Supporting Information

First Tandem Repeat of a Potassium Channel KCNN4 Minisatellite Folds into a V-Loop G-Quadruplex Structure

Yoanes Maria Vianney and Klaus Weisz*

Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
*Corresponding author: weisz@uni-greifswald.de

Figure S1. Partial assignment of $K N A-T$; 2D NOESY spectral region showing H6/8(ω_{2})-H1 ${ }^{\prime}\left(\omega_{1}\right)$ (top) and $\mathrm{H} 6 / 8\left(\omega_{2}\right)-\mathrm{H} 1\left(\omega_{1}\right)$ cross-peaks (middle). Superimposed ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ HSQC spectra with $\mathrm{H} 6 / 8-$ C6/8 correlations of KNA- $-G 13-T$ (black, 0.9 mM) and $K N A-T$ (blue) (bottom); overlapping cross-peaks and cross-peak patterns suggest identical G4 topologies.

Figure S2. Partial assignment of $K N A-U G 13$; 2D NOESY spectral region showing H6/8(ω_{2})H 1 ' $\left(\omega_{1}\right)$ cross-peaks (top). Superimposed ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectra with H6/8-C6/8 correlations of KNA-UG13-T (black, 0.9 mM) and KNA-UG13 (blue) (bottom). Overlapping cross-peaks and cross-peak patterns suggest identical G4 topologies.

Figure S3. Partial assignment of $K N A-G G T$; superimposed 2D NOESY spectral region showing $\mathrm{H} 6 / 8\left(\omega_{2}\right)-\mathrm{H} 1$ ' $\left(\omega_{1}\right)$ cross-peaks of KNA-UG13-T (black) and KNA-UG13 (blue); several typical cross-peaks overlap, suggesting identical G4 topologies with assignments based on the KNA-UG13-T quadruplex.

Figure S4. CD spectra of $K N A$ variants at $20^{\circ} \mathrm{C}$ in 10 mM potassium phosphate buffer, pH 7 .

Figure S5. Non-denaturing gel electrophoresis of $K N A$ variants and of a parallel 22 mer c-myc quadruplex as additional reference. Slowly migrating weak bands are indicative of multimeric structures. Experimental procedure: $\mathbf{5 0} \mu \mathrm{M}$ of annealed oligonucleotide samples in a 10 mM potassium phosphate buffer, pH 7.0 , were mixed with glycerol-buffer (4:6) in a $1: 1 \mathrm{v} / \mathrm{v}$ ratio. Samples (250 pmol per lane) were loaded on a 15% polyacrylamide gel (acrylamide:bis-acrylamide 19:1). Separation was performed in TBE buffer, pH 8.3 , supplemented with 10 mM KCl . Gels were stained with $5 \mu \mathrm{M}$ thiazole orange.

Figure S6. (A) CD spectra and (B) imino proton NMR spectral regions of $K N A-\Delta G 13-T$ (top) and the $K N A-G G T$ wild-type sequence (bottom) in buffer solutions with 10 mM and 120 mM K .

Figure S7. Representative UV melting curves. $K N A-4 G 13-T$ in the presence of (A) $10 \mathrm{mM} \mathrm{K}^{+}$ and (B) $120 \mathrm{mM} \mathrm{K}^{+}$; (C) $K N A-U G 13$ and (D) KNA-GGT in the presence of $10 \mathrm{mM} \mathrm{K}^{+}$; melting temperatures T_{m} are averages from three independent heating curves with standard deviations.

Figure S8. (A) H8/H6(ω_{2})-C8/C6(ω_{1}) HSQC spectral region of $K N A-\Delta G 13-T(0.94 \mathrm{mM})$ in a 10 $m \mathrm{~K}^{+}$buffer. (B) $\mathrm{H} 8\left(\omega_{2}\right)-\mathrm{H} 2^{\prime} / \mathrm{Me}\left(\omega_{1}\right)$ (top) and $\mathrm{H} 8\left(\omega_{2}\right)-\mathrm{H} 1^{\prime}\left(\omega_{1}\right)$ spectral region (bottom) of a 2D NOESY spectrum of $K N A-U G 13-T$ acquired with an 80 ms mixing time at $25^{\circ} \mathrm{C}$ in a 10 mM K^{+}buffer.

Figure S9. $\mathrm{H} 8 / \mathrm{H} 6\left(\omega_{2}\right)-\mathrm{H} 2^{\prime} / \mathrm{H} 2^{\prime \prime} / \mathrm{Me}\left(\omega_{1}\right)$ 2D NOESY spectral region of $K N A-\Delta G 13-T$ (0.9 mM) acquired with a 300 ms mixing time; rectangular cross-peak patterns characteristic for syn-anti steps are colored red; the first residue number refers to $\mathrm{H} 8 / \mathrm{H} 6$ resonances along ω_{2}.

Figure S10. 2D NOESY spectrum of $K C N N 4-4 G 13-T$ ($0.9 \mathrm{mM}, 300 \mathrm{~ms}$ mixing time). (A) $\mathrm{H} 1^{\prime}\left(\omega_{2}\right)-\mathrm{H} 1\left(\omega_{1}\right)$ spectral region; (B) $\mathrm{Hl}^{\prime}\left(\omega_{2}\right)-\mathrm{H} 1^{\prime} / \mathrm{H} 3^{\prime}\left(\omega_{1}\right)$ cross-peaks within the first lateral loop; based on inter-residual H 1 '- H 1 ' contacts, G 6 is positioned close to T 3 and C 4 ; the unusually downfield-shifted G14 H3' resonance is also shown; (C) $\mathrm{H} 1\left(\omega_{2}\right)-\mathrm{H} 2^{\prime} / \mathrm{H} 2^{\prime \prime} / \mathrm{Me}\left(\omega_{1}\right)$ spectral region; an NOE cross-peak between G9 H1 and G1 H2' indicates their opposite sugarphosphate orientation.

