Supplementary Information for the Paper

Metal-Free C–C/C–N/C–C Bonds Formation Cascade for the Synthesis of (Trifluoromethyl)sulfonylated Cyclopenta[b]indolines

Carlos Lázaro-Milla,[†] Hikaru Yanai,[‡] and Pedro Almendros*,^{\$}

[†]Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040-Madrid, Spain

[§]Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006-Madrid, Spain

E-mail: palmendros@iqog.csic.es

[‡]School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi,

Hachioji, Tokyo 192-0392, Japan

Table of Contents

Figure S1	2
General Methods	2
Experimental Section	3–52
¹ H NMR, ¹³ C NMR, ¹⁹ F NMR, and D(² H) NMR Spectra	53-227
Computational Details	228–244
Crystallographic Data	245–252

Reaction coordinate

Figure S1. Reaction profile for the reaction of 2a with Tf₂C=CH₂ (403.15 K)

General Methods: ¹H NMR, ¹³C NMR, ¹⁹F NMR, and D(²H) NMR spectra were recorded on a Bruker Avance AMX-700, Bruker AMX-500, or Bruker Avance-DPX 300. NMR spectra were recorded in CDCl₃ or acetone-d₆ solutions, except otherwise stated. Chemical shifts are given in ppm relative to TMS (¹H, 0.0 ppm), or CDCl₃ (¹H, 7.27 ppm; ¹³C, 76.9 ppm), or acetone-d₆ (¹H, 2.05 ppm; ¹³C, 206.3 ppm) or 1,1,2,2-tetrachloroethane-d₂ (¹H, 6.00 ppm). Chemical shifts in ¹⁹F are given in ppm relative to (trifluoromethyl)benzene (C₆H₅CF₃) in CDCl₃ (¹⁹F, –63.7 ppm). Low and high resolution mass spectra were taken on an AGILENT 6520 Accurate-Mass QTOF LC/MS spectrometer using the electronic impact (EI) or electrospray modes (ES) unless otherwise stated. IR spectra were recorded on a Bruker Tensor 27 spectrometer. All commercially available compounds were used without further purification. Microwave irradiation was carried out in a Monowave 300 from Anton Paar GmbH. The reaction temperatures during microwave heating were measured with

an internal infrared sensor. Column chromatography was carried out using silica gel 60, 0.04-0.06 mm, for flash chromatography (230-400 mesh ASTM) provided by Scharlau. For reactions that require heating, a heating-on block was used.

Yanai's reagent 1 was synthesized according to a literature procedure: H. Yanai, Y. Takahashi, H.
Fukaya, Y. Dobashi, T. Matsumoto, *Chem. Commun.* 2013, 49, 10091. Deuterated Yanai's reagent
[D]-1 was prepared adapting the same procedure (B. Alcaide, P. Almendros, C. Lázaro-Milla, *Chem. Eur. J.* 2019, 25, 7547).

To a solution of Tf₂CH₂ (281 mg, 1.00 mmol) in 1,2-dichloroethane (6.0 mL), paraformaldehyde (90% purity, 73.0 mg, 2.19 mmol) or paraformaldehyde-d₂ (98% purity, 98 atom % D, 64 mg, 2.00 mmol) and 2-fluoropyridine (172 μ L, 2.00 mmol) were added at room temperature. After being stirred for 8 h at 60 °C, the reaction mixture was concentrated under reduced pressure. The resulting residue was washed with CHCl₃ (1.0 mL x 3) to give zwitterion **1** in 91% yield (356 mg, 0.915 mmol) or [D]-**1** in 86% yield (336 mg, 0.858 mmol).

Deuterated Yanais'reagent [D]-1. From 281 mg (1.0 mmol) of CH₂Tf₂, 336 mg (86%) of compound [D]-1 was obtained as a colorless solid; mp 161–163 °C; ¹H NMR (700 MHz, CD₃CN, 25 °C): $\delta = 8.99$ (s, 1H, CH^{Ar}), 8.64 (m, 1H, CH^{Ar}), 7.95 (m, 1H, CH^{Ar}), 7.78 (m, 1, CH^{Ar}); ¹³C NMR (175 MHz, CD₃CN, 25 °C): $\delta = 158.7$ (d, $J_{CF} = 278.8$ Hz, $C^{\text{Ar-q}}$ -F), 151.1 (d, $J_{CF} = 9.9$ Hz, CH^{Ar}), 142.0 (CH^{Ar}), 120.7 (q, $J_{CF} = 325.4$ Hz, 2CF₃), 114.3 (d, $J_{CF} = 21.3$ Hz, CH^{Ar}), 67.1 (CTf₂-*broad*), 56.6 (CD₂- *broad*); ¹⁹F NMR (282 MHz, CD₃CN, 25 °C): $\delta = -79.6$ (s, 1F, F), -80.5 (s, 6F, 2CF₃); D(²H) NMR (107 MHz, CD₃CN, 25 °C): $\delta = 5.63$ (s, 2D, CD₂); IR (KBr): $\nu = 1345$, 1101 (O=S=O), 1192 (C–F) cm⁻¹.

Novel allenols 2a-o and alkenols 6a-g were prepared as follow:

Step A: To a suspension of LiAlH₄ (2.5 mmol) in dry THF (2 mL), cooled to 0°C under argon, was added the corresponding carboxylic acid (1.0 mmol) in portions and then stirred at room temperature until complete conversion (product monitored by TLC). The reaction was carefully quenched with H₂O, NaOH (15% aq.), at 0 °C, and then stirred at room temperature for 30 min. The resulting

mixture was filtered through a pad of celite and extracted with AcOEt, dried over MgSO₄ and concentrated to afford a crude product, which was used directly in the next reaction.

Step B: To a stirring solution of the appropriate aminobenzyl alcohol (1.0 mmol) in 0.6 mL of dioxane, 0.6 mL of saturated NaHCO₃ solution, and 0.6 mL of water at 0 °C was added the corresponding chloroformate (1.2 mmol) dropwise. The resulting mixture was stirred at room temperature. After complete conversion the reaction was diluted with brine and extracted with AcOEt. The organic layers were dried over MgSO₄ and concentrated under reduced pressure to afford a crude product, which was used directly in the next reaction (Procedure described in: P. Y. Chong, S. Z. Janicki, P. A. Petillo, *J. Org. Chem.* **1998**, *63*, 85153).

Step B': To a stirring solution of 2-aminobenzyl alcohol (1.0 mmol) in Et₂O (2 mL) at 0 °C was added Ac₂O (3.0 mmol) dropwise. After 5 min stirring at the same temperature, the precipitate was collected by filtration and dry under reduced pressure. The product was used directly in the next reaction (Procedure described in: K. Kobayashi, N. Matsumoto, *Helv. Chim. Acta* **2014**, *97*, 923).

Step C: The appropriate *N*-carbamate alcohol (1.0 mmol) was dissolved in DCM (20 mL) and activated MnO_2 (15 mmol) was added to the solution. The suspension was stirred at rt after complete conversion (product monitored by TLC). Then, the solution was filtered through a pad of celite, and the filtrate was concentrated to afford the crude mixture. Purification by flash column chromatography on silica gel gave aldehydes 2a'-2o'.

Aldehydes 2a'-2c', 2i', 2l' and 2n' were prepared as described in the literature: 2a' (X. Wen, Y. Wang, X. P. Zhang, *Chem. Sci.* 2018, 9, 5082); 2b' (Y.-T. Lee, Y.-J. Jang, S.-e. Syu, S.-C. Chou, C.-J. Lee, W. Lin, *Chem. Commun.* 2012, 48, 8135); 2c' (I. Muthukrishnan, M. Karuppasamy, B. S. Vachan, D. Rajput, N. Subbiah, C. U. Maheswari, V. Sridharan, *Org. Chem. Front.* 2020, 7, 1616);
2i' (L. A. Leth, F. Glaus, M. Meazza, L. Fu, M. K. Thøgersen, E. A. Bitsch, K. A. Jørgensen, *Angew. Chem. Int. Ed.* 2016, 55, 15272); 2l' (R. T. Sawant, M. Y. Stevens, L. R. Odell, *ACS Omega* 2018,

3, 14258); **2n'** (M. Y. Stevens, K. Wieckowski, P. Wu, R. T. Sawanta, L. R. Odell, *Org. Biomol. Chem.* **2015**, *13*, 2044).

