Supporting Information

Chiral Phosphoric Acid-Catalyzed Pictet-Spengler Reactions for Synthesis of 5',11'-Dihydrospiro[indoline-3,6'-indolo[3,2-c] quinolin]-2-ones Containing Quaternary Stereocenters
Xin-Wei Wang, Xiang Li, Mu-Wang Chen, Bo Wu, and Yong-Gui Zhou*
Zhang Dayu School of Chemistry, Dalian University of Technology
Dalian 116024, China; State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
Email: ygzhou@dicp.ac.cn

Table of Contents

1. Determination of the Absolute Configuration...S2-4
2. Copy of NMR and HPLC...S5-94

1. Determination of the Absolute Configuration

To determine the absolute configuration of 11'-benzyl-1-(4-methylbenzyl)-2-oxospiro[indoline-3,6'-indolo[3,2-c]quinoline]-5'(11'H)-carbaldehyde (-)-(5): firstly, (-)-(5) was upgraded to 99% ee by recrystallization from dichloromethane/hexanes, then dissolved in dichloromethane, hexanes was added slowly at room temperature, the solvent diffused slowly, the single crystal was obtained after five day. The absolute configuration of (-)-(5) was assigned as (R) based on the X-ray diffraction analysis. The CCDC number is 2041080. The absolute configurations of (+)-(3aa) is assigned as (R), the other chiral products were assigned by analogy. These details can be obtained free of charge via www.ccdc.com.ac.uk/data_request/cif from the Cambridge Crystallographic Data Centre.

Figure S1. X-ray crystallographic analysis of (R)-(-)-5

Thermal Ellipsoid Plot for (R)-(-)-5 (30\% probability level)

Crystal Data and Structure Refinement for cu_d8v20643_0m for (R)-(-)-5

Identification code	cu_d8v20643_0m
Empirical formula	C38 H29 N3 O2
Formula weight	559.64
Temperature	293(2) K
Wavelength	1.54178 A
Crystal system	Monoclinic
Space group	P 21
Unit cell dimensions	$a=10.3091(4) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=25.0692(9) \AA \quad \beta=90.214(2)^{\circ}$.
	$\mathrm{c}=11.2553(4) \AA \quad \gamma=90^{\circ}$.
Volume	2908.81(19) \AA^{3}
Z	4
Density (calculated)	$1.278 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.627 \mathrm{~mm}^{-1}$
F(000)	1176
Crystal size	$0.180 \times 0.140 \times 0.100 \mathrm{~mm}^{3}$
Theta range for data collection	3.526 to 65.492°.
Index ranges	$-12<=\mathrm{h}<=12,-29<=\mathrm{k}<=29,-12<=\mathrm{l}<=13$
Reflections collected	57056
Independent reflections	$9886[\mathrm{R}(\mathrm{int})=0.0732]$
Completeness to theta $=67.679^{\circ}$	94.7 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7533 and 0.5726
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	9886 / 1 / 779
Goodness-of-fit on F^{2}	1.051
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0770, \mathrm{wR} 2=0.1800$
R indices (all data)	$\mathrm{R} 1=0.0791, \mathrm{wR} 2=0.1853$
Absolute structure parameter	0.13(13)
Extinction coefficient	0.0140(16)
Largest diff. peak and hole	0.594 and -0.241 e. \AA^{-3}

2. Copy of NMR and HPLC

1H NMR XW-10-39 in CDCl3

13C XW-10-39 in CDCl3

$\mathrm{Bn} \mathrm{NH}_{2}$
1c
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1
30	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10


```
6
\(\cdots\)
```

1H NMR XW-10-31 in CDCl3

1d
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

13C NMR XW-10-31 in CDCl3

 6018 ع

1H NMR XW-10-95 in CDCl3

13C NMR XW-10-95 in CDCl3

$1 e^{B}$
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1H NMR XW-10-96 in CDCL3

 $\stackrel{\star}{\stackrel{\infty}{\infty}}$

13C NMR XW-10-96 in CDCL3

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

30	180	170	160	150	140	130	120	110	$\begin{array}{r} 100 \\ f 1 \end{array}$		80	70	60	50	40	30	20	10	0

		$\begin{aligned} & \infty \\ & \stackrel{\oplus}{\circ} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{-}{\infty}$
N－N゙N	Nriocosor	1	？

1H NMR XW－10－41 in CDCl3

ৰু

13C NMR XW-10-41 in CDCl3

1 g
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6979 \&-
2LLLZー

1H NMR XW-11-64 in CDCl 3


``` ~~~~~~~~
```

13C NMR XW-11-64 in CDCl3

Bn NH
$\mathbf{1 h}$
${ }^{3} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1H NMR XW-10-47 in CDCl3

$1 i$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{8}{\stackrel{\circ}{\circ}}$

13C NMR XW-10-47 in CDCI3

1 i
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 rrrrrrrrruco

\section*{| ∞ |
| :--- |
| ∞ |
| ∞ |
| ∞ |}

\pm
$\underset{C}{0}$
$\stackrel{1}{\mathrm{~N}}$
$\stackrel{1}{1}$
1H NMR XW-10-42A in CDCl3

$2 i$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

13C NMR XW-10-42A in CDCl3

2i
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ю 0 ○

1H NMR XW-10-45A in CDCl3

$\stackrel{\oplus}{\text { j }}$
$\stackrel{m}{\stackrel{m}{c}}$

13C NMR XW-10-45A in CDCl3

$2 j$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)


```
Mrrrrrmrrmarmogocosog0000
```

0 02と'て

1) 1
1H NMR XW-9-61 in CDCl3


```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{¢}} & \multirow[t]{2}{*}{\(\stackrel{0}{\circ} \stackrel{8}{\square}\)} \\
\hline & & \\
\hline
\end{tabular}

13C NMR XW-9-61 in CDCl3
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& \text { ON } \\
& \underset{\sim}{M} \\
& \underset{i}{M}
\end{aligned}
\]}} & \multirow[t]{3}{*}{ NัウNNN N \(\stackrel{\leftarrow}{1} \stackrel{\sim}{1} \div\)} & \multirow[t]{3}{*}{} & & \multirow[t]{3}{*}{\[
\begin{aligned}
& \infty \underset{\sim}{\infty} \underset{\sim}{\sigma} \\
& \underset{\sim}{N} \underset{\sim}{N} \underset{\sim}{N}
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 190 & & & & & & & & & & & & & 60 & & & & & \\
\hline 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

