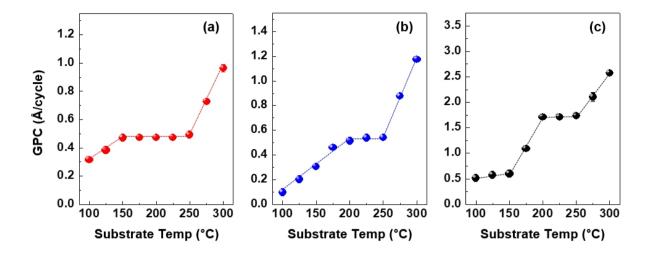
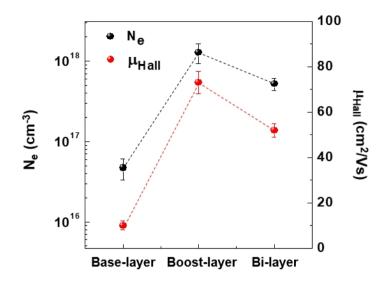
Supporting Information for

Achieving low-voltage, high-mobility IGZO transistor through ALD-derived bi-layer channel and hafnia-based gate dielectric stack

Min Hoe Cho¹, Cheol Hee Choi¹, Hyeon Joo Seul¹, Hyun Cheol Cho¹, and Jae Kyeong Jeong^{*,1}

¹Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea

AUTHOR EMAIL ADDRESS: J. K. Jeong (jkjeong1@hanyang.ac.kr).

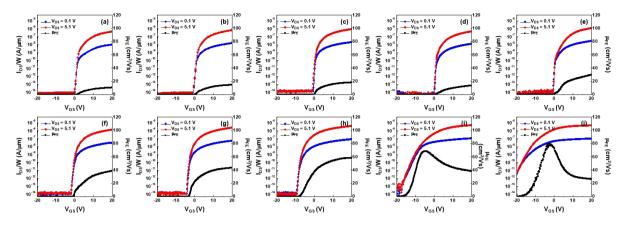

Figure S1. The growh rate per cycle (GPC) of (a) In_2O_3 , (b) Ga_2O_3 , and (c) ZnO as a function of substrate temperature.

Figure S2. Carrier density (N_e) and Hall mobility (μ_{Hall}) of the ALD-derived base layer, boost layer and bilayer IGZO thin films at $T_A = 500$ °C on the glass substrate.

Table S1. N_e and μ_{Hall} of the ALD-derived base layer, boost layer and bilayer IGZO thin films at $T_A = 500$ °C on a glass substrate.

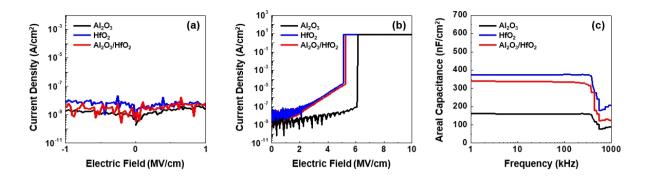
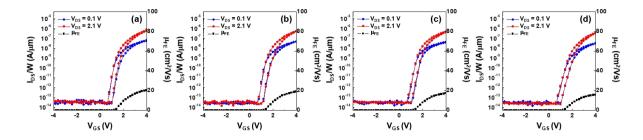

Material	$N_e [10^{17}/\text{cm}^3]$	μ_{Hall} [cm ² /(V s)]
In _{0.52} Ga _{0.29} Zn _{0.19} O (13 nm), Base layer	0.47 ± 0.14	10 ± 2
$In_{0.82}Ga_{0.08}Zn_{0.10}O$ (13 nm), Boost layer	12.81 ± 3.49	73 ± 5
$In_{0.82}Ga_{0.08}Zn_{0.10}O\;(3\;nm)/In_{0.52}Ga_{0.29}Zn_{0.19}O\;(10\;nm), Bilayer$	5.24 ± 0.91	52 ± 3