Aldehyde 2d'. From 987 mg (4.06 mmol) of the corresponding alcohol, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 2d' (778 mg, 79%) as a colorless solid; mp 88–90 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 10.90$ (s, 1H, NH), 9.89 (d, 1H, J = 0.5 Hz, CHO), 8.40 (d, 1H, J = 8.5 Hz, CH^{Ar}), 7.62 (dd, 1H, J = 7.6, 1.6 Hz, CH^{Ar}), 7.55 (m, 1H, CH^{Ar}), 7.33 (m, 2H, 2CH^{Ar}), 7.17 (m, 4H, 4CH^{Ar}); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 195.2$ (HC=O), 151.9 (C=O), 150.4 ($C^{\text{Ar-q}}$), 140.7 ($C^{\text{Ar-q}}$), 136.1 (CH^{Ar}), 136.0 (CH^{Ar}), 129.4 (2CH^{Ar}), 125.8 (CH^{Ar}), 122.5 (CH^{Ar}), 121.6 (2CH^{Ar}), 118.5 (CH^{Ar}); IR (CHCl₃): v = 3278 (NH), 1714 (C=O), 1668 (C=O) cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₂NO₃ 242.0812; Found 242.0817.

Aldehyde 2h'. From 264 mg (1.14 mmol) of the corresponding alcohol, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 2h' (209 mg, 80%) as a yellow solid; mp 125–127 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 10.40$ (s, 1H, NH), 10.05 (d, 1H, J = 0.6 Hz, CHO), 8.77 (s, 1H, CH^{Ar}), 8.17 (s, 1H, CH^{Ar}), 7.85 (m, 2H, 2CH^{Ar}), 7.61 (m, 1H, CH^{Ar}), 7.44 (m, 1H, CH^{Ar}), 3.84 (s, 3H, OCH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 195.0$ (HC=O), 154.3 (C=O), 140.1 (CH^{Ar}), 137.1 (C^{Ar-q}), 135.8 (C^{Ar-q}), 130.3 (CH^{Ar}), 128.9

(CH^{Ar}), 128.2 ($C^{\text{Ar-q}}$), 127.7 (CH^{Ar}), 125.4 (CH^{Ar}), 122.6 ($C^{\text{Ar-q}}$), 115.2 (CH^{Ar}), 52.4 (OCH₃); IR (CHCl₃): v = 1729 (C=O), 1654 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₂NO₃ 230.0812; Found 230.0811.

Aldehyde 2j'. From 614 mg (2.0 mmol) of the corresponding alcohol, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 2j' (228 mg, 37%) as a colorless solid; mp 126–128 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 10.51$ (s, 1H, NH), 9.82 (d, 1H, J = 0.6 Hz, CHO), 8.27 (d, 1H, J = 8.9 Hz, CH^{Ar}), 7.92 (d, 1H, J = 2.1 Hz, CH^{Ar}), 7.85 (ddd, 1H, J = 8.9, 2.2, 0.4 Hz, CH^{Ar}), 3.81 (s, 3H, OCH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 193.7$ (HC=O), 153.9 (C=O), 144.4 (CH^{Ar}), 144.0 (CH^{Ar}), 140.8 (*C*^{Ar-q}), 123.0 (*C*^{Ar-q}), 120.4 (CH^{Ar}), 83.5 (*C*^{Ar-q}), 52.6 (OCH₃); IR (CHCl₃): $\nu = 1732$ (C=O), 1656 (C=O) cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₉H₉INO₃ 305.9622; Found 305.9625.

Aldehyde 2k'. From 512 mg (1.96 mmol) of the corresponding alcohol, and after flash chromatography of the residue using hexanes/ethyl acetate (95:5) as eluent gave compound 2k' (259 mg, 57%) as a colorless solid; mp 122–124 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 11.10 (s, 1H, NH), 10.47 (d, 1H, *J* = 0.7 Hz, CHO), 8.46 (m, 1H, CH^{Ar}), 7.39 (m, 1H, CH^{Ar}), 7.31 (dd, 1H, *J* = 7.9, 1.2 Hz, CH^{Ar}), 3.81 (s, 3H, OCH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 196.4 (HC=O), 153.9 (C=O), 143.5 (*C*^{Ar-q}), 136.6 (CH^{Ar}), 129.7 (*C*^{Ar-q}), 127.2 (CH^{Ar}), 118.2 (CH^{Ar}), 117.7 (*C*^{Ar-q}),

52.6 (OCH₃); IR (CHCl₃): v = 3277(NH), 1731 (C=O), 1522 (C=O) cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₉H₉BrNO₃ 257.9760; Found 257.9745.

Aldehyde 2m'. From 759 mg (2.76 mmol) of the corresponding alcohol, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1 \rightarrow 8:2) as eluent gave compound 2m' (492 mg, 65%) as a colorless solid; mp 137–139 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta =$ 9.99 (s, 1H, CHO), 7.65 (m, 2H, 2CH^{Ar}), 7.04 (s, 1H, NH), 3.80 (s, 3H, OCH₃), 2.39 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta =$ 189.4 (HC=O), 155.3 (C=O), 138.2 (CH^{Ar}), 137.8 (C^{Ar-q}), 134.4 (C^{Ar-q}), 131.5 (C^{Ar-q}), 129.5 (CH^{Ar}), 120.3 (C^{Ar-q}), 53.3 (OCH₃), 20.5 (CH₃); IR (CHCl₃): v = 2975 (NH), 1737 (C=O), 1660 (C=O) cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₀H₁₁BrNO₃ 271.9917; Found 271.9921.

Aldehyde 20'. From 1.2 g (4.97 mmol) of the corresponding alcohol, and after flash chromatography of the residue using hexanes/ethyl acetate (8:2) as eluent gave compound 20' (689 mg, 58%) as a colorless solid; mp 148–150 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 10.76 (s, 1H, NH), 9.69 (s, 1H, CHO), 8.10 (s, 1H, CH^{Ar}), 6.99 (s, 1H, CH^{Ar}), 3.96 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 192.7 (HC=O), 155.5 (C=O), 154.3 (C^{Ar-q}), 143.8 (C^{Ar-q}), 137.7 (C^{Ar-q}), 116.3 (CH^{Ar}), 114.0 (CH^{Ar}), 101.3 (C^{Ar-q}), 56.2 (OCH₃), 56.1 (OCH₃),

52.2 (OCH₃); IR (CHCl₃): v = 2983 (NH), 1728 (C=O), 1585 (C=O) cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₄NO₅ 240.0866; Found 240.0863.

Step D: The appropriate bromobutyne (3.0 mmol) was added to a well stirred suspension of the corresponding aldehyde **2'** (1.0 mmol) and indium powder (6.0 mmol) in THF/NH₄Cl (aq. sat.) (1:5, 5 mL) at 0 °C. The resulting mixture was allowed to warm slowly to room temperature. After disappearance of the starting material (TLC) the mixture was extracted with ethyl acetate. The organic extract was washed with brine, dried over MgSO₄ and concentrated under reduced pressure. Chromatography of the residue gave allenols **2a–20** (Procedure described in: B. Alcaide, P. Almendros, T. Martínez del Campo, R. Carrascosa, *Chem. Asian J.* **2008**, *3*, 1140).