```

mvNMNNNN

```

H NMR XW-10-10A in CDCl3

```

~~

```


\(-176.5\)

13C NMR XW-10-10A in CDCl 3



3ba \(\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\) \({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & , & 1 & , & 1 & , & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
\hline 30 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}


H NMR XW-10-15A in CDCl3



\begin{tabular}{|c|c|}
\hline ® & \(\bigcirc\) \\
\hline \(\stackrel{6}{6}\) & \% \\
\hline
\end{tabular}
13C NMR XW-10-15A in CDCl3



Bn
3 ab
\({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\section*{ \\ ద~ \\ Mr-rrrrrrrreoogecoo}

1H NMR XW-5-64 in CDCl3


```

< ~
M

```

13C NMR XW-5-64 in CDCl3


\({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & & & & & \\
\hline 30 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \[
\begin{array}{r}
100 \\
\text { f1 }
\end{array}
\] & & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}

\section*{ \\  \\ Mrrrrrrrrrococococosin in is \\  \(\stackrel{\text { N }}{\stackrel{\infty}{\infty}} \underset{\substack{\infty \\ \hline \\ \hline}}{ }\)}

1H NMR XW-10-16C in CDCl3



\section*{ \\ }

1H NMR XW-10-16D in CDCl 3


 \(\stackrel{N}{1}\)

13C NMR XW-10-16D in CDCI3



3ae R = 1-Naphtylmethyl
\({ }^{13} \mathrm{C}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & 10 & & & & \\
\hline 30 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \[
\begin{array}{r}
100 \\
f 1
\end{array}
\] & & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}

\section*{ \\ ナ 寸 v \\ }

H NMR XW-10-16E in CDCl3


 1

\footnotetext{
 0 \(\stackrel{m}{\stackrel{m}{\square}}\)
}

13C NMR XW-10-16E in CDCl 3



Bn
3af
\({ }^{3} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




```

~

```

1H NMR XW-10-30B in CDCl3



\(\stackrel{\infty}{\sim} \stackrel{L}{\sim}\) \(\stackrel{\infty}{\infty}\) \(\stackrel{m}{\stackrel{m}{\sigma}}\)

13C NMR XW-10-16E in CDCl3



3ag \(\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\) \({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 1 & 1 & , & , & , & 1 & 1 & 1 & , & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
\hline 30 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}
```

লু

```




1H NMR XW-10-38B in CDCl3



13C NMR XW-10-38B in CDCl3



3ah \(\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\) \({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





1H NMR XW-10-43B in CDCl3





13C NMR XW-10-43B in CDCl3



3ai \(\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\) \({ }^{13} \mathrm{C}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\section*{

}

1H NMR XW-10-48B in CDCl3





\section*{ ォ}

1H NMR XW-10-44A in CDCl3



13C NMR XW-10-44A in CDCl 3



3ca \(\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\) \({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & , & 1 & 1 & 1 & 1 & 1 & 1 & 1 & T \\
\hline 30 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \[
\begin{array}{r}
100 \\
\text { f1 }
\end{array}
\] & & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}


1H NMR XW-10-37B in CDCl3



13 C NMR XW-10-37B in CDCl 3


3da \(=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\) \({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & 10 & & & & \\
\hline 30 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \[
\begin{array}{r}
100 \\
f 1
\end{array}
\] & & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}


1H NMR XW－10－97A in CDCl3


3ea \(\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\)
\({ }^{1} \mathrm{H}\) NMR（ \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ）



13C NMR XW-10-97A in CDCl3



3ea \(\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\) \({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10 & & & & & & & & & & & & & & & & & & \\
\hline 30 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \[
\begin{array}{r}
100 \\
\mathrm{f} 1
\end{array}
\] & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

\section*{
}

1H NMR XW-10-97B in CDCl3



13C NMR XW-10-97B in CDCl3



3fa \(\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\)
\({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 30 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline & & & & & & & & & & & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}




1H NMR XW－10－44B in CDCl3

 \(\stackrel{\sim}{\sim}\)
-

13C NMR XW-10-44B in CDCl3



3gaR = 4-MeC \(6_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\)
\({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\section*{ \\ 
}

1H NMR XW-10-55A in CDCI3


ヘ


13C NMR XW-10-55A in CDCl3


\(\stackrel{+}{\sim}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & 10 & & & & \\
\hline 30 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \[
\begin{array}{r}
100 \\
f 1
\end{array}
\] & & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}


\section*{.4048
.3029 O C
N
N}

1H NMR XW-10-55B in CDCl3



3dh R = 4-MeC \(\mathrm{H}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\)
\({ }^{1} \mathrm{H}\) NMR ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

13C NMR XW-10-55B in CDCl 3



3dh \(\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\) \({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
~~N



1H NMR XW-11-65 in CDCL3



\section*{13C NMR XW-11-65 in CDCL3}




\section*{
}

1H NMR XW-10-50 in CDCl3


13C NMR XW-10-50 in CDCl3



Bn
3ia \(\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\)
\({ }^{13} \mathrm{C}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



\section*{ \\  \\  \\ \(\underset{\sim}{\mathrm{N}} \stackrel{\mathrm{N}}{\mathrm{N}}\)}

1H NMR XW-10-60A in CDCI3