Figure S3. Representative transfer characteristics of ALD-derived IGZO bottom-gate structure TFT with 10 different cation compositions; (a) $In_{0.42}Ga_{0.48}Zn_{0.10}O$, (b) $In_{0.47}Ga_{0.40}Zn_{0.13}O$, (c) $In_{0.52}Ga_{0.29}Zn_{0.19}O$, (d) $In_{0.28}Ga_{0.30}Zn_{0.42}O$, (e) $In_{0.32}Ga_{0.21}Zn_{0.47}O$, (f) $In_{0.42}Ga_{0.48}Zn_{0.10}O$, (g) $In_{0.42}Ga_{0.15}Zn_{0.43}O$, (h) $In_{0.54}Ga_{0.12}Zn_{0.34}O$, (i) $In_{0.67}Ga_{0.10}Zn_{0.22}O$, and (j) $In_{0.82}Ga_{0.08}Zn_{0.10}O$. The devices were fabricated on the SiO₂/Si substrate where the thermal SiO₂ and p⁺-Si substrate act as the gate insulator and electrode, respectively.

Channel	Gate Insulator	Cation Composition [In:Ga:Zn, at%]	μ_{FE} [cm ² /(V s)]	SS [V/dec]	V _{TH} [V]	<i>I_{ON/OFF}</i> [× 10 ⁷]	Corresponding I-V curve in Fig. S2
		42:48:10	10.6	0.37	1.58	~ 5.4	(a)
		47:40:13	14.5	0.40	1.05	~ 7.2	(b)
		52:29:19	18.2	0.43	0.57	~ 8.3	(c)
		28:30:42	13.7	0.34	1.35	~ 6.8	(d)
IGZO	100 nm	32:21:47	29.8	0.42	0.92	~ 13.3	(e)
1020	SiO ₂	38:18:44	38.5	0.52	-0.24	~ 17.7	(f)
		42:15:43	43.5	0.60	-2.69	~ 19.5	(g)
		54:12:34	58.6	0.71	-7.32	~ 31.2	(h)
		67:10:22	68.7	1.72	-11.68	~ 3.8	(i)
		82:8:10	79.4	2.63	-16.44	~ 0.01	(j)

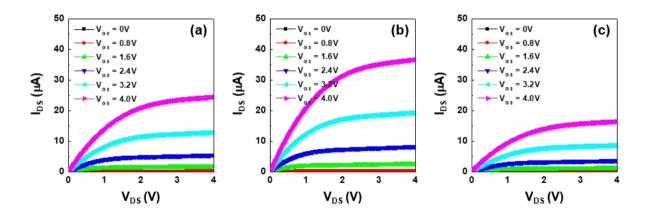
Table S2. Summary of electrical parameters: μ_{FE} , SS, V_{TH} , and $I_{ON/OFF}$ of the ALD-derived IGZO bottom-gate structure TFTs with 10 different cation compositions.

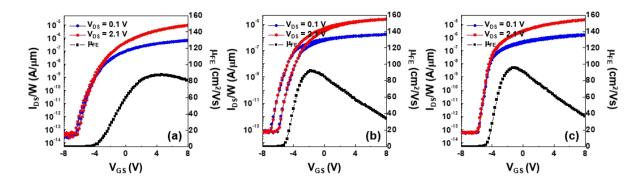

Figure S4. Electrical characteristics of the ALD-derived high- κ dielectric film with an Al₂O₃ (50 nm), HfO₂ (50 nm) and Al₂O₃ (4 nm)/HfO₂ (50 nm) stack: (a) leakage current density (J_g), (b) breakdown field (E_{br}), and (c) frequency-dependent areal capacitance.

