Supporting information

Enhancement of NH₃ Production in Electrochemical N₂ Reduction by the Cu-Rich Inner Surfaces of Beveled CuAu Nanoboxes

Biva Talukdar,^{†,#, \circ} Tung-Chun Kuo,[‡] Brian T. Sneed,^{||} Lian-Ming Lyu,[§] Hung-Min Lin,^{†,⊥} Yu-Chun Chuang,[¶] Mu-Jeng Cheng^{*,‡} and Chun-Hong Kuo^{*,†, △}

[†]Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan

[#]Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Yang Ming Chiao Tung University, Taipei 11529, Taiwan

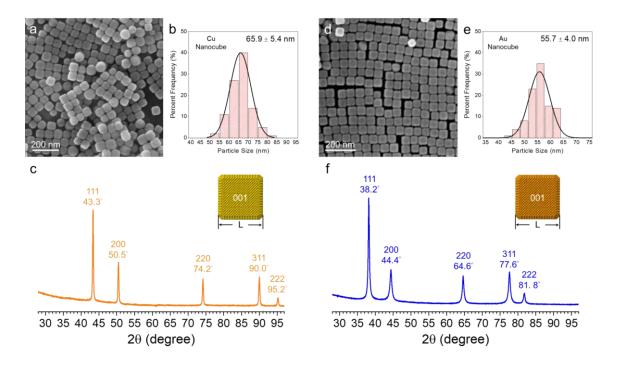
^oDepartment of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

[‡]Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan

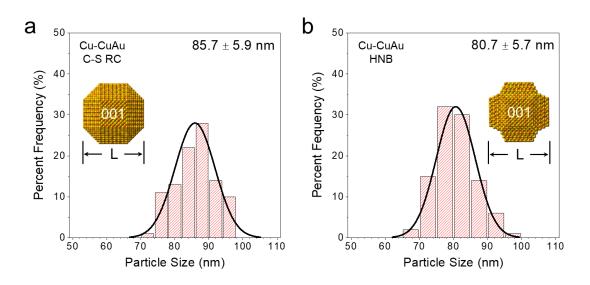
^ICabot Microelectronics, Aurora, Illinois 60504, United States