```

へ

```


13C NMR XW-10-60A in CDCI3

Sid


Bn
3 ig \(\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\)
\({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\begin{tabular}{|c|c|c|}
\hline 8. & N & \(\omega\) \\
\hline \(\stackrel{\infty}{\square}\) & \(\stackrel{\sim}{+}\) & \(\stackrel{\text { N}}{ }\) \\
\hline
\end{tabular}





\section*{ \\  \\  \\  N ल ~ No?}

1H NMR XW-10-60B in CDCI3


13C NMR XW-10-60B in CDCI3
\(\stackrel{\infty}{\infty}\)



3ih \(\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\) \({ }^{13} \mathrm{C}\) NMR ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & & & & & \\
\hline 30 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \[
\begin{array}{r}
100 \\
\text { f1 }
\end{array}
\] & & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}


\(-2.4621\)

1H NMR XW-10-36 in CDCl3

\begin{tabular}{|c|c|c|}
\hline \(\stackrel{\sim}{0}\) & \multirow[t]{3}{*}{\(\stackrel{\infty}{\infty}\)} &  \\
\hline \(\stackrel{\text { ® }}{\text { N }}\) & & \(\stackrel{\sim}{\sim}\) \\
\hline , & & T \\
\hline
\end{tabular}


13C NMR XW-10-36 in CDCl3


\(5 \mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\) \({ }^{13} \mathrm{C}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & 10 & & & & \\
\hline 30 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \[
\begin{array}{r}
100 \\
f 1
\end{array}
\] & & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}

\[
\begin{aligned}
& \text { N }
\end{aligned}
\]
ナササオサ ぶぶ心


1H NMR XW－10－92 in CDCL3

 \(\stackrel{\sim}{\sim}\)
\({ }^{\circ}{ }^{\infty}\) \(\stackrel{\circ}{\circ}\)
\(\stackrel{\stackrel{\rightharpoonup}{\sim}}{\stackrel{1}{\sim}}\)

13C NMR XW-10-92 in CDCL3


\(6 \mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\) \({ }^{13} \mathrm{C}\) NMR \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 1 & 1 & 1 & 1 & 1 & , & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
\hline 30 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}

Data File C:\CHEM32\1\DATA\ZHOU-20\YZNO15553.D
Sample Name: xw-9-61 rac
```

Acc. Operator
Injection Datm: Instrument 1
lol
NAc. Method
|ast chanced : % %/31/2020 10:54:200 PM
Mnalvsis Method, (modified after loading)
Sample Info : :(modified after loading)

```


Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash D A T A \backslash Z H O U-20 \backslash Y Z N 016062 . D\)
Sample Name: XIT-10-6
Act. Operator
Acq. Instrument
cq. Instrument : Instrument

Acq. Method
Last changed
: 9/14/2020 9:51:04 PM
(modified after loadi





Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash D A T A \backslash Z H O U-20 \backslash Y Z N 016108 . D\)
Sample Name: xTl-10-10A RAC
```

Acc. Operator :
Injection Date : 9/17/2020 9:29:49 PM
Mcq. Method : C:\CHEM32\1\METHODS\DEF
Last changed : % (m/7/2020 9:09:34 PM
nalvsis Method:(::\CHEM32\1\METHODS\DEFFLLC.M
Last changed : 12/18/2020 11:32:22 PM
Sample Info: : (modified after loading)

```


*** End of Report ***
ata File C:\CHEM32\1\DATA\ZHOU-20\YZNO16181.D
ample Name: XIT-10-10A cat
Acq. Operator
Acq. Instrument
Cn.


Last changed : \(\begin{gathered}9 / 22 / 2020 \\ \text { (inodified after loadin }\end{gathered}\)

Last changed : \(\begin{gathered}12 / 18 / 2020 \quad 11: 34: 26 \mathrm{PM} \\ \text { (inodified after } 10 \text { adin }\end{gathered}\)
Sample Info : AD-H, Hexane \(/ 1-\) - Proh \(=70 / 30,0.7 \mathrm{~mL} / \mathrm{min}, 30\) (midif, 254 nm


*** End of Report ***

Data File C:\CHEM32\1\DATA\ZHOU-20\YZNO16206.D
Sample Name: xTl-10-15A RAC
\begin{tabular}{|c|c|c|c|}
\hline Acc. Instrument & Instrument 1 & Location : & - \\
\hline Injection Date & 9/24/2020 2:55:20 AM & & \\
\hline Acq. Method & C: \CHEM32\1\METHODS\DEF_LC.M & & \\
\hline Last chanced & 9/24/2020 2:49:03 AM (modified after loading) & & \\
\hline alvsis Method & C: \CHEM32\1\METHODS\DEF_LC.m & & \\
\hline Last changed & 12/19/2020 2:10:40 AM & & \\
\hline Sample Info & (IA, Hexane/i-Proh \(=70 / 30\), & 30 & \\
\hline
\end{tabular}


*** End of Report ***

Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash\) DATA \(\backslash H O U-20 \backslash Y Z N 016208 . D\)
Sample Name: \(\mathrm{XTH}-10-15 \mathrm{~A}\) CAT


\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{} \\
\hline Sorted By & : & Siomal & & & \\
\hline Multiplier: & & : & 1.0000 & & \\
\hline Dilution: & & : & 1.0000 & & \\
\hline Use Multiplier \& D & ilution & Factor with & ISTDs & & \\
\hline \multicolumn{6}{|l|}{Signal 1: VID 1 A , Wavelength=254 nm} \\
\hline \[
\begin{aligned}
& \text { Peak RetTime Type } \\
& \# \quad\lceil\min \rceil
\end{aligned}
\] & Width \(\lceil\min 1\) & \[
{ }_{\text {maU }}^{\text {Area }}{ }_{\pi_{3}}
\] & \[
\begin{gathered}
\text { Height } \\
\lceil\mathrm{mAU} \\
\hline
\end{gathered}
\] & \[
\stackrel{\text { Area }}{\frac{1}{6}}
\] & \ \\
\hline 19.575 EB & 0.2694 & 3514.23120 & 192.79233 & 93.7468 & \\
\hline 212.369 BE & 0.3471 & 234.41046 & 10.24154 & 6.2532 & \\
\hline Totals : & & 3748.64166 & 203.03387 & & (+)-3ab \\
\hline
\end{tabular}
*** End of Report ***

Data File C:\CHEM32\1\DATA\ZHOU-20\YZN016209.D
Sample Name: XIT-10-15B RAC
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Acq. Operator \\
\&cof Instrument
\end{tabular} & Instrument 1 & Location : & - \\
\hline Injection Date & 9/24/2020 3:53:50 AM & & \\
\hline Acq. Method & C: \CHEM32\1\METHODS\DEF_LC.M & & \\
\hline Last changed & 9/24/2020 3:44:18 AM (modified after loading) & & \\
\hline Analvsis Method & C: \CHEM32\1\METHODS\DEF_LC.M & & \\
\hline Last changed & 12/19/2020 1:56:55 AM & & \\
\hline sample Info & IA, Hexane/i-Proh \(=70 / 30\), & min, 30 & 4 \\
\hline
\end{tabular}

\(=========================================\)


Sigmal 1: VID 1 A , Wavelength \(=254 \mathrm{ni}\)

Totals
\(6943.14307 \quad 274.32222\)
*** End of Report ***

Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash\) DATA \(\backslash\) ZHOU-20\YzNO16236.D
Sample Name: XT-10-15B CAT
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Acq. Operator \\
Acq. Instrument
\end{tabular} & Instrument & Location : & \\
\hline Injection Date & 9/25/2020 10:16:49 am & & \\
\hline Acq. Method & C: \CHEM32\1\METHODS\DEF_LC.M & & \\
\hline Last changed & 9/25/2020 10:15:24 AM (modified after loading) & & \\
\hline Analvsis Method & C: \CHEM32\1\METHODS\DEF_LC.M & & \\
\hline Last changed & 12/19/2020 1:55:58 AM (modified after loading) & & \\
\hline Info & IA, & & \\
\hline
\end{tabular}


\begin{tabular}{lccc} 
Sorted By & \(:\) & Siomal & \\
Multipliier: & \(\vdots\) & 1.0000 \\
Dilution: & & 1.0000 \\
Use Multiplier \& Dilution & Factor with & ISTDS
\end{tabular}
ignal 1: YWD 1 A , Wavelength \(=254 \mathrm{~nm}\)
\[
\begin{array}{lll}
\text { Totals : } & 5388.76559 & 239.00863
\end{array}
\]

(+)-3ac

Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash D A T A \backslash Z H O U-20 \backslash Y Z N 016212 . D\)
Sample Name: XTI-10-16C RAC





Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash\) DATA \(\backslash\) ZHOU-20\YzN016245.D
Sample Name: XT-10-16C CAT
```