Allenol 2a. From 150 mg (1.14 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (8:2) as eluent gave compound 2a (120 mg, 62%) as a colorless oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.97$ (m, 2H, CH^{Ar}, NH), 7.31 (m, 1H, CH^{Ar}), 7.15 (m, 1H, CH^{Ar}), 7.02 (m, 1H, CH^{Ar}), 5.07 (m, 1H, CHOH), 4.94 (m, 2H, C=·=CH₂), 3.74 (s, 3H, OCH₃), 2.96 (s, 1H, OH), 1.55 (t, 3H, *J* = 3.1 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 203.9$ (C=*C*=CH₂), 154.2 (C=O), 137.1 (*C*^{Ar-q}), 128.8 (CH^{Ar}), 128.6 (CH^{Ar}), 128.0 (*C*^{Ar-q}), 122.8 (CH^{Ar}), 121.0 (CH^{Ar}), 101.0 (*C*=C=CH₂), 78.7 (C=C=CH₂), 74.5 (CHOH), 52.1 (OCH₃), 15.3 (CH₃); IR (CHCl₃): v = 3487 (OH), 1959 (C=C=C), 1764 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₅NO₃Na 256.0944; Found 256.0944.

Allenol 2b. From 150 mg (0.58 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 2b (134 mg, 74%) as a colorless oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.05$ (m, 2H, CH^{Ar}, NH), 7.36 (m, 6H, 6CH^{Ar}), 7.16 (dd, 1H, J = 7.6, 1.5 Hz, CH^{Ar}), 7.04 (td, 1H, J = 7.5, 1.1 Hz, CH^{Ar}), 5.24 (d, 1H, J = 12.3 Hz, OC*H*H), 5.17 (d, 1H, J = 12.3 Hz, OCH*H*), 5.08 (m, 1H, CHOH), 4.87 (m, 2H, C=·=CH₂), 2.78 (d, 1H, J = 2.7 Hz, OH), 1.55 (t, 3H, J = 3.0 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 203.8$ (C=*C*=CH₂), 153.6 (C=O), 137.1 (*C*^{Ar-q}), 136.3 (*C*^{Ar-q}), 128.9 (CH^{Ar}), 128.7 (CH^{Ar}), 128.5 (2CH^{Ar}), 128.1 (3CH^{Ar}), 122.9 (CH^{Ar}), 121.2 (CH^{Ar}), 101.1 (*C*=C=CH₂), 78.9 (C=C=*C*H₂), 74.6 (CHOH), 66.7 (OCH₂), 15.4 (CH₃); IR (CHCl₃): v = 3498 (OH), 1963 (C=C=C), 1724 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₉H₁₉NO₃Na 332.1257; Found 332.1259.

Allenol 2c. From 164 mg (0.74 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 2c (195 mg, 96%) as a colorless oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.99$ (d, 1H, J = 8.1 Hz, CH^{Ar}), 7.69 (s, 1H, NH), 7.32 (m, 1H, CH^{Ar}), 7.18 (dd, 1H, J = 7.6, 1.6 Hz, CH^{Ar}), 7.01 (td, 1H, J = 7.5, 1.2 Hz, CH^{Ar}), 5.09 (m, 1H, CHOH), 5.01 (m, 2H, C=·=CH₂), 2.53 (d, 1H, J = 2.8 Hz, OH), 1.56 (t, 3H, J = 3.0 Hz, CH₃), 1.53 (s, 9H, 3CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 203.9$ (C=C=CH₂), 153.0 (C=O), 137.6 (C^{Ar-q}), 128.9 (CH^{Ar}), 128.6 (CH^{Ar}), 127.9 (C^{Ar-q}), 122.6 (CH^{Ar}), 121.2 (CH^{Ar}),

101.2 (*C*=C=CH₂), 80.0 (*C*^{Cq}), 78.9 (C=C=*C*H₂), 74.4 (CHOH), 28.4 (3CH₃), 15.4 (CH₃); IR (CHCl₃): v = 3477 (OH), 1943 (C=C=C), 1764 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₂₁NO₃Na 298.1414; Found 298.1407.

Allenol 2d. From 150 mg (0.62 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 2d (102 mg, 55%) as a colorless oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.47$ (s, 1H, NH), 8.07 (d, 1H, J = 7.7 Hz, CH^{Ar}), 7.38 (m, 3H, 3CH^{Ar}), 7.23 (m, 4H, 4CH^{Ar}), 7.08 (td, 1H, J = 7.5, 0.9 Hz, CH^{Ar}), 5.12 (m, 1H, CHOH), 5.03 (m, 2H, C=:=CH₂), 2.86 (d, 1H, J = 2.4 Hz, OH), 1.61 (t, 3H, J = 3.1 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 203.9$ (C=C=CH₂), 151.9 (C=O), 150.8 (C^{Ar-q}), 136.9 (C^{Ar-q}), 129.4 (2CH^{Ar}), 129.1 (CH^{Ar}), 128.9 (CH^{Ar}), 128.1 (C^{Ar-q}), 125.6 (CH^{Ar}), 123.4 (CH^{Ar}), 121.7 (2CH^{Ar}), 121.1 (CH^{Ar}), 101.3 (C=C=CH₂), 79.2 (C=C=CH₂), 74.9 (CHOH), 15.6 (CH₃); IR (CHCl₃): $\nu = 3481$ (OH), 1950 (C=C=C), 1737 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₇NO₃Na 318.1101; Found 318.1108.

Allenol 2e. From 100 mg (0.56 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (9:1 \rightarrow 8:2) as eluent gave compound 2e (136 mg, 82%) as a pale yellow oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 7.95 (s, 1H, NH), 7.84

(d, 1H, J = 7.9 Hz, CH^{Ar}), 7.19 (m, 5H, 5CH^{Ar}), 7.11 (m, 2H, 2CH^{Ar}), 6.88 (td, 1H, J = 7.5, 1.2 Hz, CH^{Ar}), 5.68 (s, 1H, CHOH), 5.19 (m, 2H, C=·=CH₂), 3.68 (s, 3H, OCH₃), 2.78 (s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 207.1$ (C=C=CH₂), 154.5 (C=O), 137.3 (C^{Ar-q}), 133.6 (C^{Ar-q}), 129.4 (C^{Ar-q}), 129.0 (CH^{Ar}), 128.5 (2CH^{Ar}), 128.4 (CH^{Ar}), 127.3 (CH^{Ar}), 126.7 (2CH^{Ar}), 123.3 (CH^{Ar}), 121.6 (CH^{Ar}), 108.1 (C=C=CH₂), 81.8 (C=C=CH₂), 71.0 (CHOH), 52.2 (OCH₃); IR (CHCl₃): v = 3481 (OH), 1969 (C=C=C), 1768 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₇NO₃Na 318.1101; Found 318.1010.

Allenol 2f. From 100 mg (0.55 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (8:2) as eluent gave compound 2f (167 mg, 92%) as a pale yellow oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.08$ (s, 1H, NH), 7.94 (d, 1H, J = 7.8 Hz, CH^{Ar}), 7.24 (m, 4H, 4CH^{Ar}), 6.98 (m, 1H, 1CH^{Ar}), 6.81 (m, 2H, 2CH^{Ar}), 5.72 (s, 1H, CHOH), 5.25 (m, 2H, C=·=CH₂), 3.77 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 3.09 (s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 206.8$ (C=C=CH₂), 158.7 (C=O), 154.5 (*C*^{Ar-q}), 137.2 (*C*^{Ar-q}), 129.5 (*C*^{Ar-q}), 128.8 (CH^{Ar}), 128.4 (CH^{Ar}), 127.9 (2CH^{Ar}), 125.7 (*C*^{Ar-q}), 123.2 (CH^{Ar}), 121.5 (CH^{Ar}), 113.9 (2CH^{Ar}), 107.6 (*C*=C=CH₂), 81.6 (C=C=*C*H₂), 71.1 (CHOH), 55.1 (OCH₃), 52.2 (OCH₃); IR (CHCl₃): v = 3480 (OH), 1970 (C=C=C), 1769 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₉H₁₉NO₄Na 348.1206; Found 348.1215.