[§]Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan

¹Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan


[¶]National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan

△Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan


Contact information of corresponding authors

*(M.-J. C.) E-mail: mjcheng@mail.ncku.edu.tw

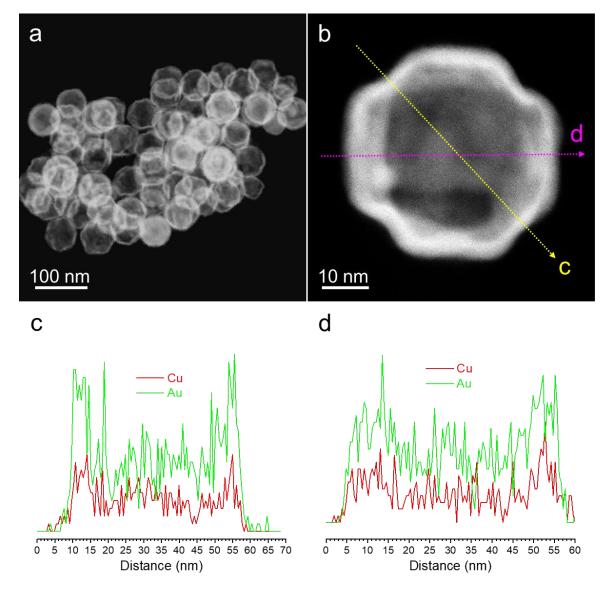
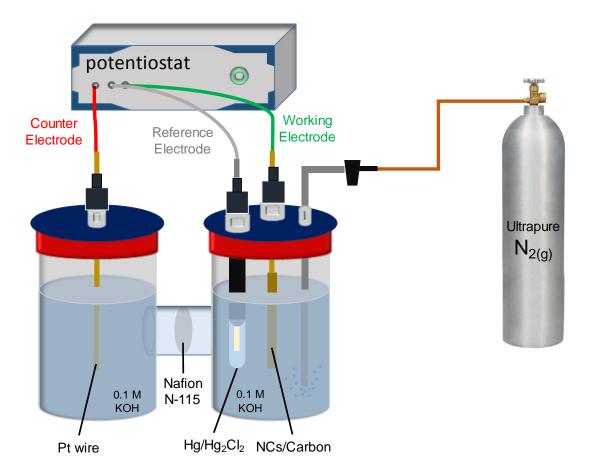
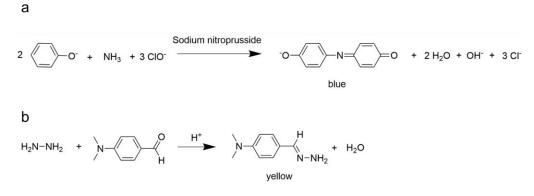
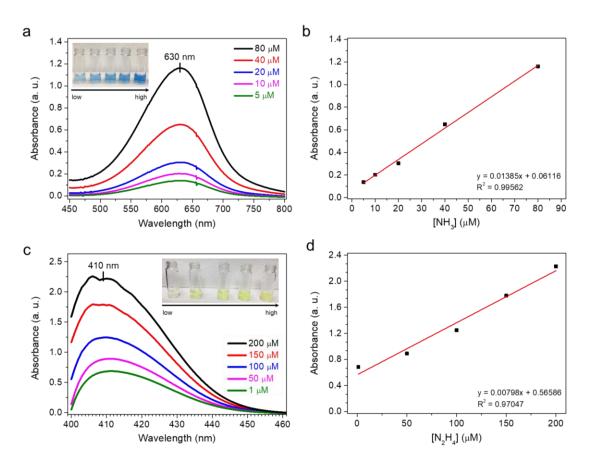
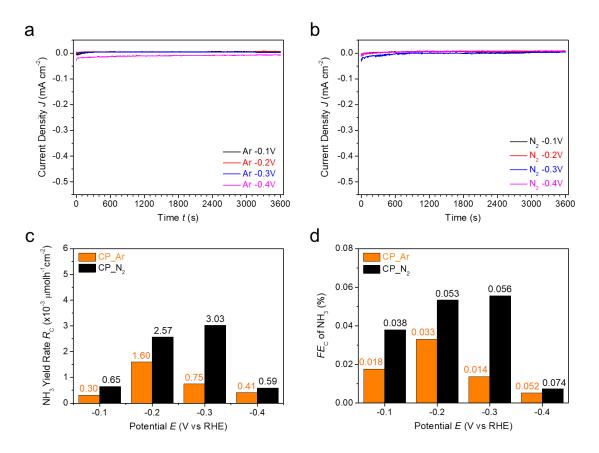

*(C.-H. K.) E-mail: chunhong@gate.sinica.edu.tw

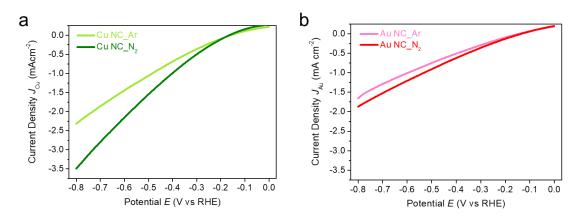
Figure S1. (a, d) SEM images, (b, e) size-distribution histograms, and (c, f) PXRD patterns of (a-c) Cu, and (d-f) Au nanocubes.