Acq. Operator (% Instrument
cq. Instrument : Instrument 1 Location :

```

```

: 9/26/2020 9:31:31 AM
(Inodified after loading)

```

```

Sample Info : (Indified after loading)

```


Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash D A T A \backslash Z H O U-20 \backslash Y Z N 016213 . D\)
Sample Name: XIT-10-16D RAC
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Ac \(G\). Operator \\
Acq. Instrument
\end{tabular} & Instrument 1 & Location : & - \\
\hline Injection Date & 9/24/2020 7:45:39 MM & & \\
\hline Acq. Method & C: \CHEM32\1\METHODS\DEF_LC.M & & \\
\hline Last changed & 9/24/2020 7:13:34 AM (modified after loading) & & \\
\hline alvsis Method & C: \CHEM32\1\METHODS\DEF_LC.m & & \\
\hline Last changed & 12/19/2020 2:02:45 AM modified after loadin & & \\
\hline Sample Info & \(\mathrm{IA}_{\text {I }}\) Hexane \(/ \mathbf{i}-\mathrm{PrOH}=70 / 30\), & , 30 & \\
\hline
\end{tabular}



*** End of Report ***

Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash\) DATA \(\backslash\) ZHOU-20\YzN016246.D
Sample Name: XT-10-16D CAT
\(===========\)
Ac.
Acc. Operator
Instrume
Acc. Operator
Acq. Instrument
Anstrument
\(\begin{array}{ll}\text { In iection Date } & 9 / 26 / 20209: 59: 26 \mathrm{MM} \\ \text { ACq. Method } \\ \text { AC } \\ \text { C: } 1 \text { CHEM3 M }\end{array}\)

nalvsis Method : (Modified after loading)

Sample Info : : indifified after loanane \(/ \mathrm{i}-\mathrm{PrOH}=70 / 30,0.7 \mathrm{~mL} / \mathrm{min}, 30 \mathrm{OC}, 254 \mathrm{~nm}\)


** End of Report ***

Data File C: \CHEM32\1\DATA \(\backslash\) ZHOU-20\YZNO16215.D
Sample Name: XIT-10-16E RAC
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Acq. Operator \\
\&cof Instrument
\end{tabular} & Instrument 1 & Location : & - \\
\hline Injection Date & 9/24/2020 8:35:25 AM & & \\
\hline Acq. Method & C: \CHEM32\1\METHOD S\DEF_LC.M & & \\
\hline Last changed & 9/24/2020 8:34:23 AM (modified after loading) & & \\
\hline Analvsis Method & C: \CHEM32\1\METHODS\DEF_LC.M & & \\
\hline Last changed & 12/21/2020 11:16:04 PM & & \\
\hline Sample Info & IA, Hexane/i-Proh \(=70\) & & 4 \\
\hline
\end{tabular}



*** End of Report ***
ata File C:\CHEM32\1\DATA\ZHOU-20\YZN016247.D
ample Name: XIT-10-16E CAT
Acc. Operator
Acq. Instrument
Injection Date
Instrument
:
\(9 / 26 / 2020\)
Location :

Last changed : \(9 / 26 / 2020\) 10:21:52 MM
Analysis Method: (indified after loading)




*** End of Report ***

Data File C: \CHEM32\1\DATA \(\backslash \mathrm{ZHOU}-20 \backslash\) YZNO16353.D
Sample Name: XTV-10-30B
```