The leakage current density (J_{e}) , critical breakdown field (E_{br}) and dielectric constant (κ) of the MIM capacitors with different ALD-derived high-k dielectric films were measured to evaluate their suitability as a gate insulator for IGZO TFTs. The fabricated MIM capacitors were subjected to PDA at 400°C in a vacuum ambient. Figure S4a shows the variations of the leakage current density (J_g) as a function of the applied electric field (E), which was thickness-normalized for better comparison. The capacitor with an Al₂O₃ film had a J_g value of 2.37 × 10⁻⁹ A/cm² at 1 MV/cm. The J_g value slightly increased to 5.55×10^{-9} A/cm² for the capacitor with the HfO₂ film. This phenomenon can be attributed to the existence of the grain boundary defects in HfO_2 as a leakage current path (Figure S10). Since the IGZO/HfO2 interface is known to be inferior to the IGZO/SiO2 and IGZO/Al2O3, the 4-nm-thick Al2O3 film was inserted as the interface stabilizer. The capacitor with an Al₂O₃/HfO₂ dielectric stack film had a J_g value of 3.59×10^{-9} A/cm², which is an intermediate value between the J_g value of Al₂O₃ and HfO₂ film, indicating that the inserted Al_2O_3 thin film can suppress the leakage current. The E_{br} value, which is defined as the electric field yielding a rapid increase up to the compliance limit, is also shown in Figure S4b. The E_{br} value for the different ALD-derived high- κ dielectric films shows the same trend as the J_g value. Figure S4c shows the variations in the areal capacitance value as a function of applied frequency for the MIM capacitors with different ALD-derived high-k dielectric films. The areal capacitance values of the MIM capacitors with the Al₂O₃, HfO₂, and Al₂O₃/HfO₂ dielectric stack films were 175.1, 375.8, and 334.9 nF/cm² at 100 kHz, respectively. From these values, the κ values were calculated to be 9, 21, and 20, respectively. It is evident that the Al₂O₃/HfO₂ dielectric stack film with the inserted 4-nm-thick Al₂O₃ thin layer had better J_g and E_{br} values compared to the HfO₂ only capacitor, whereas κ values of 20 were obtained that are comparable to that of the HfO₂ only capacitor.

The J_g , E_{br} , and κ values for different ALD-derived high- κ dielectric films are summarized in **Table S3**.

Material	Thickness [nm]	J _g [A/cm ²] (@ 1 MV/cm)	<i>E_{br}</i> [MV/cm]	C _{OX} [nF/cm ²] (@ 100 kHz)	к (@ 100 kHz)
Al ₂ O ₃	50	2.37 × 10 ⁻⁹	6.1	159.31	~ 9
HfO ₂	50	5.55 × 10 ⁻⁹	5.1	375.80	~ 21
Al ₂ O ₃ /HfO ₂	$54 \\ (Al_2O_3 = 4, HfO_2 = 50)$	3.59 × 10 ⁻⁹	5.3	334.91	~ 20


Table S3. Summary of electrical parameters: leakage current density (J_g) , critical breakdown field (E_{br}) , areal capacitance (C_{OX}) , and κ values of the ALD-derived high- κ dielectric films.


Figure S5. Representative transfer characteristics of the base layer IGZO TFTs with different thicknesses of HfO_2 as a gate insulator; (a) 60, (b) 70, (c) 80, and (d) 90 nm.

SS Gate V_{TH} ION/OFF C_{OX} N_{T,max} μ_{FE} Channel Insulator. $[nF/cm^2]$ $[cm^2/(V s)]$ [V/dec] $[\times 10^7]$ [cm⁻³ev⁻¹] [V] 60 nm 3.96×10^{18} 313 20.5 ± 0.38 0.15 ± 0.01 1.27 ± 0.25 ~ 2.2 HfO_2 70 nm 0.17 ± 0.02 3.97×10^{18} 269 18.9 ± 0.45 1.38 ± 0.31 ~ 1.5 HfO₂ In_{0.52}Ga_{0.29}Zn_{0.19}O (Base layer) 80 nm 17.4 ± 0.56 0.20 ± 0.02 234 1.47 ± 0.29 ~ 1.4 $3.96 imes 10^{18}$ HfO_2 90 nm 208 $15.6 \pm 0.31 \quad 0.24 \pm 0.01$ 1.61 ± 0.21 ~ 1.2 4.00×10^{18} HfO₂

Table S4. Summary of electrical parameters: μ_{FE} , SS, V_{TH} , $I_{ON/OFF}$, and $N_{T.max}$ of the base layer IGZO TFTs with different thickness of HfO₂ as a gate insulator.

Figure S6. Corresponding output characteristics of the base layer IGZO TFT with different gate insulators of (a) HfO_2 (100 nm), (b) HfO_2 (50 nm), and (c) Al_2O_3 (50 nm).

