Supporting Information for

Flowing-air Induced Transformation to Promote the Dispersion of CrO_x Catalyst for Propane Dehydrogenation

Zhewei Zhang $^{1,\dagger// \perp}$, Dedong He $^{1,\ddagger// \perp}$, Zijun Huang $^{\dagger// \perp}$, Sufang He $^{\$// \perp}$, Jichang Lu $^{\ast,\dagger// \perp}$, Yongming Luo $^{\ast,\dagger// \perp}$

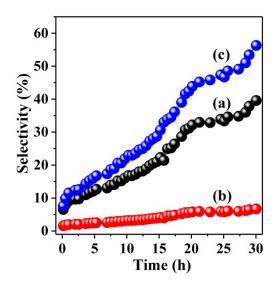
[†] Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China;

[‡] Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China;

§ Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, P. R. China;

["] Kunming University of Science and Technology Innovation Team of the Ministry of
 Volatile Organic Compound Pollution Prevention and Resource Reuse, Kunming
 650500, P. R. China;

[⊥] Key Laboratory of Odor Volatile Organic Compounds Control in Universities of
 Yunnan Province, Kunming 650500, P. R. China;


¹ These authors contributed equally to this work

* Corresponding author

Tel: +86-871-65103845

Fax: +86-871-65103845

E-mail: environcatalysis@kust.edu.cn

Figure S1. Time on-stream selectivity of methane (a) ethane(b) and ethylene(c) over Cr/MCM-TC catalysts.

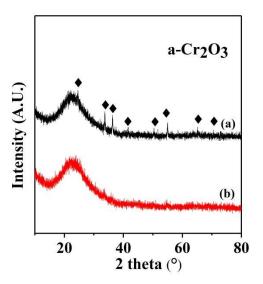


Figure S2. XRD patterns: (a) 5Cr/MCM-TC, (b) 5Cr/MCM-FC

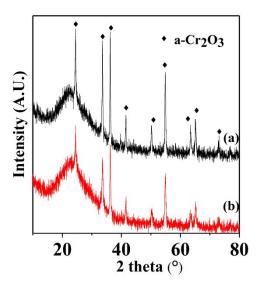


Figure. S3. XRD powder patterns of (a) 20Cr/MCM41-TC and (b) 20Cr/MCM41-FC.

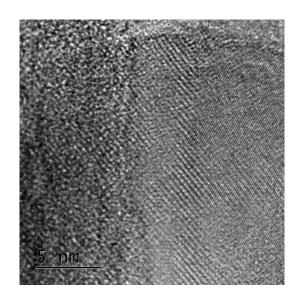


Figure. S4. HRTEM of Cr/MCM-FC.

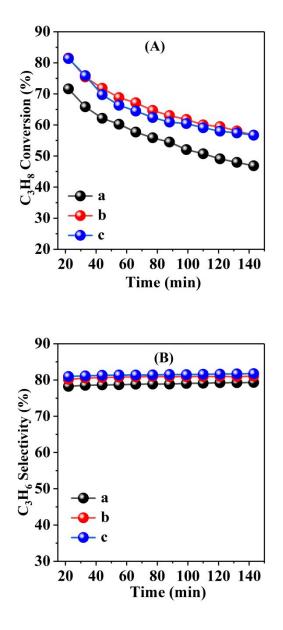
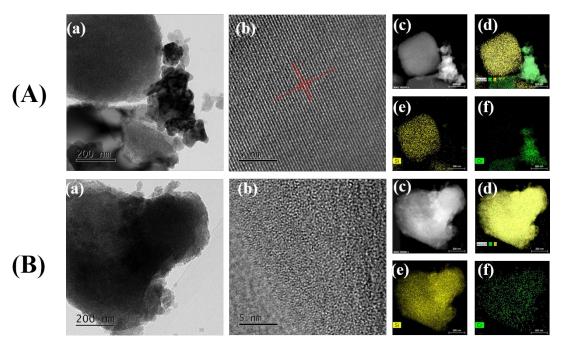
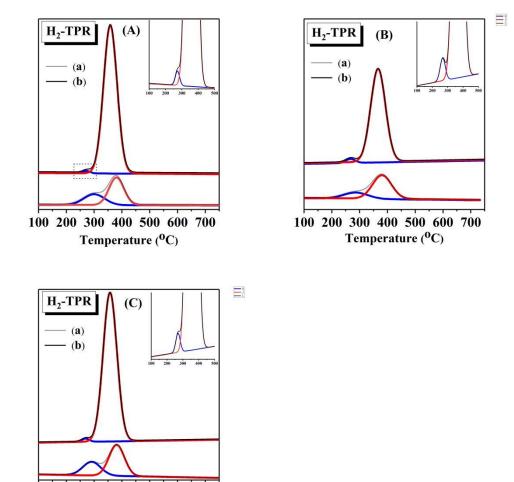