Acg. Operator
cq. Instrument : Instrument
Injection Date : 10/15/2020 2:52:26 MM
NAc. Method
last chanced
Lnalvsis Method
Sample Info: : (modified after loading)

```



*** End of Report ***

Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash\) DATA \(\backslash\) ZHOU-20\YzN016367.D
Sample Name: XTV-10-30B CAT
\(===========\)
Acq. Operator
Acq. Instrume
niection Date : \(10 / 15 / 2020\) 11:08:21 PM
cq. Method \(:{ }^{\text {C }: \ C H E M 32 \backslash 1 \backslash M E T H O D S \backslash D E F}\) LC
last changed \(\quad\) : \(10 / 15 / 2020\) 11:07:03 PM
(inodified after loading)

Sample Info : (nodified after loading) IA, Hexane \(/ \mathrm{i}-\mathrm{PrOH}=70 / 30,0.7 \mathrm{~mL} / \mathrm{min}, 30 \circ \mathrm{C}, 254 \mathrm{ni}\)

*** End of Report ***

Data File C: \CHEM32\1\DATA\ZHOU-20\YZNO16414.D
Sample Name: xT1-10-38B RAC
\(===========\)
Acq. Operator
Acq. Instrum
\(\begin{array}{lll}\text { Acq. Instrument } & \text { Instrument } 1 & \text { Location : }\end{array}\)

Acc. Method
Last chanced
tast chanced : 10/18/2020 7:51:41 AM
nalvsis Method ( (modified after loading)

Sample Info : : imodified after loading) \(\quad\) Hexane \(/ \mathrm{i}-\mathrm{PrOH}=60 / 40,0.6 \mathrm{~mL} / \mathrm{min}, 30 \mathrm{C}, 254 \mathrm{~nm}\)


Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash\) DATA \(\backslash\) ZHOU-20\YzN016455.D
Sample Name: XTV-10-38B CAT
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Acq. Operator \\
Acq. Instrument
\end{tabular} & Instrument 1 & Location : & - \\
\hline Injection Date & 10/22/2020 4:33:00 AM & & \\
\hline Acq. Method & C: \CHEM32\1\METHODS\DEF_LC.M & & \\
\hline Last changed & 10/22/2020 4:29:17 AM (modified after loading) & & \\
\hline Analvsis Method & C: \CHEM32\1\METHODS\DEF_LC.M & & \\
\hline Last changed & 12/19/2020 2:20:02 AM (modified after loading) & & \\
\hline le Info & IA, Hexane/ & & \\
\hline
\end{tabular}


\({ }^{* * *}\) End of Report ***

Sample Name: XIT-10-43B RAC




Data File C:\CHEM \(32 \backslash 1 \backslash\) DATA \(\backslash Z H O U-20 \backslash Y z N 016518 . D\)
Sample Name: XXT-10-43B cat
Acq. Operator
Acq. Instrume
acq. Instrument : Instrument
\(\begin{array}{lll}\text { Iniection Date } & 10 / 28 / 2020 & 2: 42: 26 \mathrm{AM} \\ \text { An }\end{array}\)
Ccq. Method : C: \(\backslash\) CHE M \(32 \backslash 1 \backslash\) METHODS \(\backslash D E F-L C\)
Last chanced : \({ }_{\text {(H0dified after loading }}^{10 / 28 / 2020} \mathbf{2 : 4 1 : 1 2 \mathrm { AM }}\)

last changed : 12/19/2020 2:25:00 AM


*** End of Report \(* * *\)

Data File C: \CHEM32\1\DATA\ZHOU-20\YZN016571.D
Sample Name: xTI-10-48B RAC
```

Acc. Operator :
In iection Date : 11/1/2020 3:51:57 AM
Acq. Me thod : C:\CHEM32
\METHODS\DEF
wast changed : :
nalvsis Method:(C:\CHEM32\1\METHODS\DEFFLLC.
Last changed : 12/19/2020 2:30:21 AM
Sample Info : :(modified after loading)

```


Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash\) DATA \(\backslash\) ZHOU-20\YzN016594.D
Sample Name: XXT-10-48B cat
\(===========\)
Ac.
Ac.
Acc. Operator \(\begin{aligned} & \text { Acq. Instrument } \\ & \text { : } \\ & \text { Instrument }\end{aligned}\)

Ccq. Method : C:\CHEM32\1\METHODS\DEF LC
: 11/3/2020 4:30:55 AM

ast changed : 12/19/2020 \(2: 27: 52\) AM
Sample Info : (modified after loading)



Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash D A T A \backslash Z H O U-20 \backslash Y Z N 016511 . D\)
Sample Name: XIT-10-44A rac
```

Acq. Operator :
Injection Date : 10/27/2020 8:52:00 AM
Acq. Method : C:\CHEM32\1\METHOD S\DEF
Last chanced : 10/27/2020 8:09:50 AM
(Modified after loading)
Analvsis Method: (:\CHEM32\1\METHOD S\DEFLLC
Sample Info : : Imodified Hexane/i-ProH = % %o/40, 0.6 mL/min, 30 OC, 254 nm

```



\footnotetext{
Totals
\(4256.78906 \quad 131.21944\)
}
\(\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\)
(+/-)-3ca
*** End of Report ***

Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash\) DATA \(\backslash H\) HOU-20\YzN016524.D

\(===========\)
Acq. Operator
Acq. Instrume
Acq. Instrument : Instrument

acq. Method : C:\CHEM3 \(2 \backslash 1 \backslash\) METHODS \(\backslash\) DEF_LC





*** End of Report ***

Data File C: \CHEM32\1\DATA \(\backslash \mathrm{ZHOU}-20 \backslash \mathrm{YZNO} 16407 . \mathrm{D}\)
Sample Name: xT1-10-37B RAC
Acc. Operator
Acq. Instrument : Instrument \(1 \quad\) Location :
\(\begin{array}{ll}\text { In iection Date } & \text { : } 10 / 18 / 2020 \\ \text { Acq. Method } & \text { C: } 14: 57 \mathrm{AM} \\ \text { CHE M32 }\end{array}\)
Acc. Method
Last chanced
Last changed : \(\begin{gathered}10 / 18 / 20204: 14001 \text { AM } \\ \text { (modified after } 10 \text { Adin }\end{gathered}\)

Inodified after loadin


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Sorted By \\
Multiplier: \\
Dilution: \\
Use Multiplier \&
\end{tabular} & ilution & \[
\begin{gathered}
\text { Siomal } \\
\vdots \\
\text { Factor with }
\end{gathered}
\] & \[
\begin{aligned}
& 1.0000 \\
& \text { 1.0000 } \\
& \text { h ISTDs }
\end{aligned}
\] & & &  \\
\hline Sigmal 1: VID 1 A, & Wavelen & the 254 nm & & & & 0 \\
\hline \[
\begin{aligned}
& \text { Peak RetTime Type } \\
& \text { \# 「min] }
\end{aligned}
\] & Width「min1 & \[
\text { mad }_{\text {Area }}^{\pi_{3}}
\] & \[
\begin{gathered}
\text { Height } \\
\Gamma \mathrm{mAU}
\end{gathered}
\] & Area & &  \\
\hline \(\begin{array}{ll}1 \\ \frac{1}{2} & 14.257 \mathrm{~EB} \\ 16.994 \mathrm{BE}\end{array}\) & 0.3954
0.4751 & 1870.82324
1865.72571 & 71.52449
59.73225 & 50.0682
49.9318 & & Bn \\
\hline Totals : & & 3736.54895 & 131.25674 & & & \[
\begin{aligned}
\mathrm{R}= & 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \\
& (+/-)-3 \mathrm{da}
\end{aligned}
\] \\
\hline
\end{tabular}
*** End of Report ***

Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash\) DATA \(\backslash\) ZHOU-20\YzN016453.D
Sample Name: XTV-10-37E CAT
\(===========\)
Acc.
Acc. Operator
Instrumer
Acc. Operator
Acq.
Instrument
\(:\)
Instrument
\(\begin{array}{lll}\text { Injection Date } & \text { 10/22/2020 3:40:34 AM } \\ \text { anc Method }\end{array}\)
acq. Method : C:\CHEM3 \(2 \backslash 1 \backslash\) METHODS \(\backslash\) DEF_LC
last chanced : \(\underset{(\text { modified }}{10 / 22 / 2020} 3: 38: 44 \mathrm{AM}\)

last changed : 12/19/2020 2:54:45 MM
Sample Info : (modified after loading)

\section*{ \\  \\ (+)-3da}
*** End of Report ***

Data File C: \CHEM32\1\DATA \(\backslash \mathrm{ZHOU}-21 \backslash \mathrm{YZNO} 17245 . \mathrm{D}\)
Sample Name: XTI-10-97A RAC
Acc. Operator
Acq.
Acq. Instrument : Instrument



Analvsis Method
Last changed
\(:\)
Sample Info : : IC, Hexane \(/ 1-\mathrm{Pr} 0 \mathrm{H}=70 / 30,0.7 \mathrm{~mL} / \mathrm{min}, 30 \circ \mathrm{C}, 254 \mathrm{~nm}\)


*** End of Report ***

Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash\) DATA \(\backslash\) ZHOU-21\YZNO17258.D
Sample Name: XTV-10-97A CAT
```