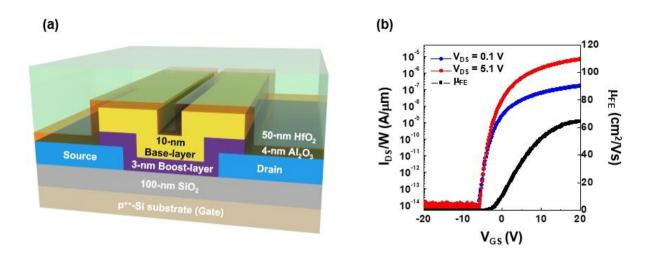
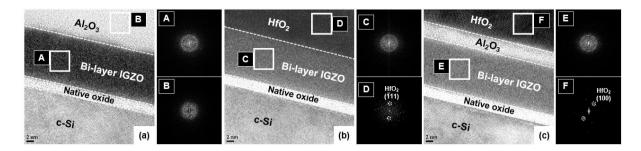

Figure S7. Representative transfer characteristics of the boost layer IGZO TFTs with different gate insulators of (a) Al_2O_3 (50 nm), (b) HfO_2 (50 nm), and (c) Al_2O_3 (4 nm)/ HfO_2 (50 nm).

Table S5. Summary of electrical parameters: μ_{FE} , SS, V_{TH} , $I_{ON/OFF}$, and $N_{T.max}$ for the boost layer IGZO TFTs with different gate insulators of (a) Al₂O₃ (50-nm), (b) HfO₂ (50-nm), and (c) Al₂O₃ (4-nm)/ HfO₂ (50-nm).

Channel	Gate Insulator	C _{OX} [nF/cm ²]	$\frac{\mu_{FE}}{[\text{cm}^2/(\text{V s})]}$	SS [V/dec]	V_{TH} [V]	$I_{ON/OFF}$ [× 10 ⁷]	$N_{T,max}$ [cm ⁻³ ev ⁻¹]
	50 nm Al ₂ O ₃	159	87.8 ± 0.73	0.63 ± 0.02	-4.36 ± 0.22	~ 17.8	8.08×10^{18}
In _{0.82} Ga _{0.08} Zn _{0.10} O (Boost layer)	50 nm HfO ₂	376	92.3 ± 0.73	0.36 ± 0.03	-5.58 ± 0.28	~ 35.0	10.9×10^{18}
	54 nm Al ₂ O ₃ /HfO ₂	335	95.7 ± 0.66	0.30 ± 0.02	-4.84 ± 0.14	~ 37.4	8.10×10^{18}


Figure S8. Corresponding output characteristics of the bilayer IGZO TFTs with different gate insulators of (a) HfO_2 (50 nm) and (b) Al_2O_3 (4 nm)/ HfO_2 (50 nm).

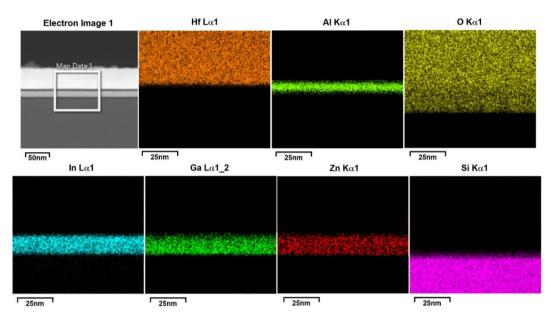

Figure S9. (a) Schematic diagram of the bottom gate structure bilayer IGZO TFT with gate insulator of SiO_2 (100 nm) and (b) corresponding transfer characteristic. The device went through PDA at 500°C for 1h in air ambient.

Table S6. Summary of electrical parameters: μ_{FE} , SS, and V_{TH} , and I_{ONOFF} of the bilayer IGZO TFT with gate insulator of SiO₂ (100 nm) through PDA at 500°C for 1h in air ambient.

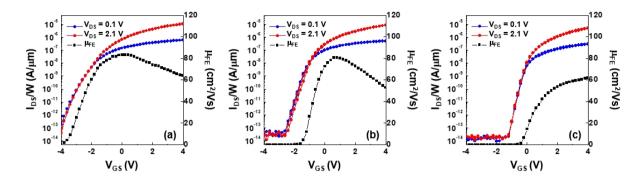

Channel	Gate Insulator	C _{OX} [nF/cm ²]	μ_{FE} [cm ² /(V s)]	SS [V/dec]	V _{TH} [V]	$I_{ON/OFF}$ [× 10 ⁷]	$N_{T,max}$ [cm ⁻³ ev ⁻¹]
In _{0.60} Ga _{0.21} Zn _{0.19} O (Bilayer)	100 nm SiO ₂	34.5	64.6 ± 1.21	0.79 ± 0.01	-3.80 ± 1.02	~ 22.1	2.21×10^{18}

Figure S10. Cross-sectional HRTEM images of (a) Al₂O₃/bilayer IGZO, (b) HfO₂/bilayer IGZO and (c) HfO₂/Al₂O₃/bilayer IGZO. Fast Fourier transform (FFT) patterns of the selected area in IGZO film are inserted in the given TEM images.

