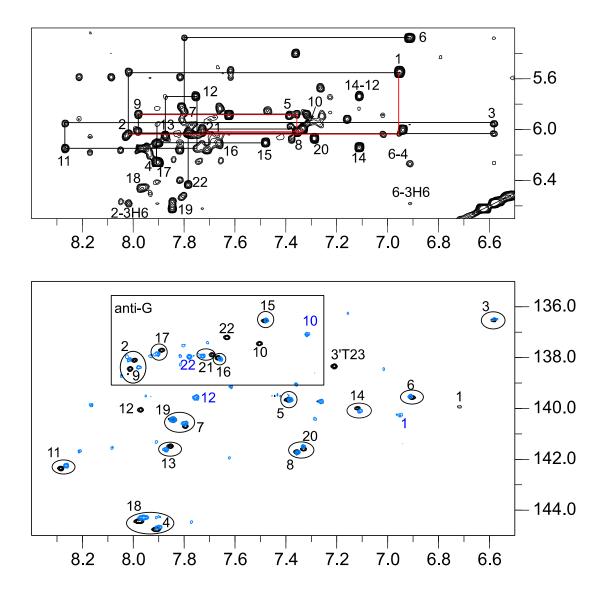
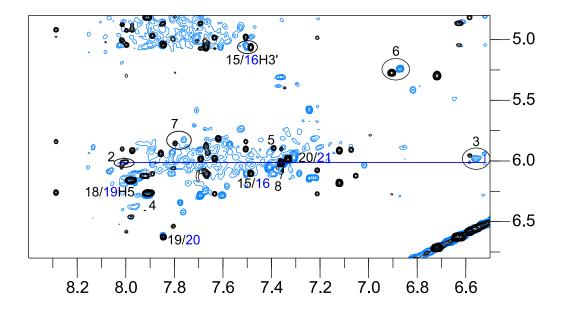

## **Supporting Information**

## First Tandem Repeat of a Potassium Channel *KCNN4* Minisatellite Folds into a V-Loop G-Quadruplex Structure


Yoanes Maria Vianney and Klaus Weisz\*

Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany


\*Corresponding author: weisz@uni-greifswald.de



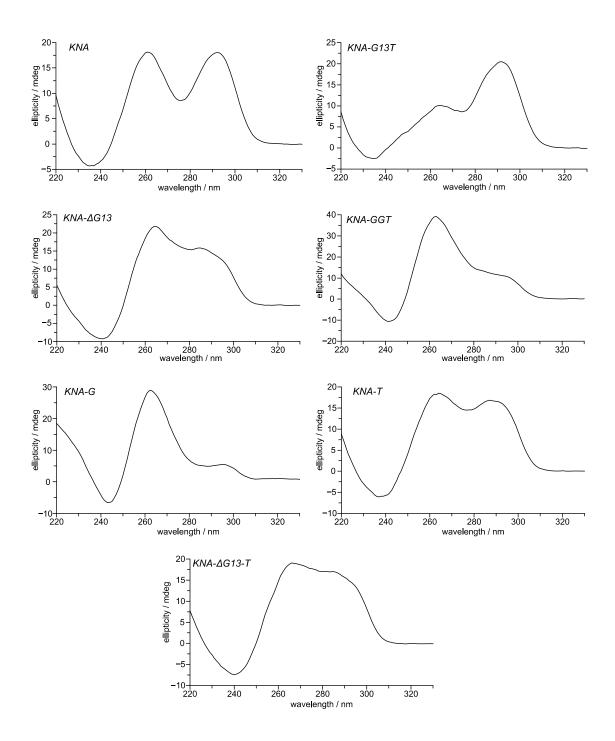
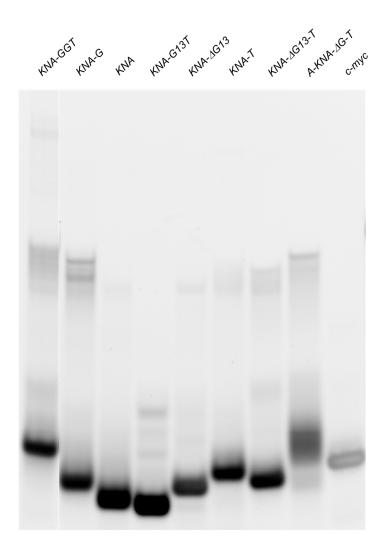
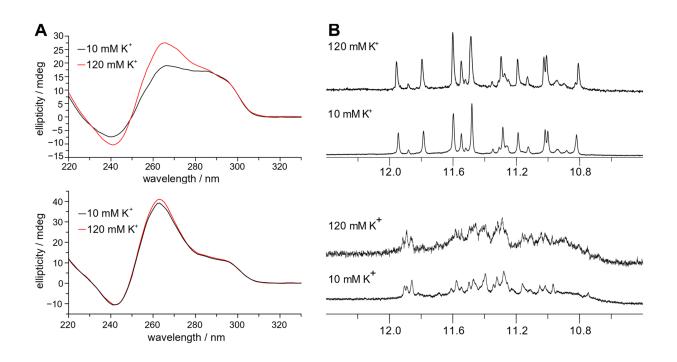
**Figure S1.** Partial assignment of *KNA-T*; 2D NOESY spectral region showing H6/8( $\omega_2$ )-H1'( $\omega_1$ ) (top) and H6/8( $\omega_2$ )-H1( $\omega_1$ ) cross-peaks (middle). Superimposed <sup>1</sup>H-<sup>13</sup>C HSQC spectra with H6/8-C6/8 correlations of *KNA-* $\Delta$ G13-T (black, 0.9 mM) and *KNA-T* (blue) (bottom); overlapping cross-peaks and cross-peak patterns suggest identical G4 topologies.