Allenol 2g. From 100 mg (0.55 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate ($85:15 \rightarrow 80:20$) as eluent gave compound 2g (175 mg, 85%) as a colorless oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.02$ (s, 1H, NH), 7.90 (d, 1H, J = 7.9 Hz, CH^{Ar}), 7.38 (m, 2H, 2CH^{Ar}), 7.28 (m, 1H, 1CH^{Ar}), 7.16 (m, 3H, 3CH^{Ar}), 6.98 (m, 1H, 1CH^{Ar}), 5.70 (m, 1H, CHOH), 5.26 (m, 2H, C=·=CH₂), 3.76 (s, 3H, OCH₃), 3.15 (d, 1H, J = 4.6 Hz, OH); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 207.2$ (C=C=CH₂), 154.5 (C=O), 137.1 (C^{Ar-q}), 132.7 (C^{Ar-q}), 131.5 (2CH^{Ar}), 129.3 (C^{Ar-q}), 129.1 (CH^{Ar}), 128.4 (2CH^{Ar}), 128.3 (CH^{Ar}), 123.4 (CH^{Ar}), 121.7 (C^{Ar-q}), 121.1 (CH^{Ar}), 107.3 (C=C=CH₂), 82.0 (C=C=CH₂), 70.9 (CHOH), 52.3 (OCH₃); IR (CHCl₃): $\nu = 3485$ (OH), 1965 (C=C=C), 1764 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₆BrNO₃Na 396.0206; Found 396.0215.

Allenol 2h. From 100 mg (0.43 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 2h (113 mg, 91%) as a colorless oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.46$ (s, 1H, NH), 8.20 (s, 1H, CH^{Ar}), 7.80 (d, 1H, J = 8.0 Hz, CH^{Ar}), 7.73 (d, 1H, J = 7.9 Hz, CH^{Ar}), 7.43 (m, 2H, 2CH^{Ar}), 5.21 (s, 1H, CHOH), 4.98 (m, 2H, C=·=CH₂), 3.79 (s, 3H, OCH₃), 3.04 (m, 1H, OH), 1.56 (t, 3H, J = 3.0 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 204.0$ (C=C=CH₂), 154.3 (C=O), 134.6 (C^{Ar-q}), 133.7 (C^{Ar-q}), 129.2 (C^{Ar-q}), 128.1 (CH^{Ar}), 127.4 (CH^{Ar}), 127.3 (CH^{Ar}), 126.6 (CH^{Ar}), 124.9 (CH^{Ar}), 117.6 (CH^{Ar}), 101.1 (C=C=CH₂), 79.0 (C=C=CH₂), 75.0 (CHOH), 52.2 (OCH₃), 15.5 (CH₃); IR (CHCl₃): $\nu = 3485$ (OH), 1948 (C=C=C), 1757 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₇NO₃Na 306.1101; Found 306.1103.

Allenol 2i. From 100 mg (0.52 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (85:15) as eluent gave compound 2i (129 mg, quantitative yield) as a colorless solid; mp 98–100 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta =$ 7.81 (m, 2H, CH^{Ar}, NH), 7.10 (d, 1H, J = 8.3 Hz, CH^{Ar}), 6.97 (s, 1H, CH^{Ar}), 5.03 (m, 1H, CHOH), 4.93 (m, 2H, C=·=CH₂), 3.73 (s, 3H, OCH₃), 2.96 (m, 1H, OH), 2.30 (s, 3H, CH₃), 1.55 (t, 3H, J = 3.1 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta =$ 204.0 (C=*C*=CH₂), 154.4 (C=O), 134.4 (*C*^{Ar-q}), 132.5 (*C*^{Ar-q}), 129.3 (CH^{Ar}), 129.1 (CH^{Ar}), 128.4 (*C*^{Ar-q}), 121.3 (CH^{Ar}), 101.1 (*C*=C=CH₂), 78.6 (C=C=CH₂), 74.3 (CHOH), 52.1 (OCH₃), 20.7 (CH₃), 15.3 (CH₃); IR (CHCl₃): v = 3352 (OH), 1955 (C=C=C), 1724 (C=O) cm⁻¹. Badly ionizing compound in MS.

Allenol 2j. From 150 mg (0.49 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 2j (155 mg, 88%) as a colorless oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.96$ (s, 1H, NH), 7.75 (d, 1H, J = 8.4 Hz, CH^{Ar}), 7.57 (dd, 1H, J = 8.7, 1.9 Hz, CH^{Ar}), 7.46 (d, 1H, J = 2.0 Hz, CH^{Ar}), 4.99 (s, 1H, CHOH), 4.93 (m, 2H, C=·=CH₂), 3.73 (s, 3H, OCH₃), 3.11 (m, 1H, OH), 1.56 (t, 3H, J = 3.1 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 204.1$ (C=C=CH₂), 153.9 (C=O), 137.6 (CH^{Ar}), 136.9 (CH^{Ar}), 130.3 (C^{Ar-q}), 122.7 (C^{Ar-q}), 100.5 (C=C=CH₂), 86.0 (C^{Ar-q}), 78.9 (C=C=CH₂), 73.9 (CHOH),

52.3 (OCH₃), 15.2 (CH₃); IR (CHCl₃): $\nu = 3485$ (OH), 1955 (C=C=C), 1757 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₄INO₃Na 381.9911; Found 381.9908.

Allenol 2k. From 150 mg (0.58 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 2k (155 mg, 85%) as a colorless solid; mp 105–107 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.55$ (s, 1H, NH), 7.96 (d, 1H, J = 8.1 Hz, CH^{Ar}), 7.23 (d, 1H, J = 8.0, 1.2 Hz, CH^{Ar}), 7.10 (t, 1H, J = 8.1 Hz, CH^{Ar}), 5.90 (m, 1H, CHOH), 4.87 (m, 2H, C=·=CH₂), 3.73 (s, 3H, OCH₃), 3.26 (d, 1H, J = 2.6 Hz, OH), 1.60 (t, 3H, J = 2.9 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 204.0$ (C=C=CH₂), 154.1 (C=O), 139.3 (C^{Ar-q}), 129.5 (CH^{Ar}), 127.3 (CH^{Ar}), 126.7 (C^{Ar-q}), 132.9 (C^{Ar-q}), 120.4 (CH^{Ar}), 100.5 (C=C=CH₂), 78.9 (C=C=CH₂), 73.4 (CHOH), 52.2 (OCH₃), 15.4 (CH₃); IR (CHCl₃): v = 3388 (OH), 1946 (C=C=C), 1725 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₄BrNO₃Na 334.0049; Found 334.0036.

Allenol 21. From 100 mg (0.46 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 2l (88 mg, 70%) as a colorless solid; mp 95–97 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 8.09 (m, 2H, NH, CH^{Ar}), 7.07 (d, 1H, *J* = 8.2 Hz, CH^{Ar}), 6.98 (dd, 1H, *J* = 8.2, 2.1 Hz, CH^{Ar}), 5.06 (m, 1H, CHOH),

4.96 (m, 2H, C=·=CH₂), 3.76 (s, 3H, OCH₃), 2.79 (d, 1H, J = 2.6 Hz, OH), 1.55 (t, 3H, J = 3.0 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 203.9$ (C=C=CH₂), 153.9 (C=O), 138.3 (C^{Ar-q}), 134.6 (C^{Ar-q}), 129.6 (CH^{Ar}), 125.9 (C^{Ar-q}), 122.6 (CH^{Ar}), 120.7 (CH^{Ar}), 100.8 (C=C=CH₂), 79.1 (C=C=CH₂), 74.3 (CHOH), 52.3 (OCH₃), 15.3 (CH₃); IR (CHCl₃): v = 3426 (OH), 1956 (C=C=C), 1744 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₄ClNO₃Na 290.0554; Found 290.0561.