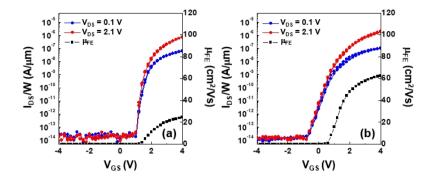
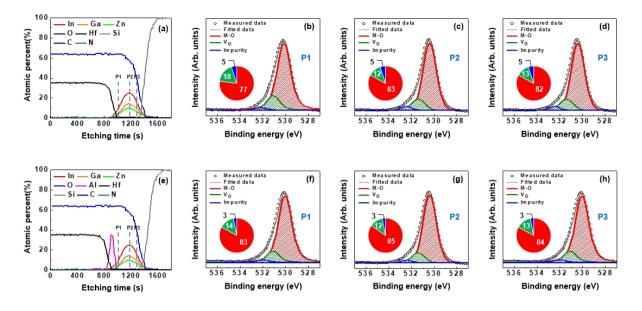

Figure S11. Elemental distributions of the HfO₂/Al₂O₃/bilayer IGZO stack by energy dispersive spectroscopy (EDS) mapping.

Figure S12. Representative transfer characteristics of the bilayer IGZO TFT with gate insulator of Al_2O_3 (4 nm)/ HfO₂ (50 nm) stack varying PDA conditions; PDA at (a) 300°C, (b) 400°C for 1h in air, and (c) 400°C for 1h in O₂ ambient.

Table S7. Summary of electrical parameters: μ_{FE} , SS, V_{TH} , and $I_{ON/OFF}$, and $N_{T,max}$ of the bilayer IGZO TFTs with gate insulator of Al₂O₃ (4 nm)/HfO₂ (50 nm) with varying PDA conditions.


Channel	Gate Insulator	PDA Condition	$\frac{\mu_{FE}}{[\text{cm}^2/(\text{V s})]}$	SS [V/dec]	V _{TH} [V]	$I_{ON/OFF}$ [× 10 ⁷]	$N_{T,max}$ [cm ⁻³ ev ⁻¹]
		300°C 1h in air	83.5 ± 1.03	0.46 ± 0.02	-2.64 ± 0.67	~ 26.6	12.4×10^{18}
$In_{0.60}Ga_{0.21}Zn_{0.19}O$ (Bilayer)	54 nm Al ₂ O ₃ /HfO ₂	400°C 1h in air	80.8 ± 0.86	0.30 ± 0.02	-1.49 ± 0.42	~ 24.8	$8.10 imes 10^{18}$
	1	400°C 1h in O ₂	61.9 ± 1.25	0.20 ± 0.01	-0.38 ± 0.14	~ 21.7	5.40×10^{18}