Acc. Operator :
Mnjection Date : 1/7/20219:27:49 AM
Last chanqed : 1/7/2021 9:27:00 AM
(modified after loading)

```

```

last changed : 1/11/2021 4:33:47 AM
Sample Info : : IC,Hexified after loading)

```


** End of Report ***

Data File C: \CHEM32\1\DATA\ZHOU-21\YZNO17237.D
Sample Name: XTI-10-97B RAC
Acc. Operator
cq. Instrument : Instrument
\(\begin{array}{ll}\text { Iniection Date } \\ \text { Acq. Method } & 1 / 6 / 20218: 28: 28 \mathrm{AM} \\ \text { : }: \backslash \text { CHEM } 32 \backslash 1 \text { METHOD }\end{array}\)



Sample Info : (imodified after loading)


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sorted By & : & Sicmal & & & \multicolumn{2}{|l|}{\multirow[t]{9}{*}{}} \\
\hline Multiplier: & & : & 1.0000 & & & \\
\hline Dilution: & & & 1.0000 & & & \\
\hline Use Multiplier \& D & ilution & Factor with & ISTDs & & & \\
\hline Signal 1: VITD 1 A , & Taveleng & h=254 nim & & & & \\
\hline \(\underset{\#}{\text { Peak }} \underset{\lceil\text { min }]}{\text { RetTime }}\) & Width & \[
\operatorname{maU}_{\text {Area }_{3}}^{\text {Are }}
\] & \[
\begin{gathered}
\text { Height } \\
\text { fmaU }
\end{gathered}
\] & \[
\stackrel{\text { Area }}{\tilde{y}}
\] & & \\
\hline 1 \begin{tabular}{ll}
12.475 \\
\hline 1
\end{tabular} & 0.3252 & 3060.90967 & 143.11720 & & & \\
\hline 2 14.086 B8 & 0.3672 & 3071.75439 & & 50.0884 & & \\
\hline Totals : & & 6132.66406 & 270.51826 & & & \\
\hline
\end{tabular}
*** End of Report ***

Data File C: \CHEM32\1\DATA\ZHOU-21\YZN017260.
ample Name: XIT-10-97B CAT
Acc. Operator
Acq. Instrume
Acq. Instrument : Instrument 1
Acq. Method : 1/7/2021 10:06:07 AM
Last changed
: \(1 / 7 / 2021 \quad 10: 05: 29\) AM

Last changed : 1/11/2021 4:41:48 AM
Sample Info : (modified after loading) \(\mathrm{IA}, \mathrm{Hexane} / \mathrm{i}-\mathrm{ProH}=70 / 30,0.7 \mathrm{~mL} / \mathrm{min}, 30 \circ \mathrm{C}, 254 \mathrm{nil}\)


*** End of Report ***

Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash D A T A \backslash Z H O U-20 \backslash Y Z N O 16513 . D\)
Sample Name: XIT-10-44B rac



== ===============
(+/-)-3ga
*** End of Report ***
ata File C:\CHEM32\1\DATA\ZHOU-20\YZNO16535.D
Sample Name: XIT-10-44B cat
```

Acq. Operator (: Instrument 1 Location: -
M,
Last chanced : : 10/29/2020 7:20:38 MM
Analvsis Method: (MOdified after loading)
Nalvsis Method:C:\CHEM32\1\METHODS\DE
Sample Info : (modified after loading)

```


*** End of Report ***

Data File C: \CHEM32\1\DATA \(\backslash \mathrm{ZHOU}-20 \backslash\) YZNO16614.D
Sample Name: XTV-10-55A rac
```

cq. Operator (% \mstrument
Mnjection Date : 11/5/2020 9:42:14 MM
last chanqed : 11/5/2020 9:40:55 AM
(Modified after loading)

```