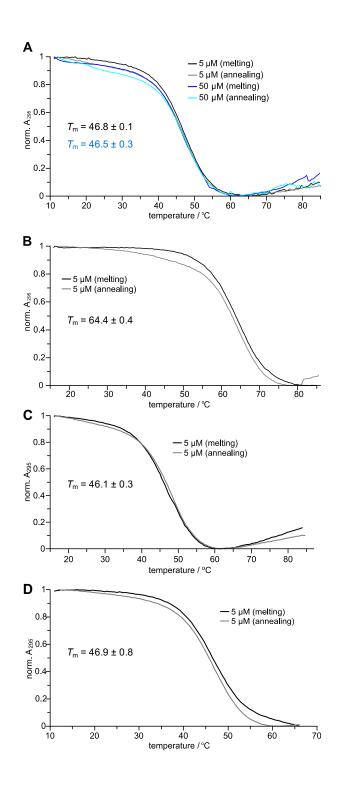


**Figure S2.** Partial assignment of *KNA-* $\Delta$ *G13*; 2D NOESY spectral region showing H6/8( $\omega_2$ )-H1'( $\omega_1$ ) cross-peaks (top). Superimposed <sup>1</sup>H-<sup>13</sup>C HSQC spectra with H6/8-C6/8 correlations of *KNA-* $\Delta$ *G13-T* (black, 0.9 mM) and *KNA-* $\Delta$ *G13* (blue) (bottom). Overlapping cross-peaks and cross-peak patterns suggest identical G4 topologies.

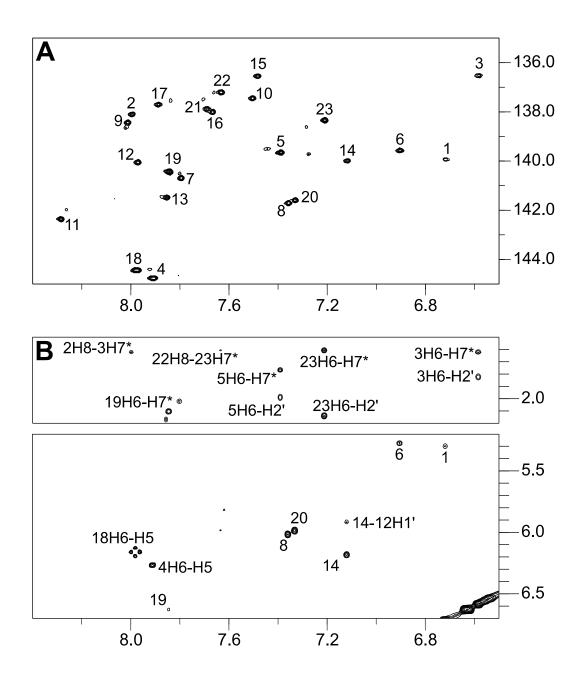


**Figure S3.** Partial assignment of *KNA-GGT*; superimposed 2D NOESY spectral region showing H6/8( $\omega_2$ )-H1'( $\omega_1$ ) cross-peaks of *KNA-\DeltaG13-T* (black) and *KNA-\DeltaG13* (blue); several typical cross-peaks overlap, suggesting identical G4 topologies with assignments based on the *KNA-\DeltaG13-T* quadruplex.