Allenol 2m. From 150 mg (0.55 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (8:2) as eluent gave compound 2m (143 mg, 80%) as a colorless oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.37$ (s, 1H, CH^{Ar}), 7.22 (s, 1H, CH^{Ar}), 6.58 (s, 1H, NH), 5.19 (s, 1H, CHOH), 4.87 (m, 2H, C=·=CH₂), 3.73 (m, 3H, OCH₃), 3.54 (s, 1H, OH), 2.31 (s, 3H, CH₃), 1.51 (t, 3H, *J* = 3.0 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 205.0$ (C=*C*=CH₂), 155.6 (C=O), 140.1 (*C*^{Ar-q}), 138.7 (*C*^{Ar-q}), 132.8 (CH^{Ar}), 130.7 (*C*^{Ar-q}), 128.1 (CH^{Ar}), 101.0 (*C*=C=CH₂), 77.7 (C=C=*C*H₂), 71.0 (CHOH), 52.8 (OCH₃), 20.8 (CH₃), 15.1 (CH₃); IR (CHCl₃): v = 3465 (OH), 1938 (C=C=C), 1724 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₁₆BrNO₃Na 348.0206; Found 348.0217.

Allenol 2n. From 100 mg (0.48 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (8:2) as eluent gave compound 2n (100 mg, 79%) as a colorless oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.24$ (t, 1H, J = 8.0 Hz, CH^{Ar}), 7.10 (dd, 1H, J = 7.9, 1.2 Hz, CH^{Ar}), 6.86 (dd, 1H, J = 8.1, 1.3 Hz, CH^{Ar}), 6.43 (s, 1H, NH), 5.24 (m, 1H, CHOH), 4.90 (m, 2H, C=·=CH₂), 3.83 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 1.52 (t, 3H, J = 2.9 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 205.0$ (C=C=CH₂), 156.5 (C=O), 154.0 (C^{Ar-q}), 138.9 (C^{Ar-q}), 127.5 (CH^{Ar}), 124.0 (C^{Ar-q}), 120.1 (CH^{Ar}), 110.5 (CH^{Ar}), 101.2 (C=C=CH₂), 77.6 (C=C=CH₂), 70.3 (CHOH), 55.7 (OCH₃), 52.7 (OCH₃), 15.5 (CH₃); IR (CHCl₃): v = 3455 (OH), 1957 (C=C=C), 1736 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₁₇NO₄Na 286.1050; Found 286.1056.

Allenol 20. From 150 mg (0.62 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (7:3 \rightarrow 6:4) as eluent gave compound 20 (138 mg, 76%) as a colorless oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.75$ (s, 1H, NH), 7.52 (s, 1H, CH^{Ar}), 6.63 (s, 1H, CH^{Ar}), 4.98 (s, 1H, CHOH), 4.84 (m, 2H, C=·=CH₂), 3.82 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃), 3.69 (s, 3H, OCH₃), 3.21 (s, 1H, OH), 1.51 (t, 3H, *J* = 3.0 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 204.0$ (C=*C*=CH₂), 154.4 (C=O), 148.6 (C^{Ar-q}), 144.4 (C^{Ar-q}), 130.2 (C^{Ar-q}), 120.8 (C^{Ar-q}), 111.7 (CH^{Ar}), 105.6 (CH^{Ar}), 101.0 (C=C=CH₂), 78.1 (C=C=CH₂), 73.7 (CHOH), 56.1 (OCH₃), 55.7 (OCH₃), 52.0 (OCH₃), 15.1 (CH₃); IR (CHCl₃): v = 3484 (OH), 1951 (C=C=C), 1767 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₉NO₅Na 316.1155; Found 316.1154.

Step E: The appropriate aldehyde **2'** (1.0 mmol) was dissolved in anhydrous THF (4 mL) and a solution of the corresponding alkenylmagnesium bromide (0.5 M THF solution; 3.0 mmol) was added at -78 °C. The resulting mixture was stirring at -78 °C under argon. On completion, the reaction mixture was quenched with NH4Cl (aq. sat.). The aqueous phase was extracted with EtOAc and the combined organic layers were washed with brine, dried over anhydrous MgSO₄ and concentrated under reduced pressure. Purification by flash column chromatography on silica gel gave allyl alcohols **6a–6g**.

Alkenol 6a. From 200 mg (1.11 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (9:1 \rightarrow 8:2) as eluent gave compound 6a (177 mg, 62%) as a colorless oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 7.94 (m, 2H, NH, CH^{Ar}), 7.31 (t, 1H, *J* = 7.8 Hz, CH^{Ar}), 7.17 (d, 1H, *J* = 7.2 Hz, CH^{Ar}), 7.05 (t, 1H, *J* = 7.4 Hz, CH^{Ar}), 5.22 (s, 1H, =CHH), 5.16 (s, 1H, =CHH), 5.06 (s, 1H, CHOH), 3.75 (s, 3H, OCH₃), 2.57 (br s, 1H, OH), 1.64 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 154.4 (C=O), 144.7 (*C*=CH₂), 137.0 (*C*^{Ar-9}), 128.8 (CH^{Ar}), 128.6 (CH^{Ar}), 123.2 (CH^{Ar}), 121.4 (CH^{Ar}), 111.3 (=CH₂), 77.1 (CHOH), 52.2 (OCH₃), 19.6 (CH₃); IR (CHCl₃): v = 3475 (OH), 1722 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₂H₁₅NO₃Na 244.0944; Found 244.0949.

Alkenol 6b. From 200 mg (0.90 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 6b (150 mg, 63%) as a colorless oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.84$ (d, 1H, J = 8.1 Hz, CH^{Ar}), 7.68 (s, 1H, NH), 7.28 (m, 1H, CH^{Ar}), 7.16 (dd, 1H, J = 7.6, 1.5 Hz, CH^{Ar}), 7.03 (td, 1H, J = 7.5, 1.2 Hz, CH^{Ar}), 5.22 (s, 1H, =C*H*H), 5.11 (s, 1H, =CH*H*), 5.05 (m, 1H, C*H*OH), 2.96 (s, 1H, OH), 1.63 (s, 3H, CH₃), 1.51 (s, 9H, 3CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 153.4$ (C=O), 144.8 (*C*=CH₂), 137.2 (*C*^{Ar-q}), 129.7 (*C*^{Ar-q}), 128.6 (CH^{Ar}), 128.4 (CH^{Ar}), 123.1 (CH^{Ar}), 121.9 (CH^{Ar}), 111.0 (=CH₂), 80.1 (*C*^{Cq}), 76.5 (CHOH), 28.3 (3CH₃), 19.6 (CH₃); IR (CHCl₃): v = 3486 (OH), 1699 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₂₁NO₃Na 286.1414; Found 286.1409.

Alkenol 6c. From 200 mg (1.22 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (6:4) as eluent gave compound 6c (154 mg, 62%) as a colorless oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.82$ (s, 1H, NH), 7.94 (d, 1H, J = 8.1 Hz, CH^{Ar}), 7.23 (t, 1H, J = 7.7 Hz, CH^{Ar}), 7.12 (m, 1H, CH^{Ar}), 7.04 (m, 1H, CH^{Ar}), 5.17 (s, 1H, =CHH), 5.05 (s, 1H, =CHH), 4.98 (s, 1H, CHOH), 4.36 (br s, 1H, OH), 1.98 (s, 3H, CH₃), 1.55 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 168.9$ (C=O), 145.0 (*C*=CH₂), 136.5 (*C*^{Ar-q}), 130.4 (*C*^{Ar-q}), 128.8 (CH^{Ar}), 128.3 (CH^{Ar}), 124.0 (CH^{Ar}), 122.8 (CH^{Ar}), 110.2 (=CH₂), 76.8 (CHOH), 24.2 (CH₃), 19.6 (CH₃); IR (CHCl₃): v = 3476 (OH), 1694 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₂H₁₅NO₂Na 228.0995; Found 228.1001.