```

Sample Info: : IM, Hexified after loading)

```

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{} \\
\hline Sorted By & : & Siomal & & & & \\
\hline Multiplier: & & : & 1.0000 & & & \\
\hline \multicolumn{7}{|l|}{Dilution: : 1.0000} \\
\hline \multicolumn{7}{|l|}{Use Multiplier \& Dilution Factor with Istds} \\
\hline \multicolumn{7}{|l|}{Signal 1: VID 1 A , Wavelength=254 nim} \\
\hline \begin{tabular}{l}
Peak RetTime Type \\
\# 「min1
\end{tabular} & Width \(\lceil\min 7\) & \[
{ }_{\text {mAU }}^{\text {Area }}
\] & \[
\begin{gathered}
\text { Height } \\
\stackrel{\text { fiAU }}{ }
\end{gathered}
\] & \[
\stackrel{\text { Area }}{\stackrel{1}{2}}
\] & & \(\checkmark\) \\
\hline \(1{ }^{13.436 ~ B E ~}\) & 0.4610 & 2806.00610 & 91.53064 & & & \\
\hline \({ }_{2} 19.196 \mathrm{BB}\) & 0.5718 & 2738.93701 & 72.97864 & 49.3952 & & Bn \\
\hline Totals : & & 5544.94312 & 164.50928 & & & \(\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\) \\
\hline & & & & & & (+/-)-3dg \\
\hline
\end{tabular}
*** End of Report ***

Data File C: \CHEM32\1\DATA\ZHOU-20\YZNO16644.
ample Name: \(\times \mathrm{XT}-10-55 \mathrm{~A}\) cat
\begin{tabular}{|c|c|c|c|}
\hline \({ }_{\text {Acq. }}^{\text {Acq. }}\) Instrumert & Instrument 1 & Location : & - \\
\hline Iniection Date & 11/10/2020 3:34:38 AM & & \\
\hline Acq. Method & C: \CHEM32\1\\METHODS\DEF_LC.M & & \\
\hline Last chanced & 11/10/2020 3:28:54 AM modified after loading) & & \\
\hline Analvsis Method & C:\CHEM32\1\METHODS\DEF_LC.m & & \\
\hline Last changed & \[
\begin{aligned}
& \text { 12/19/2020 } 3: 05: 10 \mathrm{AM} \\
& \text { (modified after loading) }
\end{aligned}
\] & & \\
\hline Sample Info & IA, Hexane \(/ \mathrm{i}-\mathrm{PrOH}=60 / 40\), 0. & /min, 30 oc & 254 \\
\hline
\end{tabular}


*** End of Report ***

Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash D A T A \backslash Z H O U-20 \backslash Y Z N 016622 . D\)
Sample Name: XTV-10-55B rac
```

Acq. Operator :
Injection Date : 11/6/2020 2:49:22 MM
Acq. Method : C:\CHEM32
MIETHOD S\DEF
Last changed : }\begin{array}{l}{11/6/2020 2:42:23 MM}
{\mathrm{ (modified after loading}}
{\mathrm{ (M)}}
nalvsis Method: C:\CHEM32\1\METHOD S\DEF)LC.
ast changed : 12/19/2020 3:07:49 MM
Sample Info : : Imodified Hexane/i-ProH = % %o/40, 0.6 mL/min, 30 OC, 254 nm

```


Fila C: \(\backslash\) CHEM \(32 \backslash 1 \backslash\) DATA \(\backslash Z H O U-20 \backslash Y Z N O 16645\).
ample Name: \(\mathrm{XT}-10-55 \mathrm{~B}\) cat
```

Acq. Operator : Instrument 1 Location : -
Injection Date : 11/1072020 4:08:53 AM
Acq. Method : C:\CHEM32\1\METHODS\DEF
Last chanced : : (modified after loading)
Mnalvsis Method: (MOdified after loading)
Last changed : 12/19/2020 3:07:04 AM
Sample Info : (IA,Hified after loading)

```



Data File C: \CHEM32\1\DATA \(\backslash Z H O U-21 \backslash\) YZNO1 \(7738 . D\)
Sample Name: XIT-11-65 RA
```

cq. Operator : Intrument 1 Location: -
Iniection Date : 3/19/2021 6:58:58 MM
Mcq. Me thod (: C:\CHEM32\1\METHODS\DEF
Last changed : 3/19/2021 5:56:51 AM
nalvsis Method:(\#\#\CHEM32\1\METHODS\DEF_LC.M
last changed : 3/20/2021 4:55:26 MM

```



Fila C: CHEM \(^{2} 2 \backslash 1 \backslash\) DATA \(\backslash Z H O U-21 \backslash Y Z N O 17747 . D\)
ample Name: XIT-11-65 CAT
\begin{tabular}{|c|c|c|c|}
\hline Acq. \({ }_{\text {Acq. }}^{\text {Aperator }}\) Instrument & Instrument 1 & Location : & - \\
\hline Injection Date & 3/20/2021 4:33:15 MM & & \\
\hline Acq. Method & C: \CHEM32\1\METHODS\DEF_LC.M & & \\
\hline Last changed & 3/20/2021 3:56:21 AM (modified after loading) & & \\
\hline Analvsis Method & C: \CHEM32\1\METHODS\DEF_LC.M & & \\
\hline Last changed & 3/20/2021 4:59:22 AM (modified after loading) & & \\
\hline & IA, Hexane & & \\
\hline
\end{tabular}


*** End of Report ***

Data File C:\CHFM32\1\DATA\ZHOU-20\YZNO16605.D
Sample Name: XIT-10-50 rac
\begin{tabular}{|c|c|c|c|}
\hline Acc. Instrument & Instrument 1 & Location & - \\
\hline Injection Date & 11/4/2020 10:05:49 AM & & \\
\hline Acq. Method & С: \CHEM32\1\\METHODS\DEF_LC.M & & \\
\hline Last chanced & 11/4/2020 10:05:23 AM (modified after loading) & & \\
\hline alvsis Method & C: \CHEM32\1\\METHODS\DEF_LC.M & & \\
\hline Last changed & 12/19/2020 3:13:34 AM (modified after loading) & & \\
\hline ple Info & IA, Hexane/i-PrOH \(=70 / 30\), & /min, 30 оc, & , 254n \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Area Percent Report} \\
\hline Sorted By & : & Siomal & & & \\
\hline Multiplier: & & & 1.0000 & & \\
\hline Dilution: & & : & 1.0000 & & \\
\hline Use Multiplier \& & ilution & Factor with & ISTDs & & \\
\hline \multicolumn{6}{|l|}{Signal 1: VWD 1 A , Wavelength=254 nim} \\
\hline \[
\begin{aligned}
& \text { Peak RetTime Type } \\
& \# \underset{\lceil\min \rceil}{ }
\end{aligned}
\] & \begin{tabular}{l}
Width \\
\(\lceil\min 7\)
\end{tabular} & \[
\operatorname{maU}^{\text {Area }}
\] & \[
\begin{gathered}
\text { Height } \\
\Gamma \mathrm{mAU} \\
\hline
\end{gathered}
\] & \[
\stackrel{\text { Area }}{\vdots}
\] & \\
\hline -1-------|--- & & 994.99695 & & & \\
\hline \({ }_{2}^{1} \quad 18.185 \mathrm{~EB}\) & 0.4776 & 988.07788 & 31.66379 & 49.8255 & Bn \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Totals :}} & 1983.07483 & & & \(\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}\) \\
\hline & & 1983.07483 & 73.96762 & & (+/-)-3ia \\
\hline
\end{tabular}
*** End of Report ***

Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash\) DATA \(\backslash\) ZHOU-20\YzN016603.D
Sample Name: XTV-10-50 cat
\begin{tabular}{|c|c|c|c|}
\hline \({ }_{\text {Accle }}^{\text {Act. }}\) Operator & Instrument 1 & Location : & \\
\hline Injection Date & 11/4/2020 9:29:57 MM & & \\
\hline Acq. Method & C: \CHEM32\1\METHODS SDEF_LC.M \(^{\text {L }}\) & & \\
\hline Last chanced & 11/4/2020 9:28:52 AM (modified after loading) & & \\
\hline Analvsis Method & C: \CHEM32\1\\METHODS SDEF_LC.M \(^{\text {L }}\) & & \\
\hline Last changed & 12/19/2020 3:12:33 AM (modified after loading) & & \\
\hline mple Info & IA, Hexane \(/ \mathrm{i}-\mathrm{PrOH}=70 / 30\), & /min, 30 oc & , 254 \\
\hline
\end{tabular}


\({ }^{* * *}\) End of Report ***

Data File C:\CHEM32\1\DATA\ZHOU-20\YZNO16700.D
Sample Name: XIT-10-60A RAC
```

