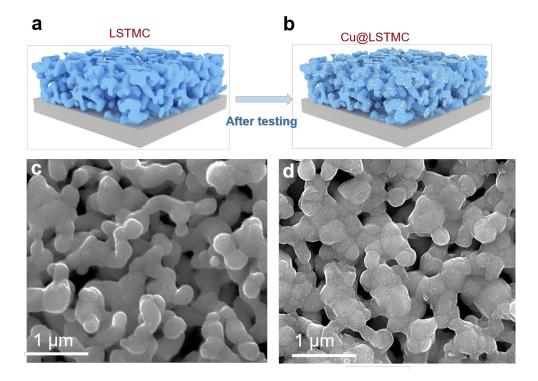

Figure S8. AC impedance of the symmetric cells for (a) LSTM. (b) Cu@LSTMC at different temperature.

Figure S9. AC impedance of the symmetric cells for (a) LSTM. (b) Cu@LSTMC at different temperature.

Figure S10. (a) The corresponding electrochemical impedance spectra measured under OCV conditions at 800 °C. (b) The DRT plots of the single cell.

Figure S11. (a, b) schematic diagram of the in-situ exsolution process. (c, d) SEM images of cathode surface before and after long-term electrolysis test.

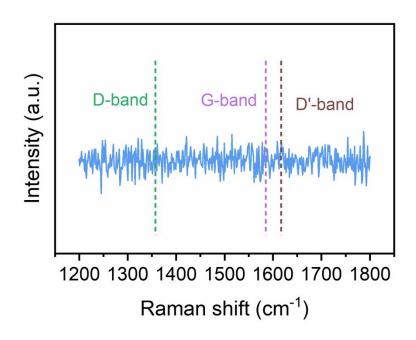


Figure S12. The corresponding Raman spectra for the Cu@LSTMC electrode after stability

test.

Table S1. XPS analysis of O 1s.

samples	B.E. O <i>ls</i> (eV)		_ O _{lat} (at.%)	O _{ads} (at.%)
	O _{lat}	O _{ads}	- lat (lat)	ads
LSTM	529.4	531/532	19.8	81.2
LSTMC	529.1	531.1/532.2	38.7	61.3
Cu@LSTMC	528.95	531/532.6	48.9	51.1

	$CO_2(g)$	CO ₂ *	CO*+O*	CO(g)+*
STO	0	1.38	1.56	0.17
Cu@STO	0	0.82	1.1	0.17

Table S2. Free energy (eV) path of CO2 reduction.

	STO	Cu@STO
Energy of intact slab (eV)	-542.33	-550.12
Energy of slab with oxygen vacancy (eV)	-531.33	-539.25
Energy of oxygen atom (eV)	7.45	7.45
Oxygen vacancy formation energy (eV)	3.55	3.42

Table S3. The formation energies of oxygen vacancy for different models.

The oxygen vacancy formation energy was defined as

 $\Delta E_{vac} = E_{slab with vacancy} + E_{oxygen atom} - E_{slab}$

where $E_{slab with vacancy}$, $E_{oxygen atom}$, and E_{slab} are the electronic energy of the slab model with oxygen vacancy, the oxygen atom referenced to (H₂O – H₂), and the intact slab, respectively. Under this definition, a lower value of oxygen vacancy formation energy indicates an easy formation of oxygen vacancy. In this work, the calculated oxygen vacancy formation energies of STO and Cu@STO are 3.55 eV and 3.42 eV, respectively. The lower oxygen vacancy formation energy of Cu@STO suggests that Cu cluster may induce an easier formation of oxygen vacancy.

	CO ₂		СО	
-	v_2	ν_1	V ₃	ν
Gas phase	645	1300	2334	2089
Adsorbed on STO	701	1166	1570	1951
Adsorbed on Cu@STO	671	1188	1416	1597

Table S4. Calculated vibrational frequencies (in cm⁻¹) of bending (v₂), symmetric stretching (v₁), and asymmetric stretching (v₃) modes of CO₂, and calculated vibrational stretching frequency (in cm⁻¹) of CO (v) in gas phase and adsorbed phases.