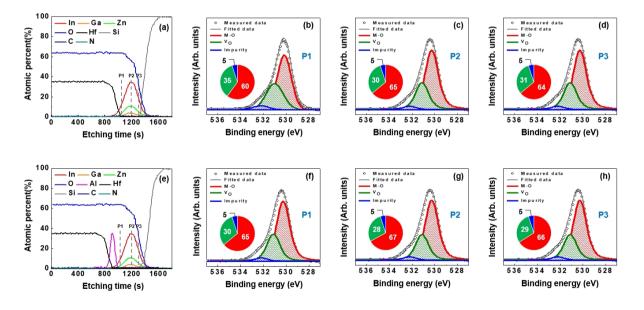
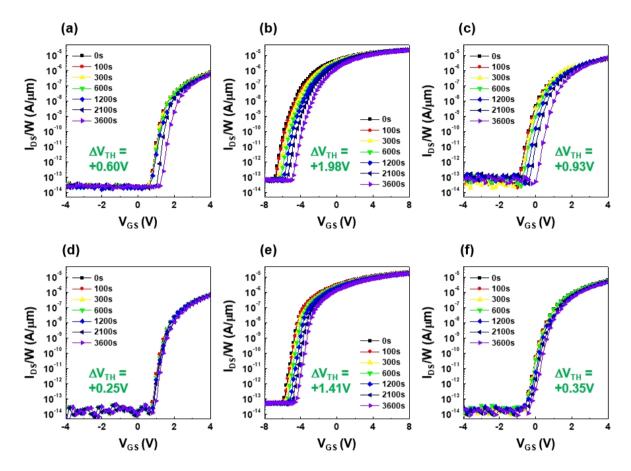
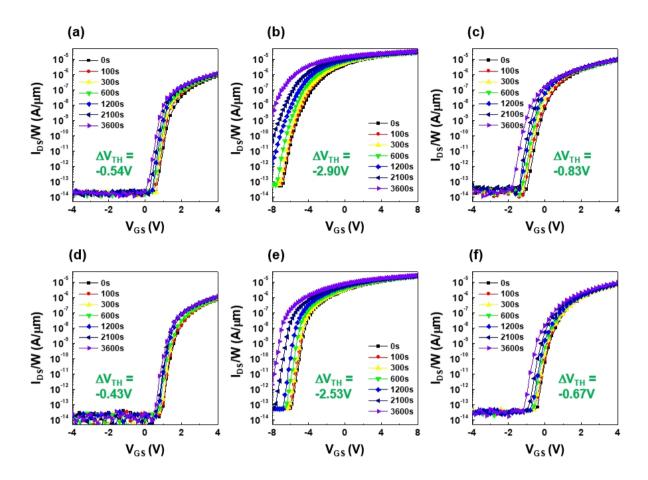

Figure S13. Representative transfer characteristics of the (a) base layer IGZO TFTs with the Al_2O_3 (4 nm)/HfO₂ (50 nm) gate insulator and (b) bilayer IGZO TFTs with a Al_2O_3 (50 nm) gate insulator.

Table S8. Summary of electrical parameters: μ_{FE} , SS, V_{TH} , $I_{ON/OFF}$, and $N_{T.max}$ of the base layer IGZO TFTs with the Al₂O₃ (4 nm)/HfO₂ (50 nm) and bilayer IGZO TFTs with Al₂O₃ (50 nm) gate insulator.


Channel	Gate Insulator	C _{OX} [nF/cm ²]	μ_{FE} [cm ² /(V s)]	<i>SS</i> [V/decade]	V _{TH} [V]	<i>I</i> _{ON/OFF} [× 10 ⁷]	$N_{T,max}$ [cm ⁻³ ev ⁻¹]
In _{0.52} Ga _{0.29} Zn _{0.19} O (Base layer)	54 nm Al ₂ O ₃ /HfO ₂	335	24.5 ± 0.58	0.10 ± 0.01	1.52 ± 0.27	~ 3.8	2.70×10^{18}
In _{0.60} Ga _{0.21} Zn _{0.19} O (Bilayer)	50 nm Al ₂ O ₃	159	62.7 ± 0.81	0.27 ± 0.02	0.74 ± 0.13	~ 11.3	3.46×10^{18}


Figure S14. XPS depth profile of the base layer IGZO film with different high- κ dielectric stacks and O *1s* spectra: (a) XPS depth profile of the HfO₂/base layer IGZO stack. O *1s* spectra taken from (b) P1, (c) P2, and (d) P3 position for the HfO₂/base layer IGZO stack. (e) XPS depth profile of the HfO₂/Al₂O₃/base layer IGZO stack. O *1s* spectra from (f) P1, (g) P2, and (h) P3 positions for the HfO₂/Al₂O₃/base layer IGZO stack.