Acg. Operator :
Injection Date : 11/13/2020 8:54:26 AM
Iniection Date
Lcq. Method
{
Malvsis Method:(MOdified after loading)
Last changed : 12/19/2020 3:16:30 AMM
Sample Info : :Imodified after loading)

```


*** End of Report ***

Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash\) DATA \(\backslash\) ZHOU-20\YzN016718.D
Sample Name: \(\mathrm{XIT}-10-60 \mathrm{~A}\) cat
\begin{tabular}{|c|c|c|c|}
\hline Acg. Operator & & & \\
\hline Injection Date & Instrument & Location & \\
\hline Acq. Method & C: \CHEM32\1\\METHODS\DEF_LC.M & & \\
\hline Last changed & 11/16/2020 9:45:01 PM (modified after loading) & & \\
\hline Analvsis Method & C: \CHEM32\1\METHODS\DEF_LC.M & & \\
\hline Last changed & 12/19/2020 3:18:00 AM (modified after loading) & & \\
\hline I & IA, Hexane/i-ProH \(=60 / 40\), & in, & \\
\hline
\end{tabular}


*** End of Report \(* * *\)

Data File C:\CHFM32\1\DATA\ZHOU-20\YZNO16684.D
Sample Name: XIT-10-60B RAC
Acc. Operator
 Injection Date
Acq. Method
Acc. Method
Last chanced
C:\CHEM \(32 \backslash 1 \backslash\) METHOD S\DEF
\(:\)
\((11 / 12 / 2020\)
(Iudified after \(10: 26: 27 \mathrm{pH}\)
loading)
: 12/19/2020 3:21:21 AM




*** End of Report ***

Data File C: \CHEM32\1\DATA \(\backslash \mathrm{ZHOU}-20 \backslash\) YZNO16450.D
Sample Name: XTV-10-36 RA
```

Ac. Operator
cq. Instrument : Instrument
Mnjection Date : 10/22/2020 1:46:01 AMM
Last chanced
*

-
\HEM32\1\METHODS\DEF
Sample Info : : (modified after loading)

```


*** End of Report ***

Data File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash\) DATA \(\backslash H\) HOU-20\YzN016398.D
Sample Name: XTV-10-36
Acq. Operator
\(\begin{array}{ll} \\ \text { niection Date } & \text { Instrument } \\ \text { I } & 11: 17 / 24: 58 \mathrm{pM}\end{array}\)

Last changed


Sample Info : : inodified after loxane \(/ \mathrm{i}-\mathrm{PrOH}=60 / 40,0.6 \mathrm{~mL} / \mathrm{min}, 300 \mathrm{C}, 230 \mathrm{~nm}\)


\({ }^{* * *}\) End of Report ***

Data File C: \CHEM32\1\DATA \(\backslash \mathrm{ZHOU}-20 \backslash\) YZNO1 \(7208 . D\)
Sample Name: XIT-10-92 RA
```

cq. Operator : Intrument 1 Location:
Injection Date : 1/3/2021 7:35:49 AM
Acq. Method : :
CHEM32\1\METHODS\DEF IC
last chanqed : 1/3/2021 7:34:12 AM
(modified after loading)
Nnav>3is Method : C:\CHEM32\1\METHOD S\DEF
Last changed : 1/11/2021 4:32:18 MM
Sample Info : : (mD-H,Hf, Hexame/i-ProH = 90/10, 0.8 mL/min, 30 oc, 254 m

```


屃
ata File C: \(\backslash\) CHEM \(32 \backslash 1 \backslash\) DATA \(\backslash Z H O U-20 \backslash Y Z N 017206\).
ample Name: XIT-10-92 CAT
\(=======================\)
Ac \(C\). Operator
Ac. Instrument
In
Tniection Datrument
Iniection Date : \(1 / / 1 /\) Inument 1

Last chanced : 1/3/2021 6:33:17 AM
Analvsis Method ( (Modified after loading)

Sample Info : (modified after loading)
\(\mathrm{AD}-\mathrm{H}, \mathrm{Hexane} / \mathrm{i}\) - \(\mathrm{PrOH}=90 / 10,0.8 \mathrm{~mL} / \mathrm{min}, 30 \mathrm{C}, 254 \mathrm{~nm}\)


*** End of Report ***```