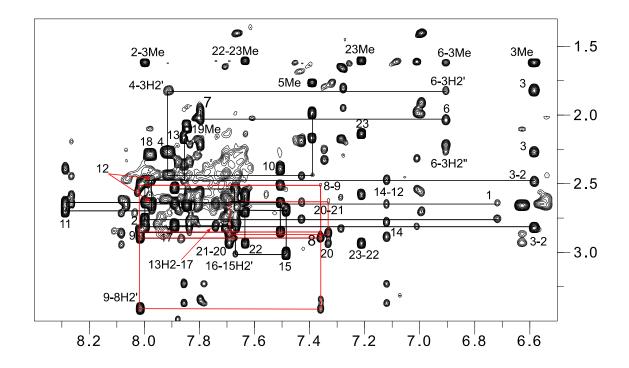






Figure S4. CD spectra of KNA variants at 20 °C in 10 mM potassium phosphate buffer, pH 7.

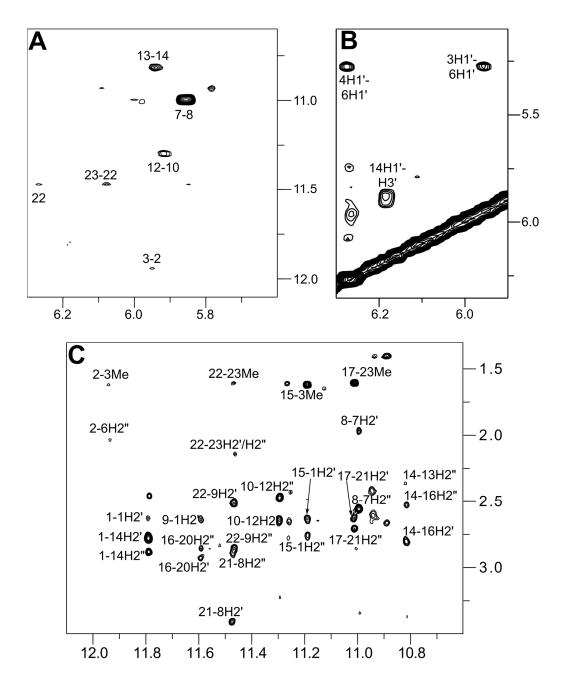



**Figure S5.** Non-denaturing gel electrophoresis of *KNA* variants and of a parallel 22mer *c-myc* quadruplex as additional reference. Slowly migrating weak bands are indicative of multimeric structures. Experimental procedure: 50  $\mu$ M of annealed oligonucleotide samples in a 10 mM potassium phosphate buffer, pH 7.0, were mixed with glycerol-buffer (4:6) in a 1:1 v/v ratio. Samples (250 pmol per lane) were loaded on a 15% polyacrylamide gel (acrylamide:bis-acrylamide 19:1). Separation was performed in TBE buffer, pH 8.3, supplemented with 10 mM KCl. Gels were stained with 5  $\mu$ M thiazole orange.




**Figure S6.** (A) CD spectra and (B) imino proton NMR spectral regions of  $KNA-\Delta G13-T$  (top) and the KNA-GGT wild-type sequence (bottom) in buffer solutions with 10 mM and 120 mM K<sup>+</sup>.




**Figure S7.** Representative UV melting curves. *KNA-\Delta G13-T* in the presence of (A) 10 mM K<sup>+</sup> and (B) 120 mM K<sup>+</sup>; (C) *KNA-\Delta G13* and (D) *KNA-GGT* in the presence of 10 mM K<sup>+</sup>; melting temperatures  $T_{\rm m}$  are averages from three independent heating curves with standard deviations.