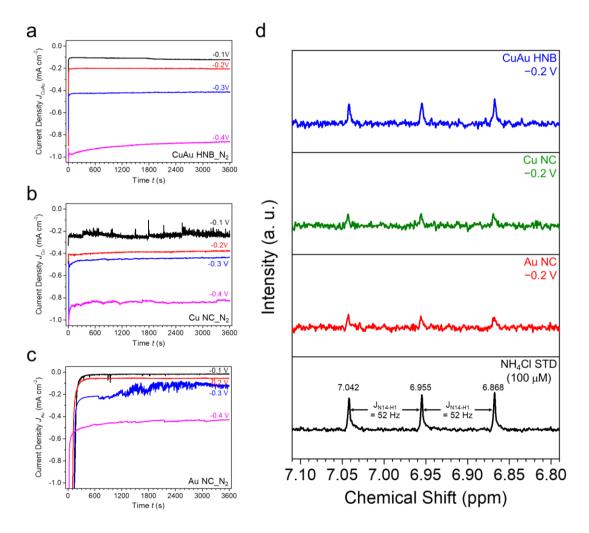
Figure S2. Size-distribution histograms of (a) rhombic cuboctahedral Cu-CuAu core-shell nanocrystals, and (b) their corresponding hollow nanocages after removing Cu cores.

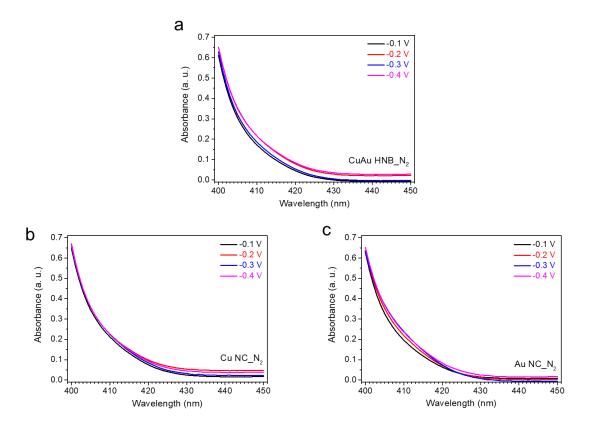
Figure S3. HAADF-STEM images of (a) multiple and (b) a single CuAu nanoboxes. The single nanocage is viewed along the [100] direction. (c, d) EDS line-scan profiles of the single nanobox along the yellow (c) and pink (d) cross sections.

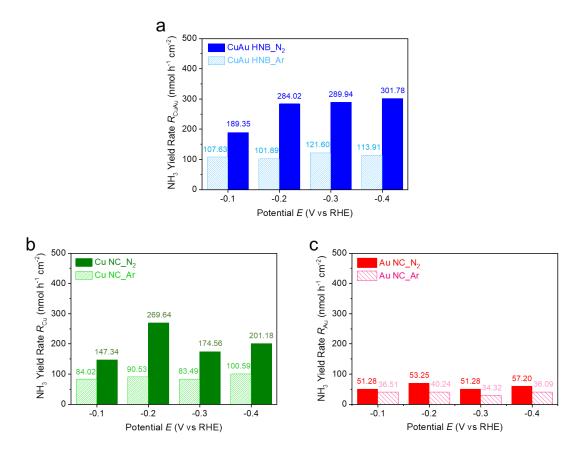




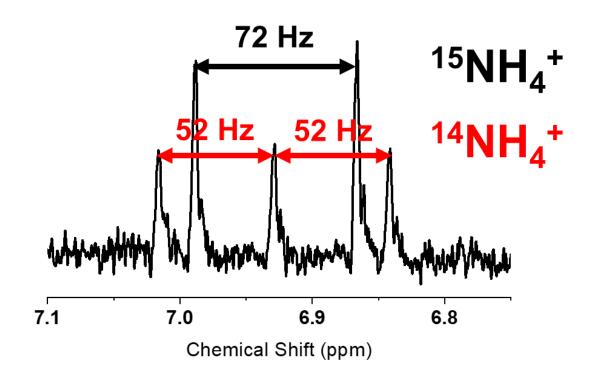

Figure S4. Schematic illustration for the setup of electrochemical N₂ reduction reaction.