Figure S5. Time on-stream for propane conversion (A) and selectivity (B). (a) 5ml/min, (b) 15ml/min, (c) 30ml/min.

Figure S6. (a) TEM, (b) HRTEM and (c, d, e, f) EDS elemental mapping images of (H₈CrN₂O₄) Cr/MCM-TC (A) and (H₈CrN₂O₄) Cr/MCM-FC (B).

100 200 300 400 500 600 700 Temperature (⁰C)

Figure S7. H₂-TPR profiles of (H₈CrN₂O₄) Cr/MCM catalysts (A) , (CrO4²⁻) Cr/SBA catalysts (B) and (H₈CrN₂O₄) Cr/SBA catalysts (C) with two roasting methods: (a) Cr/X-TC, (b) Cr/X-FC.

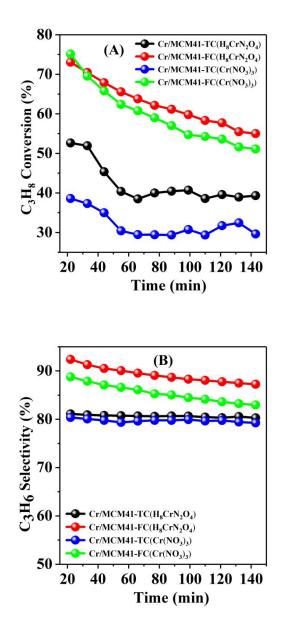


Figure S8. Time on-stream for propane conversion (A) and selectivity (B) over Cr/MCM catalysts with different precursors.

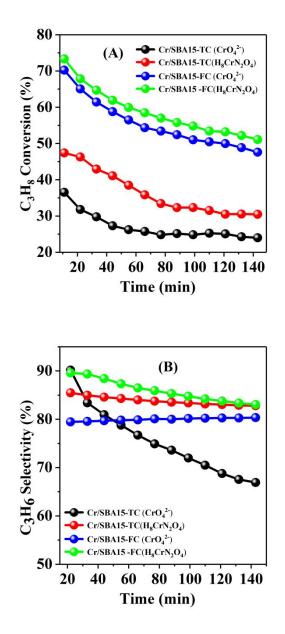
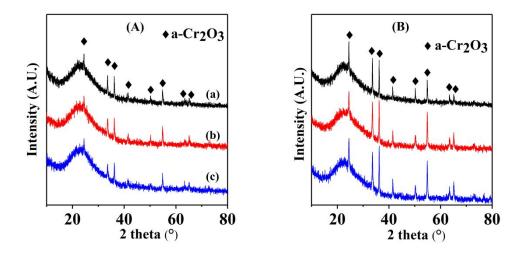
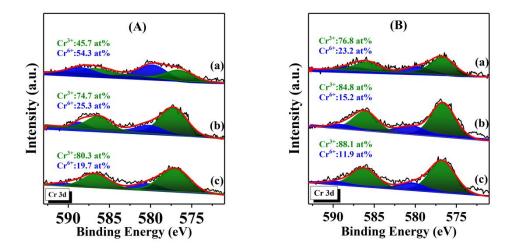




Figure S9. Time on-stream for propane conversion (A) and selectivity (B) over Cr/SBA catalysts with different precursors.