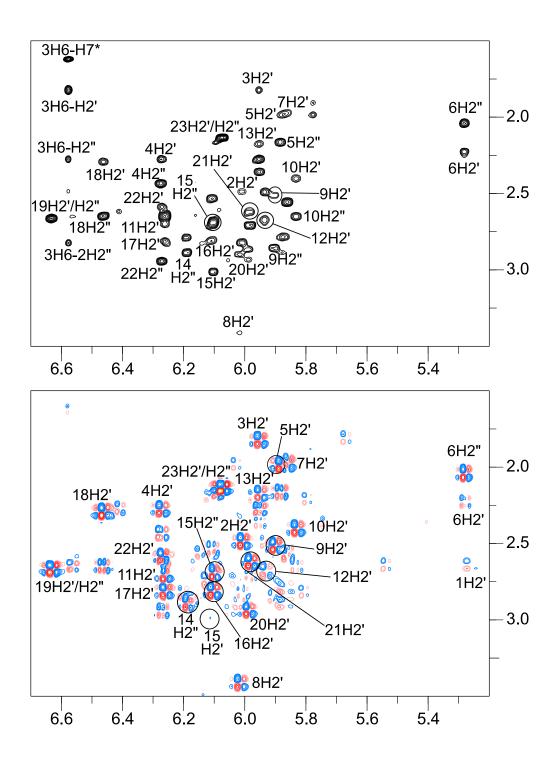
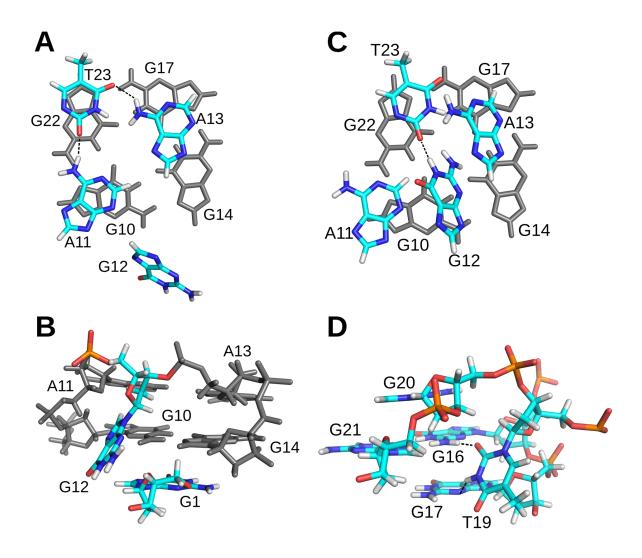
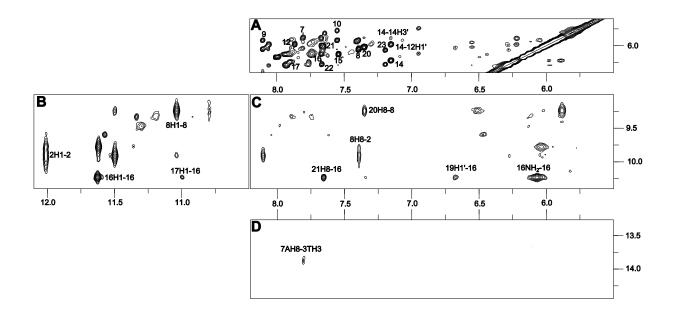
**Figure S8.** (A) H8/H6( $\omega_2$ )-C8/C6( $\omega_1$ ) HSQC spectral region of *KNA-* $\Delta G13$ -*T* (0.94 mM) in a 10 mM K<sup>+</sup> buffer. (B) H8( $\omega_2$ )-H2'/Me( $\omega_1$ ) (top) and H8( $\omega_2$ )-H1'( $\omega_1$ ) spectral region (bottom) of a 2D NOESY spectrum of *KNA-* $\Delta G13$ -*T* acquired with an 80 ms mixing time at 25 °C in a 10 mM K<sup>+</sup> buffer.