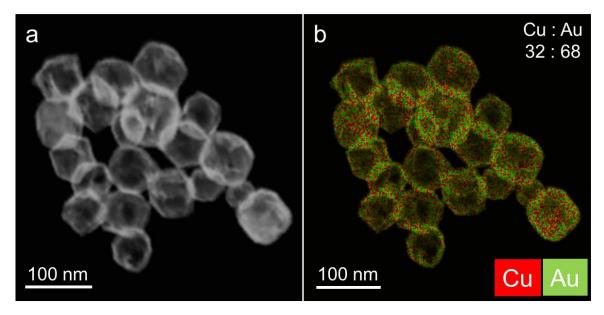

Figure S5. The condensation reactions for (a) indophenol blue method, and (b) Watt and Chrisp's Method.

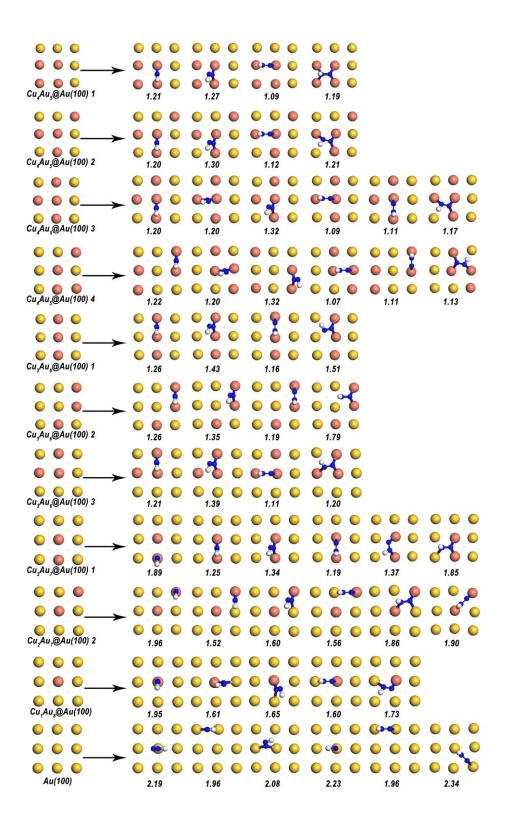

Figure S6. UV-Vis spectra and calibration plots of (a, b) indophenol blue method for NH_3 quantification and (c, d) Watt and Chrisp's method for N_2H_4 quantification.


Figure S7. J-t plots of the bare carbon paper operated under (a) Ar and (b) N_2 flow, and their corresponding *E*-dependent distributions in (c) NH₃ yield rates and (d) Faradaic efficiencies.


Figure S8. LSV plots of (a) Cu and (b) Au NC-catalyzed reduction under Ar and N_2 flow at the scan rate of 50 mV/s.


Figure S9. J-t plots of N₂RR catalyzed by (a) CuAu HNBs, (b) Cu NCs, and (c) Au NCs at the constant potentials of -0.1, -0.2, -0.3, and -0.4 V for an hour. (d) ¹H NMR spectra of the electrolyte solutions for the catalysts and a standard solution of 100 μ M NH₄Cl.


Figure S10. UV-Vis spectra measurements based on the Watt and Chrisp's method show no detectable N_2H_4 in the N_2RR catalyzed by (a) CuAu HNBs, (b) Cu NCs, and (c) Au NCs.


Figure S11. NH_3 yield rates of (a) CuAu HNB-, (b) Cu NC-, and (c) Au NC-catalyzed reduction reactions under Ar and N_2 flow.

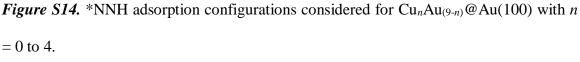


Figure S12. ¹H NMR spectrum of the electrolyte solution saturated with ${}^{15}N_2$ gas catalyzed by the HNBs. The signals of products contain the triplet peaks with a coupling constant of 52 Hz from the coupling between ¹H and ¹⁴N (spin 1), and the doublet peaks with a coupling constant of 72 Hz due to the coupling between ¹H and ¹⁵N (spin 1/2).