Alkenol 6d. From 200 mg (1.11 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (85:15 \rightarrow 80:20) as eluent gave compound 6d (91 mg, 29%) as a colorless oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.84$ (s, 1H, NH), 7.73 (d, 1H, J = 7.9 Hz, CH^{Ar}), 7.15 (m, 6H, 6CH^{Ar}), 7.03 (m, 1H, CH^{Ar}), 6.86 (m, 1H, CH^{Ar}), 5.65 (s, 1H, CHOH), 5.43 (s, 1H, =CHH), 5.32 (m, 1H, =CHH), 3.63 (s, 3H, OCH₃), 3.08 (br s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 154.6$ (C=O), 148.6 (C=CH₂), 139.0 (C^{Ar-q}), 136.8 (C^{Ar-q}), 129.9 (C^{Ar-q}), 128.8 (CH^{Ar}), 128.3 (2CH^{Ar}), 127.7 (CH^{Ar}), 126.8 (2CH^{Ar}), 123.6 (CH^{Ar}), 121.8 (CH^{Ar}), 114.4 (=CH₂), 74.3 (CHOH), 52.3 (OCH₃); IR (CHCl₃): v = 3503 (OH), 1705 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₇NO₃Na 306.1101; Found 306.1098.

Alkenol 6e. From 100 mg (0.43 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (85:15) as eluent gave compound 6e (74 mg, 57%) as a colorless solid; mp 131–133 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.41$ (s, 1H, NH), 8.15 (s, 1H, CH^{Ar}), 7.78 (d, 1H, J = 8.0 Hz, CH^{Ar}), 7.72 (d, 1H, J = 7.9 Hz, CH^{Ar}), 7.58 (s, 1H, CH^{Ar}), 7.42 (m, 2H, 2CH^{Ar}), 5.27 (s, 2H, =CH₂), 5.10 (s, 1H, CHOH), 3.77 (s, 3H, OCH₃), 2.91 (br s, 1H, OH), 1.65 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 154.4$ (C=O), 144.6 (*C*=CH₂), 134.5 (*C*^{Ar-q}), 133.6 (*C*^{Ar-q}), 129.4 (*C*^{Ar-q}), 129.0 (*C*^{Ar-q}), 128.1 (CH^{Ar}), 127.4 (CH^{Ar}), 127.3 (CH^{Ar}), 126.6 (CH^{Ar}), 124.9 (CH^{Ar}), 117.8 (CH^{Ar}), 111.5 (=CH₂), 77.4 (CHOH), 52.2 (OCH₃), 19.8 (CH₃);

IR (CHCl₃): v = 3483 (OH), 1697 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₁₇NO₃Na 294.1101; Found 294.1105.

Alkenol 6f. From 100 mg (0.47 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 6f (85 mg, 68%) as a colorless solid; mp 121–123 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 8.06$ (m, 2H, NH, CH^{Ar}), 7.06 (d, 1H, J = 8.2 Hz, CH^{Ar}), 6.99 (dd, 1H, J = 8.2, 2.1 Hz, CH^{Ar}), 5.19 (s, 1H, =CHH), 5.11 (s, 1H, =CHH), 5.06 (m, 1H, CHOH), 3.74 (s, 3H, OCH₃), 2.79 (s, 1H, OH), 1.63 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 154.0$ (C=O), 144.3 (C=CH₂), 138.1 (C^{Ar-q}), 134.5 (C^{Ar-q}), 129.6 (CH^{Ar}), 126.8 (C^{Ar-q}), 122.9 (CH^{Ar}), 120.8 (CH^{Ar}), 111.7 (=CH₂), 76.8 (CHOH), 52.4 (OCH₃), 19.4 (CH₃); IR (CHCl₃): v = 3497 (OH), 1710 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₂H₁₄ClNO₃Na 278.0554; Found 278.0563.

Alkenol 6g. From 100 mg (0.47 mmol) of the corresponding aldehyde 2', and after flash chromatography of the residue using toluene/ethyl acetate (8:2) as eluent gave compound 6g (83 mg, 70%) as a colorless oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 7.22$ (t, 1H, J = 8.0 Hz, CH^{Ar}), 7.03 (dd, 1H, J = 7.9, 1.3 Hz, CH^{Ar}), 6.84 (dd, 1H, J = 8.2, 1.3 Hz, CH^{Ar}), 6.48 (br s, 1H, NH), 5.33 (s, 1H, =CHH), 5.22 (s, 1H, =CHH), 5.01 (m, 1H, CHOH), 4.02 (br s, 1H, OH), 3.83 (s, 3H, OCH₃),

3.76 (s, 3H, OCH₃), 1.51 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 157.0$ (*C*^{Ar-q}), 153.7 (C=O), 144.8 (*C*=CH₂), 139.4 (*C*^{Ar-q}), 127.6 (CH^{Ar}), 124.0 (*C*^{Ar-q}), 120.0 (CH^{Ar}), 110.3 (=CH₂), 110.1 (CH^{Ar}), 72.2 (CHOH), 55.7 (OCH₃), 52.9 (OCH₃), 19.6 (CH₃); IR (CHCl₃): $\nu = 3495$ (OH), 1705 (C=O) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₇NO₄Na 274.1050; Found 274.1050.

General procedure for the reaction of allenols 2a–o and alkenols 6a–g with Yanais'reagent 1 or deuterated Yanais'reagent [D]-1.

Yanai's reagent 1 or deuterated Yanai's reagent [D]-1 (0.2 mmol) was added to a hot solution (130 °C, sealed tube) of the appropriate allenol 2 or alkenol 6 (0.2 mmol) in 1,2-dichloroethane (4 mL). The reaction was heated at 130 °C in a sealed tube until disappearance of the starting material (TLC), and then the mixture was concentrated under reduced pressure. Chromatography of the residue eluting with hexanes/ethyl acetate mixtures gave analytically pure compounds. Spectroscopic and analytical data for bis(triflyl)-decorated fused indolines 3a-0, [D]-3a, and 7a-g follow.

Bis(triflyl)-decorated tricyclic indoline 3a. From 30 mg (0.13 mmol) of allenol **2a**, and after flash chromatography of the residue using hexanes/ethyl acetate (95:5) as eluent gave compound **3a** (40 mg, 62%) as a colorless solid; mp 119–121 °C; ¹H NMR (500 MHz, CHCl₃, 25 °C): δ = 7.74 (br s, 1H, CH^{Ar}), 7.45 (d, 1H, *J* = 7.6 Hz, CH^{Ar}), 7.38 (t, 1H, *J* = 7.9 Hz, CH^{Ar}), 7.09 (t, 1H, *J* = 7.5 Hz, CH^{Ar}), 5.61 (s, 1H, =CHH), 5.57 (d, 1H, *J* = 2.2 Hz, =CH*H*), 4.54 (s, 1H, CH), 3.87 (d, 1H, *J* = 17.6 Hz, C*H*^{Ar}), 3.84 (s, 3H, OCH₃), 3.71 (d, 1H, *J* = 17.3 Hz, CH*H*), 1.66 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): δ = 152.8 (C=O), 143.8 (C^{Ar-q}), 142.1 (*C*=CH₂), 131.0 (CH^{Ar}), 128.7 (CH^{Ar}), 123.0 (CH^{Ar}), 120.5 (C^{Ar-q}), 120.4 (q, C-F₃, ¹*J*_{C-F} = 332.1 Hz), 119.4 (q, C-F₃, ¹*J*_{C-F} = 333.0 Hz), 117.1 (=CH₂), 115.4 (CH^{Ar}), 96.2 (CTf₂), 75.5 (C^{Cq}), 61.8 (CH), 52.4 (OCH₃), 40.1 (CH₂), 19.8 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): δ = -67.5 (s, 3F, CF₃), -69.8 (s, 3F, CF₃); IR (CHCl₃): v = 1701 (C=O), 1392, 1203 (O=S=O), 1210 (C–F) cm⁻¹; HRMS (ESI) m/z: [M + NH4]⁺ Calcd for C₁₇H₁₉F₆N₂O₆S₂ 525.0583; Found 525.0586.