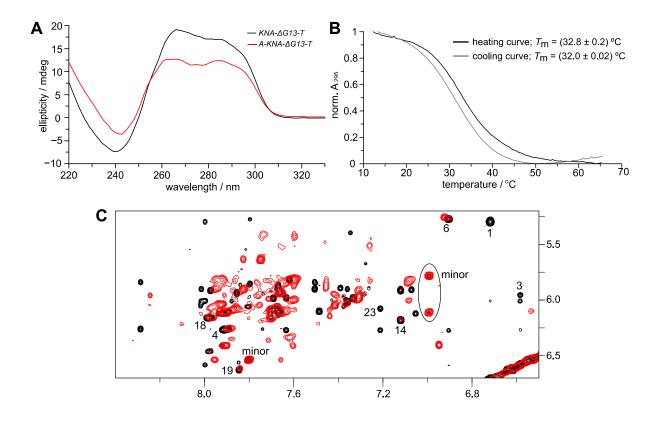


**Figure S9.** H8/H6( $\omega_2$ )-H2'/H2"/Me( $\omega_1$ ) 2D NOESY spectral region of *KNA-\Delta G13-T* (0.9 mM) acquired with a 300 ms mixing time; rectangular cross-peak patterns characteristic for *syn-anti* steps are colored red; the first residue number refers to H8/H6 resonances along  $\omega_2$ .



**Figure S10.** 2D NOESY spectrum of *KCNN4-\DeltaG13-T* (0.9 mM, 300 ms mixing time). (A) H1'( $\omega_2$ )-H1( $\omega_1$ ) spectral region; (B) H1'( $\omega_2$ )-H1'/H3'( $\omega_1$ ) cross-peaks within the first lateral loop; based on inter-residual H1'-H1' contacts, G6 is positioned close to T3 and C4; the unusually downfield-shifted G14 H3' resonance is also shown; (C) H1( $\omega_2$ )-H2'/H2"/Me( $\omega_1$ ) spectral region; an NOE cross-peak between G9 H1 and G1 H2' indicates their opposite sugar-phosphate orientation.



Figure S11. Determination of the sugar conformation. (A) Portion of a 2D NOESY spectrum (mixing time 80 ms) and (B) DQF-COSY spectral region of  $KNA-\Delta G13-T$  (0.9 mM) in 100% D<sub>2</sub>O showing H1'( $\omega_2$ )-H2'/H2"( $\omega_1$ ) cross-peaks.



**Figure S12.** (A,B) Representative model of  $KNA-\Delta G13-T$  with an orientation of the second lateral loop preceding the V-shaped loop as found in 8 out of 10 calculated structures. (A) Top view onto the second lateral loop and adjacent tetrad, highlighting a putative ATA triad between adenine bases of the lateral loop and 3'-terminal thymine T23. (B) Side view, highlighting G12 positioned nearly orthogonally to G1. (C) Top view onto the second lateral loop and adjacent tetrad, highlighting an alternative hydrogen bond formation between guanine G12 in the lateral loop and the 3'-terminal T23; tetrads are colored grey. (D) Putative hydrogen bond formation between the G16 amino proton and T19 O2 as well as between G17 N3 and T19 H3 of the propeller loop; C18 has been omitted for clarity.



**Figure S13.** Portions of a 2D NOESY spectrum of *KNA-\DeltaG13-T* (0.9 mM, 300 ms mixing time, 278 K). (A) H6/8( $\omega_2$ )-H1'( $\omega_1$ ) spectral region, (B) H1( $\omega_2$ )-amino proton( $\omega_1$ ) spectral region, (C) H8/H1'/amino proton( $\omega_2$ )-amino proton( $\omega_1$ ) spectral region. (D) Cross-peak which hints to the formation of an AT Hoogsteen hydrogen bond within the first lateral loop. Cross-peaks observed in this low-temperature spectrum were not included in the NOE-based distance restraints.