Figure S13. (a) HAADF-STEM image and (b) EDS map of CuAu HNBs after durability test.

000 : 26 O O O · 000 000 000 1.00 Cu_sAu_o@Au(100) 1.09 • • • 000 000 000 000 000 000 8 000 000 00 000 000 1.13 1.11 0.91 1.02 Cu,Au,@Au(100) *: 000 000 000 000 ** 000 000 000 1.16 1.16 1.13 1.09 Cu,Au,@Au(100) 1 000 000 000 000 *** 009 *: 000 000 000 Cu,Au,@Au(100) 2 1.16 0.93 1.09 000 0 0 0 000 000 000 000 200 • • • 0 🥊 O €⊶● ● 8: 0 0 0. 000 0 0 0 000 000 000 Cu,Au,@Au(100) 1 1.17 1.16 1.23 1.06 1.03 1.11 00 00 . 0 0 0 0 Q Q O 00 0000 000 000 0 0 0 000 000 000 000 000 000 0 00 000 000 000 000 Cu,Au,@Au(100) 2 1.19 1.21 1.26 1.34 1.10 1.07 1.01 1.22 000 000 0 0 000 €⊶€ 0 €→€ ● 00 0 6 0 0 000 000. 000 0 000 000 000 000 000 000 000 000 000 Cu₆Au₃@Au(100) 3 1.20 1.14 1.22 1.05 1.01 0.94 1.17 o o o 0.9.9 000 000 **Ö** O O 000 8 000 000 0 0 00-0 000 Cu₅Au₄@Au(100) 1 1.24 1.31 1.15 1.14 000 000 000 0 0 🍯 🔘 🔘 0 **○** 0 0 0 00 6 000 00 0 000 000 Cu_Au_@Au(100) 2 1.21 1.31 1.07 1.16 o o 🧕 000 000 000 **900** 200 600 6 00 P O O 0 0 0 (**••**••) 200 60 0 000 000 0 00 000 00 Cu_sAu₄@Au(100) 3 1.21 1.18 1.26 1.05 1.10 1.04 1.13 000 0 0 0 💡 🔾 ●••• ● 90 000 0 0 0 • • • 00 000 00 000 \bigcirc \bigcirc \bigcirc Õ 000 000 000 000 000 000 000 000 Cu_Au_@Au(100) 4 1.20 1.10 1.19 1.21 1.28 1.11 1.09 1.16

Figure S15. *NNH adsorption configurations considered for $Cu_nAu_{(9-n)}@Au(100)$ with *n* = 5 to 9.

000	000 000			000	
© © © Cu(100)	000000000 1.97 1.40			23 1.48	
		000 000			
Au,Cu,@Cu(100)					0000000
Au,Cu,Q(Cu(100) 2			88888		
€ € €		8::2			
Au;Cu;BCu(100) 2					
 ○ ○ ○ △ Au,Cu,(BCu(100) 3 					
€ € € € € € Aa,Cu,BCu(100) 1		00000	0		
Au,Cu,((Cu)(100) 2			0 9.00		
Au,Cu,(3Cu(100) 3		000 000			
Au,Cu,QCu(100) 4		000000			

Figure S16. *NNH adsorption configurations considered for $Au_nCu_{(9-n)}@Cu(100)$ with *n*

= 0 to 4.