Bis(triflyl)-decorated tricyclic indoline 3b. From 35 mg (0.11 mmol) of allenol **2b**, and after flash chromatography of the residue using toluene as eluent gave compound **3b** (40 mg, 61%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): $\delta = 7.80$ (br s, 1H, CH^{Ar}), 7.39 (m, 7H, 7CH^{Ar}), 7.09 (m, 1H, CH^{Ar}), 5.47 (m, 2H, =CH₂), 5.26 (s, 2H, OCH₂), 4.52 (s, 1H, CH), 3.85 (d, 1H, *J* = 17.2 Hz, CHH), 3.68 (d, 1H, *J* = 17.2 Hz, CHH), 1.63 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 152.2$ (C=O), 143.9 (C^{Ar-q}), 141.8 (*C*=CH₂), 135.3 (C^{Ar-q}), 131.1 (CH^{Ar}), 128.7 (5CH^{Ar}), 128.6 (CH^{Ar}), 123.0 (CH^{Ar}), 120.5 (C^{Ar-q}), 120.4 (q, C-F₃, ¹*J*_{C-F} = 332.1 Hz), 119.4 (q, C-F₃, ¹*J*_{C-F} = 333.0 Hz), 117.4 (=CH₂), 115.8 (CH^{Ar}), 96.1 (CTf₂), 75.6 (C^{Cq}), 67.8 (OCH₂), 61.8 (CH), 40.1 (CH₂), 20.0 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -67.5$ (s, 3F, CF₃), -69.8 (s, 3F, CF₃); IR (CHCl₃):

v = 1700 (C=O), 1391, 1203 (O=S=O), 1207 (C-F) cm⁻¹; HRMS (ESI) m/z: [M + NH₄]⁺ Calcd for C₂₃H₂₃F₆N₂O₆S₂ 601.0896; Found 601.0899.

Bis(triflyl)-decorated tricyclic indoline 3c. From 37 mg (0.13 mmol) of allenol **2c**, and after flash chromatography of the residue using toluene as eluent gave compound **3c** (50 mg, 66%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): δ = 7.81 (br d, 1H, *J* = 5.4 Hz, CH^{Ar}), 7.43 (d, 1H, *J* = 7.5 Hz, CH^{Ar}), 7.36 (t, 1H, *J* = 7.8 Hz, CH^{Ar}), 7.06 (t, 1H, *J* = 7.5 Hz, CH^{Ar}), 5.57 (s, 1H, =CH₂), 5.55 (s, 1H, =CH₂), 4.50 (s, 1H, CH), 3.85 (d, 1H, *J* = 17.1 Hz, CHH), 3.69 (d, 1H, *J* = 17.0 Hz, CHH), 1.64 (s, 3H, CH₃), 1.56 (s, 9H, 3CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): δ = 151.3 (C=O), 144.6 (C^{Ar-q}), 142.4 (*C*=CH₂), 130.9 (CH^{Ar}), 128.5 (CH^{Ar}), 122.5 (CH^{Ar}), 120.4 (q, C-F₃, ¹*J*_{C-F} = 332.2 Hz), 120.2 (C^{Ar-q}), 119.4 (q, C-F₃, ¹*J*_{C-F} = 333.2 Hz), 116.9 (=CH₂), 115.8 (CH^{Ar}), 96.2 (CTf₂), 82.4 (OC^{Cq}), 75.2 (C^{Cq}), 61.7 (CH), 40.1 (CH₂), 28.4 (3CH₃), 19.8 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): δ = -67.6 (s, 3F, CF₃), -69.8 (s, 3F, CF₃); IR (CHCl₃): v = 1703 (C=O), 1390, 1202 (O=S=O), 1205 (C-F) cm⁻¹; HRMS (ESI) m/z: [M + NH₄]⁺ Calcd for C₂₀H₂₅F₆N₂O₆S₂ 567.1053; Found 567.1055.

Bis(triflyl)-decorated tricyclic indoline 3d. From 35 mg (0.12 mmol) of allenol **2d**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound **3d** (37 mg, 55%) as a colorless oil, containing *ca.* 8% (¹H NMR spectroscopy) of a rotamer; ¹H NMR (500

MHz, CHCl₃, 25 °C): $\delta = 7.80$ (br s, 1H, CH^{Ar}), 7.43 (d, 1H, J = 7.6 Hz, CH^{Ar}), 7.33 (m, 3H, 3CH^{Ar}), 7.19 (m, 1H, CH^{Ar}), 7.08 (m, 3H, 3CH^{Ar}), 5.56 (s, 1H, =C*H*H), 5.52 (s, 1H, =CH*H*), 4.54 (s, 1H, CH), 3.89 (d, 1H, J = 17.2 Hz, C*H*H), 3.69 (d, 1H, J = 17.3 Hz, CH*H*), 1.70 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 150.6$ (C=O), 150.0 (C^{Ar-q}), 143.5 (C^{Ar-q}), 141.7 (C=CH₂), 131.2 (CH^{Ar}), 129.6 (3CH^{Ar}), 128.8 (CH^{Ar}), 126.0 (CH^{Ar}), 123.5 (CH^{Ar}), 121.6 (CH^{Ar}), 120.7 (C^{Ar-q}), 120.4 (q, C-F₃, ¹ $J_{C-F} = 332.1$ Hz), 119.4 (q, C-F₃, ¹ $J_{C-F} = 333.2$ Hz), 117.6 (=CH₂), 116.1 (CH^{Ar}), 96.1 (CTf₂), 75.9 (C^{Cq}), 61.9 (CH), 40.1 (CH₂), 20.2 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -$ 67.5 (s, 3F, CF₃), -69.7 (s, 3F, CF₃); IR (CHCl₃): v = 1709 (C=O), 1379, 1196 (O=S=O), 1209 (C– F) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₁₇F₆NO₆S₂Na 592.0294; Found 592.0293.

Bis(triflyl)-decorated tricyclic indoline 3e. From 40 mg (0.13 mmol) of allenol **2e**, and after flash chromatography of the residue using hexanes/ethyl acetate (95:5) as eluent gave compound **3e** (47 mg, 61%) as a colorless solid; mp 186–188 °C; ¹H NMR (500 MHz, CHCl₃, 25 °C): $\delta = 7.95$ (br s, 1H, CH^{Ar}), 7.42 (m, 1H, CH^{Ar}), 7.30 (m, 6H, 6CH^{Ar}), 7.05 (td, 1H, *J* = 7.6, 0.9 Hz, CH^{Ar}), 5.76 (d, 1H, *J* = 2.2 Hz, =C*H*H), 5.30 (d, 1H, *J* = 1.6 Hz, =CH*H*), 4.71 (s, 1H, CH), 4.07 (d, 1H, *J* = 17.6 Hz, C*H*H), 3.92 (d, 1H, *J* = 17.6 Hz, CH), 3.78 (s, 3H, OCH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 153.3$ (C=O), 145.3 (C^{Ar-q}), 142.9 (*C*=CH₂), 136.8 (C^{Ar-q}), 131.3 (CH^{Ar}), 128.7 (CH^{Ar}), 128.6 (2CH^{Ar}), 128.2 (CH^{Ar}), 127.0 (2CH^{Ar}), 123.3 (CH^{Ar}), 120.4 (=CH₂), 120.4 (q, C-F₃, ¹*J*_{C-F} = 332.1 Hz), 120.0 (C^{Ar-q}), 119.5 (q, C-F₃, ¹*J*_{C-F} = 333.4 Hz), 115.2 (CH^{Ar}), 96.0 (CTf₂), 82.2 (C^{Cq}), 64.9 (CH), 52.5 (OCH₃), 40.6 (CH₂); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -67.0$ (s, 3F, CF₃), -69.3 (s, 3F, CF₃); IR (CHCl₃): v = 1706 (C=O), 1392, 1202 (O=S=O), 1208 (C–F) cm⁻¹; HRMS (ES): calcd for

 $C_{22}H_{21}F_6N_2O_6S_2 [M + NH_4]^+$: 587.07397; found: 587.07269. HRMS (ESI) m/z: $[M + NH_4]^+$ Calcd for $C_{22}H_{21}F_6N_2O_6S_2$ 587.0740; Found 587.0727.