**Figure S14.** (A) CD spectrum of *A-KNA-\DeltaG13-T* (red) and *KNA-\DeltaG13-T* (black) in 10 mM K<sup>+</sup> buffer. (B) UV melting and annealing curves of *A-KNA-\DeltaG13-T* in 10 mM K<sup>+</sup> buffer with very small hysteresis effects. (C) Superposition of 2D NOESY spectra for *A-KNA-\DeltaG13-T* (red) and *KNA-\DeltaG13-T* (black) showing H6/8( $\omega_2$ )-H1'( $\omega_1$ ) cross-peaks; labeled cross-peaks identify proton resonances of the V-shaped loop topology. Cross-peaks of the minor species coexisting with the V-shaped loop topology of *KNA-\DeltaG13-T* become more intense for *A-KNA-\DeltaG13-T* with a 5'-A overhang (circled); spectra were acquired at 25 °C.

| Residues | H6/H8 | H2/5/Me | H1    | H1'  | H2'  | H2"  | Н3'  | C6/8   | C5     | C2     |
|----------|-------|---------|-------|------|------|------|------|--------|--------|--------|
| G1       | 6.72  | -       | 11.79 | 5.30 | 2.64 | 2.76 | 4.93 | 139.93 | 119.59 | -      |
| G2       | 8.00  | -       | 11.94 | 6.01 | 2.49 | 2.82 | 5.05 | 138.10 | 117.48 | -      |
| T3       | 6.58  | 1.62    | -     | 5.96 | 1.82 | 2.27 | 4.82 | 136.53 | -      | -      |
| C4       | 7.91  | 6.27    | -     | 6.27 | 2.28 | 2.44 | 4.81 | 144.76 | -      | -      |
| T5       | 7.39  | 1.77    | -     | 5.89 | 2.28 | 2.44 | 4.81 | 139.67 | -      | -      |
| G6       | 6.91  | -       | -     | 5.28 | 2.22 | 2.04 | 4.64 | 139.56 | -      | -      |
| A7       | 7.80  | 7.22    | -     | 5.85 | 1.97 | 2.56 | 4.81 | 140.71 | -      | 153.44 |
| G8       | 7.36  | -       | 11.00 | 6.01 | 3.41 | 2.90 | 4.88 | 141.71 | 119.82 | -      |
| G9       | 8.01  | -       | 11.59 | 5.90 | 2.51 | 2.85 | 5.01 | 138.44 | 116.84 | -      |
| G10      | 7.51  | -       | 11.30 | 5.84 | 2.40 | 2.64 | 4.98 | 137.45 | 117.09 | -      |
| A11      | 8.29  | 7.78    | -     | 6.26 | 2.70 | 2.65 | 4.92 | 142.36 | -      | 154.54 |
| G12      | 7.97  | -       | -     | 5.92 | 2.65 | 2.48 | 4.88 | 140.07 | -      | -      |
| A13      | 7.86  | 7.74    | -     | 5.94 | 2.17 | 2.36 | 4.72 | 141.49 |        | 154.25 |
| G14      | 7.12  | -       | 10.82 | 6.18 | 2.78 | 2.89 | 5.88 | 140.00 | 118.77 | -      |
| G15      | 7.49  | -       | 11.19 | 6.10 | 3.01 | 2.70 | 5.07 | 136.56 | 118.24 | -      |
| G16      | 7.67  | -       | 11.59 | 6.11 | 2.81 | 2.54 | 4.97 | 138.01 | 117.10 | -      |
| G17      | 7.89  | -       | 11.01 | 6.26 | 2.81 | 2.65 | 4.97 | 137.72 | 117.66 | -      |
| C18      | 7.98  | 6.16    | -     | 6.46 | 2.29 | 2.65 | 4.62 | 144.44 | -      | -      |
| T19      | 7.84  | 2.10    | -     | 6.63 | 2.66 | 2.66 | 5.04 | 140.44 | -      | -      |
| G20      | 7.33  | -       | 11.56 | 5.99 | 2.93 | 2.86 | 4.87 | 141.60 | 119.61 | -      |
| G21      | 7.69  | -       | 11.47 | 5.98 | 2.63 | 2.71 | 5.08 | 137.89 | 116.77 | -      |
| G22      | 7.63  | -       | 11.47 | 6.27 | 2.58 | 2.94 | 4.98 | 137.21 | 117.50 | -      |
| T23      | 7.21  | 1.61    | -     | 6.08 | 2.14 | 2.14 | 4.51 | 138.35 | -      | -      |

**Table S1.** <sup>1</sup>H and <sup>13</sup>C chemical shifts (in ppm) of *KNA-\Delta G13-T* (0.9 mM) at 25 °C in 10 mM potassium phosphate buffer, pH 7.