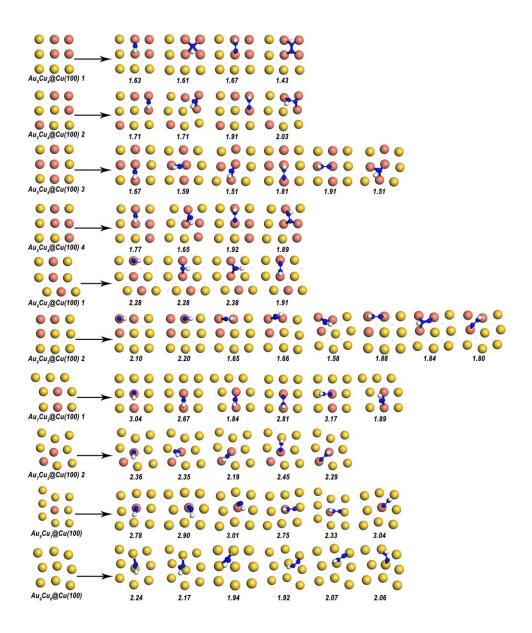
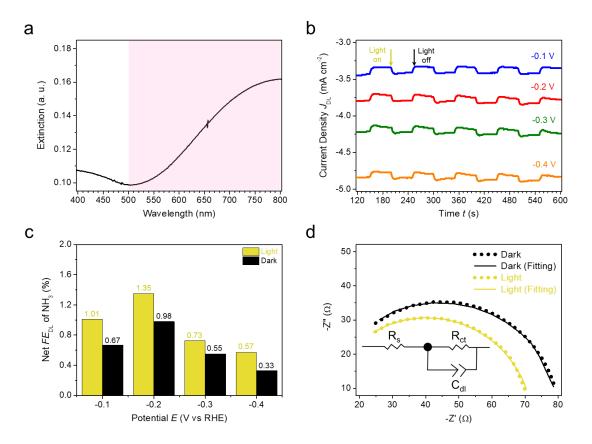



Figure S17. *NNH adsorption configurations considered for $Au_nCu_{(9-n)}@Cu(100)$ with n

= 5 to 9.

Figure S18. (a) UV-Vis spectra of suspended CuAu HNBs. (b) *J-t* plot of NRR catalyzed by CuAu HNBs under solar light (1 sun) with on-off switching. (c) Net NH₃ Faradaic efficiencies in N₂RR catalyzed by CuAu HNBs in dark and under solar light illumination. (d) Nyquist plots for CuAu HNBs in dark and under solar light illumination.

Cathode Materials	Electrolyte	FE of NH ₃ at <i>E</i> (vs RHE)	References
Li+-incorporated PEBCD	0.5 M Li ₂ SO ₄	1.71% at -0.7 V	J. Am. Chem. Soc. 2017, 139, 9771–9774
Pd _{0.2} Cu _{0.8} /RGO	0.1 M KOH	0.6% at -0.2 V	J. Mater. Chem. A 2018, 6, 17303–17306
spinel Fe ₃ O ₄ nanorods on Ti mesh	0.1 M Na ₂ SO ₄	2.6% at -0.4 V	Nanoscale 2018 , 10, 14386–14389.
TiO ₂ /Ti	0.1 M Na ₂ SO ₄	2.50% at -0.7 V	ACS Appl. Mater. Interfaces 2018, 10, 28251–28255
NiO nanodots on graphene	0.1 M Na ₂ SO ₄	7.8% at -0.7 V	ACS Appl. Energy Mater. 2019, 2, 2288–2295
Cr ₂ O ₃ -rGO	0.1 M HCl	7.33% at -0.6 V	<i>Inorg. Chem.</i> 2019 , 58, 2257–2260
Cr _{0.1} CeO ₂ nanorods	0.1 M Na ₂ SO ₄	3.84% at -0.7 V	<i>Inorg. Chem.</i> 2019 , 58, 5423– 5427
Ultrathin Ni _{0.50} Fe _{0.50} B nanosheets	0.1 M KOH	3.19 % at -0.3 V	ACS Appl. Energy Mater. 2020, 3, 9516–9522
CoS ₂ nanoparticles- embedded N-doped carbon nanobox derived from ZIF-67	0.1 M HCl	4.6% at -0.15 V	<i>ACS Sustainable Chem. Eng.</i> 2020 , 8, 29–33
CuAu nanocage on carbon paper	0.1 M KOH, N ₂	7.4% at -0.2 V	This work

Table S1. Summary of N_2 reduction to NH_3 in aqueous solution at ambient conditions