Figure S11. Determination of the sugar conformation. (A) Portion of a 2D NOESY spectrum (mixing time 80 ms) and (B) DQF-COSY spectral region of KNA-UG13-T (0.9 mM) in 100% $\mathrm{D}_{2} \mathrm{O}$ showing $\mathrm{H} 1^{\prime}\left(\omega_{2}\right)-\mathrm{H} 2^{\prime} / \mathrm{H} 2{ }^{\prime \prime}\left(\omega_{1}\right)$ cross-peaks.

A

D

Figure S12. (A,B) Representative model of $K N A-\triangle G 13-T$ with an orientation of the second lateral loop preceding the V-shaped loop as found in 8 out of 10 calculated structures. (A) Top view onto the second lateral loop and adjacent tetrad, highlighting a putative ATA triad between adenine bases of the lateral loop and 3'-terminal thymine T23. (B) Side view, highlighting G12 positioned nearly orthogonally to G1. (C) Top view onto the second lateral loop and adjacent tetrad, highlighting an alternative hydrogen bond formation between guanine G12 in the lateral loop and the 3'-terminal T23; tetrads are colored grey. (D) Putative hydrogen bond formation between the G16 amino proton and T19 O2 as well as between G17 N3 and T19 H3 of the propeller loop; C18 has been omitted for clarity.

Figure S13. Portions of a 2D NOESY spectrum of $K N A-U G 13-T(0.9 \mathrm{mM}, 300 \mathrm{~ms}$ mixing time, 278 K). (A) H6/8(ω_{2})-H1' $\left(\omega_{1}\right)$ spectral region, (B) $\mathrm{H} 1\left(\omega_{2}\right)$-amino proton $\left(\omega_{1}\right)$ spectral region, (C) $\mathrm{H} 8 / \mathrm{H} 1^{\prime} / \mathrm{amino}$ proton $\left(\omega_{2}\right)$-amino proton $\left(\omega_{1}\right)$ spectral region. (D) Cross-peak which hints to the formation of an AT Hoogsteen hydrogen bond within the first lateral loop. Cross-peaks observed in this low-temperature spectrum were not included in the NOE-based distance restraints.

Figure S14. (A) CD spectrum of $A-K N A-4 G 13-T$ (red) and $K N A-U G 13-T$ (black) in $10 \mathrm{mM} \mathrm{K}^{+}$ buffer. (B) UV melting and annealing curves of $A-K N A-\angle G 13-T$ in $10 \mathrm{mM} \mathrm{K}^{+}$buffer with very small hysteresis effects. (C) Superposition of 2D NOESY spectra for $A-K N A-U G 13-T$ (red) and KNA- 4 G13-T (black) showing H6/8(ω_{2})-H1' $\left(\omega_{1}\right)$ cross-peaks; labeled cross-peaks identify proton resonances of the V-shaped loop topology. Cross-peaks of the minor species coexisting with the V-shaped loop topology of $K N A-U G 13-T$ become more intense for $A-K N A-\triangle G 13-T$ with a 5^{\prime}-A overhang (circled); spectra were acquired at $25^{\circ} \mathrm{C}$.

Table S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts (in ppm) of $K N A-\triangle G 13-T(0.9 \mathrm{mM})$ at $25{ }^{\circ} \mathrm{C}$ in 10 mM potassium phosphate buffer, pH 7.

Residues	H6/H8	H2/5/Me	H1	H1'	H2'	H2"'	H3'	C6/8	C5	C2
G1	6.72	-	11.79	5.30	2.64	2.76	4.93	139.93	119.59	-
G2	8.00	-	11.94	6.01	2.49	2.82	5.05	138.10	117.48	-
T3	6.58	1.62	-	5.96	1.82	2.27	4.82	136.53	-	-
C4	7.91	6.27	-	6.27	2.28	2.44	4.81	144.76	-	-
T5	7.39	1.77	-	5.89	2.28	2.44	4.81	139.67	-	-
G6	6.91	-	-	5.28	2.22	2.04	4.64	139.56	-	-
A7	7.80	7.22	-	5.85	1.97	2.56	4.81	140.71	-	153.44
G8	7.36	-	11.00	6.01	3.41	2.90	4.88	141.71	119.82	-
G9	8.01	-	11.59	5.90	2.51	2.85	5.01	138.44	116.84	-
G10	7.51	-	11.30	5.84	2.40	2.64	4.98	137.45	117.09	-
A11	8.29	7.78	-	6.26	2.70	2.65	4.92	142.36	-	154.54
G12	7.97	-	-	5.92	2.65	2.48	4.88	140.07	-	-
A13	7.86	7.74	-	5.94	2.17	2.36	4.72	141.49		154.25
G14	7.12	-	10.82	6.18	2.78	2.89	5.88	140.00	118.77	-
G15	7.49	-	11.19	6.10	3.01	2.70	5.07	136.56	118.24	-
G16	7.67	-	11.59	6.11	2.81	2.54	4.97	138.01	117.10	-
G17	7.89	-	11.01	6.26	2.81	2.65	4.97	137.72	117.66	-
C18	7.98	6.16	-	6.46	2.29	2.65	4.62	144.44	-	-
T19	7.84	2.10	-	6.63	2.66	2.66	5.04	140.44	-	-
G20	7.33	-	11.56	5.99	2.93	2.86	4.87	141.60	119.61	-
G21	7.69	-	11.47	5.98	2.63	2.71	5.08	137.89	116.77	-
G22	7.63	-	11.47	6.27	2.58	2.94	4.98	137.21	117.50	-
T23	7.21	1.61	-	6.08	2.14	2.14	4.51	138.35	-	-