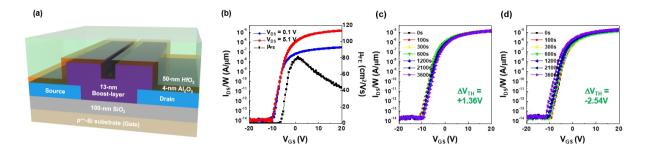
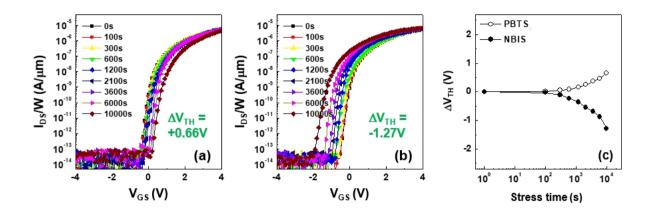

Figure S15. XPS depth profile of the boost layer IGZO film with different high- κ dielectric stacks and O *1s* spectra: (a) XPS depth profile of the HfO₂/boost layer IGZO stack. O *1s* spectra taken from (b) P1, (c) P2, and (d) P3 position for the HfO₂/boost layer IGZO stack. (e) XPS depth profile of the HfO₂/Al₂O₃/boost layer IGZO stack. O *1s* spectra from (f) P1, (g) P2, and (h) P3 position for the HfO₂/Al₂O₃/boost layer IGZO stack.

Figure S16. Evolution of time-dependent transfer characteristics of ALD-derived IGZO TFTs with various gate insulator; (a,d) base layer IGZO TFTs with (a) HfO₂ and (d) Al₂O₃/HfO₂, (b,e) boost layer IGZO TFTs with (b) HfO₂ and (e) Al₂O₃/HfO₂, (c,f) bilayer IGZO TFTs with (c) HfO₂ and (f) Al₂O₃/HfO₂. The stress conditions are $V_{GS} = V_{TH} + 10V$ at 60°C.


Figure S17. Evolution of time-dependent transfer characteristics of ALD-derived IGZO TFTs with various gate insulator; (a,d) base layer IGZO TFTs with (a) HfO₂ and (d) Al₂O₃/HfO₂, (b,e) boost layer IGZO TFTs with (b) HfO₂ and (e) Al₂O₃/HfO₂, (c,f) bilayer IGZO TFTs with (c) HfO₂ and (f) Al₂O₃/HfO₂. The stress conditions are $V_{GS} = V_{TH}$ -10V and a light intensity of 0.066mW/cm² (light source with a wavelength of ~533 nm with full-width at half maximum of approximately ±10 nm).

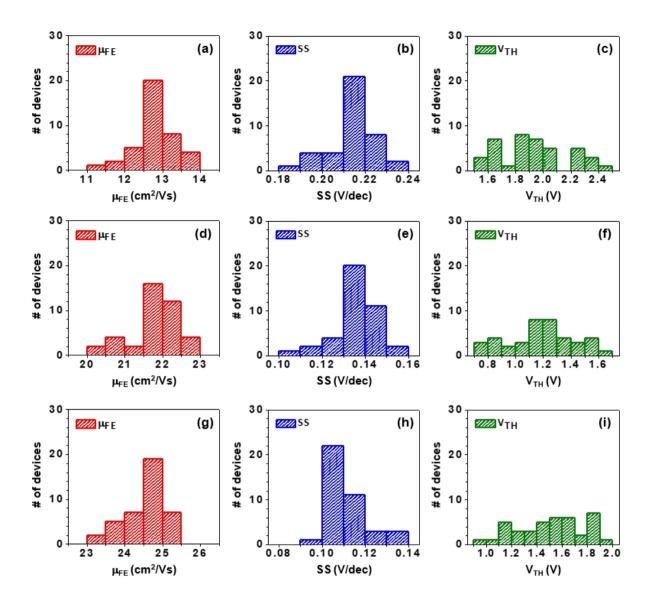
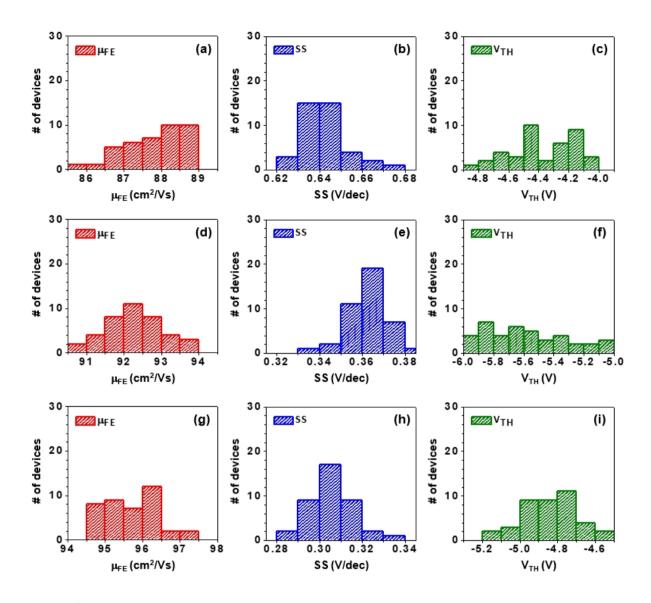