Figure S10 XRD powder patterns of spent Cr/MCM41-FC (A) and Cr/MCM41-TC (B). (a) Fresh samples, (b) reacted for 3h, (c) reacted for 30h.

Figure S11 XPS spectra of Cr 2p for spent Cr/MCM41-FC (A) and Cr/MCM41-TC (B). (a) Fresh samples, (b) reacted for 3h, (c) reacted for 30h.

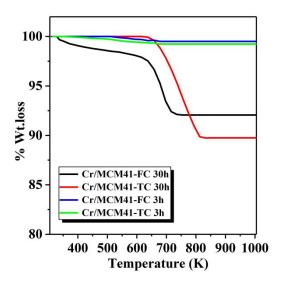


Figure S12 TG of different spent Cr/MCM-41 catalysts. %Wt. loss represent the weight-normalized mass loss.

Table S1 Content of Cr elements in Cr/MCM catalysts prepared by two calcination

 methods

Catalysts	The content of Cr elements (%).
(CrO ₄ ²⁻)Cr/MCM41-FC	7.74
(CrO ₄ ²⁻)Cr/MCM41-TC	8.04

	shell	CN	R(Å)	σ2	ΔE_0	R factor
	Cr-01	4.9±0.3	2.26±0.01	0.0020		0.0025
Cr/MCM-TC	Cr-O2	4.0±0.6	3.18±0.01	0.0030	6.7	0.0035
	Cr-O1	2.7±0.6	1.70 ± 0.01	0.0024	7.0	0.0104
Cr/MCM-FC	Cr-O2	4.2±0.6	2.01±0.03	0.0034	7.8	0.0124

Table S2 Parameters obtained from EXAFS analysis for the Cr/MCM catalystswith two roasting methods.

	Reaction	Conve	Conversion (%)		Selectivity(%)	
Catalysts	temp(°C)	t ₀	t _{2.5}	t ₀	t _{2.5}	
(CrO ₄ ²⁻)Cr/MC M41-TC	600	30	16	78	73	
(CrO4 ²⁻)Cr/MC M41-FC	600	87.7	55	81.1	83	
(H ₈ CrN ₂ O ₄)Cr/ MCM41-TC	600	52.6	39	81	80	
(H ₈ CrN ₂ O ₄)Cr/ MCM41-FC	600	73	55	92	87	
(Cr(NO ₃) ₃)Cr/M CM41-TC	600	38.5	29	80	79	
(Cr(NO ₃) ₃)Cr/M CM41-FC	600	75	51	88	82	
(CrO ₄ ²⁻)Cr/SBA 15-TC	600	36	24	83	66	
(CrO ₄ ²⁻)Cr/SBA 15-FC	600	70	47	79	80	
(H ₈ CrN ₂ O ₄)Cr/ SBA15-TC	600	47	30	85	82	

Table S3 Catalytic performance of all catalysts covered in the paper. (t_0 and $t_{2.5}$ are the initial reaction and reaction 2.5h, respectively, GHSV=4200, $C_3H_8=5$, $N_2=30$)

$(H_8CrN_2O_4)Cr/$	600	73	51	89	83
SBA15-FC	000	15	51	07	05

Catalysts	The H ₂ Consumption of monomeric Cr(VI) (mmol/g)
(CrO ₄ ²⁻)Cr/MCM41-TC	0.2
(CrO ₄ ²⁻)Cr/MCM41-FC	1.21
(H ₈ CrN ₂ O ₄)Cr/MCM41-TC	0.39
(H ₈ CrN ₂ O ₄)Cr/MCM41-FC	1.83
(CrO ₄ ²⁻)Cr/SBA15-TC	0.36
(CrO ₄ ²⁻)Cr/SBA15-FC	1.57
(H ₈ CrN ₂ O ₄)Cr/ SBA15-TC	0.42
(H ₈ CrN ₂ O ₄)Cr/ SBA15-FC	1.91

Table S4 Quantitative data of $\rm H_2$ consumption for all samples.