Figure S18. (a) Schematic diagram of the bottom gate structure boost layer IGZO TFT with SiO₂ (100 nm) gate insulator and (b) corresponding transfer characteristics. (c,d) Evolution of time-dependent transfer characteristics of bottom gate structure boost layer IGZO TFT with SiO₂ (100 nm) gate insulator under (c) PBTS and (b) NBIS conditions for 3,600 sec.

Table S9. Summary of electrical parameters: μ_{FE} , SS, and V_{TH} , and $I_{ON/OFF}$ of the boost layer IGZO TFT with SiO₂ (100 nm) gate insulator through PDA at 500°C for 1h in air ambient.


Channel	Gate Insulator	C _{OX} [nF/cm ²]	μ_{FE} [cm ² /(V s)]	SS [V/dec]	V _{TH} [V]	$I_{ON/OFF}$ [× 10 ⁷]	$N_{T,max}$ [cm ⁻³ ev ⁻¹]
In _{0.82} Ga _{0.08} Zn _{0.10} O (Boost layer)	100 nm SiO ₂	34.5	81.3 ± 4.04	0.97 ± 0.02	-6.08 ± 2.16	~ 29.4	2.70×10^{18}

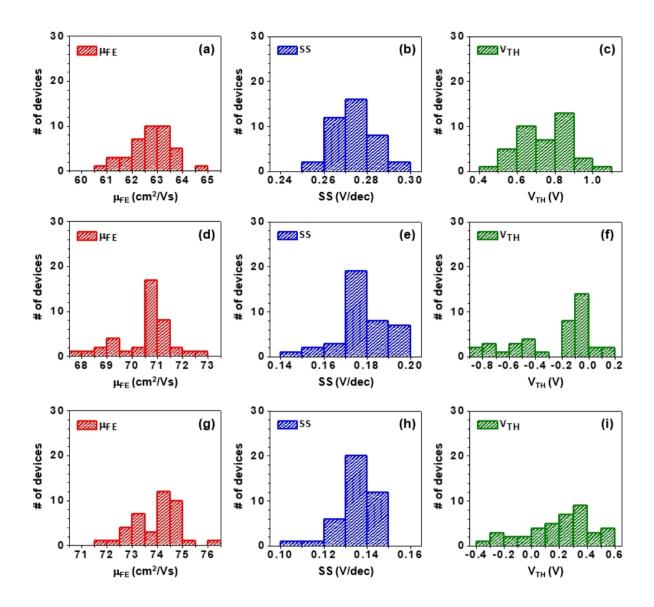

Figure S19. Variations in the transfer characteristics for the bilayer IGZO TFT with gate insulator of Al_2O_3 (4 nm)/HfO₂ (50 nm) stack under (a) PBTS and (b) NBIS conditions for 10,000 sec. (c) Corresponding V_{TH} shift as a function of the stress time.

Figure S20. Distribution of (a, d, g) μ_{FE} , (b, e, h) *SS*, and (c, f, i) V_{TH} for the base layer IGZO TFTs with (a-c) Al₂O₃, (e-f) HfO₂, and (g-i) Al₂O₃/HfO₂ gate insulator. These data were for 40 different transistors.

Figure S21. Distribution of (a, d, g) μ_{FE} , (b, e, h) *SS*, and (c, f, i) V_{TH} for the boost layer IGZO TFTs with (a-c) Al₂O₃, (e-f) HfO₂, and (g-i) Al₂O₃/HfO₂ gate insulator. These data were for 40 different transistors.

Figure S22. Distribution of (a, d, g) μ_{FE} , (b, e, h) *SS*, and (c, f, i) V_{TH} for the bilayer IGZO TFTs with (a-c) Al₂O₃, (e-f) HfO₂, and (g-i) Al₂O₃/HfO₂ gate insulator. These data were for 40 different transistors.