Bis(triflyl)-decorated tricyclic indoline 3f. From 40 mg (0.12 mmol) of allenol **2f**, and after flash chromatography of the residue using hexanes/ethyl acetate (95:5) as eluent gave compound **3f** (34 mg, 47%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): $\delta = 7.93$ (br s, 1H, CH^{Ar}), 7.41 (t, 1H, J = 7.8 Hz, 1H, CH^{Ar}), 7.28 (m, 1H, CH^{Ar}), 7.17 (m, 2H, 2CH^{Ar}), 7.05 (t, 1H, J = 7.5 Hz, 1H, CH^{Ar}), 6.84 (m, 2H, 2CH^{Ar}), 5.74 (d, 1H, J = 2.0 Hz, =C*H*H), 5.31 (s, 1H, CH), 4.66 (s, 1H, CH), 4.04 (d, 1H, J = 17.3 Hz, C*H*H), 3.90 (d, 1H, J = 17.7 Hz, =CH*H*), 3.77 (s, 6H, 2OCH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 159.3$ (C^{Ar-q}), 153.3 (C=O), 145.4 (*C*=CH₂), 143.0 (C^{Ar-q}), 131.2 (CH^{Ar}), 128.8 (CH^{Ar}), 128.5 (C^{Ar-q}), 128.3 (2CH^{Ar}), 123.3 (CH^{Ar}), 120.4 (q, C-F₃, ¹*J*_{C-F} = 332.1 Hz), 120.3 (=CH₂), 120.1 (C^{Ar-q}), 119.5 (q, C-F₃, ¹*J*_{C-F} = 333.5 Hz), 115.2 (CH^{Ar}), 114.0 (2CH^{Ar}), 95.9 (CTf₂), 81.9 (C^{Cq}), 64.9 (CH), 55.2 (OCH₃), 52.5 (OCH₃), 40.5 (CH₂); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -67.0$ (s, 3F, CF₃), -69.3 (s, 3F, CF₃); IR (CHCl₃): v = 1697 (C=O), 1388, 1207 (O=S=O), 1208 (C-F) cm⁻¹; HRMS (ESI) m/z: [M + NH₄]⁺ Calcd for C₂₃H₂₃F₆N₂O₇S₂ 617.0845; Found 617.0846.

Bis(triflyl)-decorated tricyclic indoline 3g. From 40 mg (0.10 mmol) of allenol **2g**, and after flash chromatography of the residue using toluene as eluent gave compound **3g** (39 mg, 57%) as a colorless

oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): $\delta = 7.92$ (br s, 1H, CH^{Ar}), 7.43 (m, 3H, 3CH^{Ar}), 7.29 (m, 1H, CH^{Ar}), 7.14 (m, 2H, 2CH^{Ar}), 7.07 (t, 1H, J = 7.5 Hz, 1H, CH^{Ar}), 5.76 (d, 1H, J = 2.2 Hz, =C*H*H), 5.30 (s, 1H, =CH*H*), 4.65 (s, 1H, CH), 4.05 (d, 1H, J = 17.6 Hz, C*H*H), 3.91 (d, 1H, J = 17.6 Hz, CH*H*), 3.78 (s, 3H, OCH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 153.1$ (C=O), 145.0 (*C*=CH₂), 142.5 (C^{Ar-q}), 136.0 (C^{Ar-q}), 131.8 (2CH^{Ar}), 131.4 (CH^{Ar}), 128.8 (2CH^{Ar}), 128.7 (CH^{Ar}), 123.5 (CH^{Ar}), 122.5 (C^{Ar-q}), 120.5 (=CH₂), 120.4 (q, C-F₃, ¹*J*_{C-F} = 332.1 Hz), 119.6 (C^{Ar-q}), 119.5 (q, C-F₃, ¹*J*_{C-F} = 333.4 Hz), 115.1 (CH^{Ar}), 95.8 (CTf₂), 81.7 (C^{Cq}), 64.8 (CH), 52.7 (OCH₃), 40.6 (CH₂); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -67.0$ (s, 3F, CF₃), -69.3 (s, 3F, CF₃); IR (CHCl₃): v = 1703 (C=O), 1386, 1198 (O=S=O), 1203 (C–F) cm⁻¹; HRMS (ESI) m/z: [M + NH₄]⁺ Calcd for C₂₂H₂₀BrF₆N₂O₆S₂ 664.9845; Found 664.9850.

Bis(triflyl)-decorated tricyclic indoline 3h. From 30 mg (0.10 mmol) of allenol **2h**, and after flash chromatography of the residue using hexanes/ethyl acetate (95:5 \rightarrow 9:1) as eluent gave compound **3h** (45 mg, 77%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): $\delta = 8.11$ (br s, 1H, CH^{Ar}), 7.91 (s, 1H, CH^{Ar}), 7.81 (m, 2H, 2CH^{Ar}), 7.49 (m, 1H, CH^{Ar}), 7.41 (m, 1H, CH^{Ar}), 5.64 (d, 1H, J = 1.9 Hz, =CHH), 5.60 (d, 1H, J = 2.3 Hz, =CHH), 4.68 (s, 1H, CH), 3.92 (m, 4H, OCH₃, CHH), 3.74 (d, 1H, J = 17.5 Hz, CHH), 1.68 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 153.0$ (C=O), 142.1 (C^{Ar-q}), 140.8 (C=CH₂), 135.2 (C^{Ar-q}), 129.9 (C^{Ar-q}), 128.8 (CH^{Ar}), 128.0 (CH^{Ar}), 127.8 (CH^{Ar}), 127.3 (CH^{Ar}), 124.9 (CH^{Ar}), 122.0 (C^{Ar-q}), 120.5 (q, C-F₃, ¹ $J_{C-F} = 332.0$ Hz), 119.4 (q, C-F₃, ¹ $J_{C-F} = 333.2$ Hz), 117.1 (=CH₂), 112.0 (CH^{Ar}), 96.3 (CTf₂), 75.6 (C^{Cq}), 61.0 (CH), 52.6 (OCH₃), 40.0 (CH₂), 19.8 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -67.4$ (s, 3F, CF₃), -69.7 (s, 3F, CF₃); IR

(CHCl₃): v = 1706 (C=O), 1391, 1198 (O=S=O), 1207 (C-F) cm⁻¹; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₁₈F₆NO₆S₂ 558.0474; Found 558.0490.

Bis(triflyl)-decorated tricyclic indoline 3i. From 30 mg (0.12 mmol) of allenol **2i**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound **3i** (42 mg, 68%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): $\delta = 7.61$ (br s, 1H, CH^{Ar}), 7.24 (s, 1H, CH^{Ar}), 7.17 (d, 1H, J = 8.3 Hz, CH^{Ar}), 5.60 (s, 1H, =CHH), 5.56 (d, 1H, J = 2.3 Hz, =CHH), 4.49 (s, 1H, CH), 3.87 (d, 1H, J = 17.3 Hz, CHH), 3.82 (s, 3H, OCH₃), 3.69 (d, 1H, J = 17.4 Hz, CHH), 2.35 (s, 3H, CH₃), 1.64 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 152.8$ (C=O), 142.1 (C^{Ar-q}), 141.6 (*C*=CH₂), 132.6 (C^{Ar-q}), 131.6 (CH^{Ar}), 129.2 (CH^{Ar}), 120.5 (C^{Ar-q}), 120.4 (q, C-F₃, ¹ $J_{C-F} = 332.1$ Hz), 119.4 (q, C-F₃, ¹ $J_{C-F} = 333.1$ Hz), 116.9 (=CH₂), 115.3 (CH^{Ar}), 96.2 (CTf₂), 75.5 (C^{Cq}), 61.8 (CH), 52.3 (OCH₃), 40.1 (CH₂), 20.8 (CH₃), 19.7 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -67.6$ (s, 3F, CF₃), -69.8 (s, 3F, CF₃); IR (CHCl₃): v = 1699 (C=O), 1387, 1205 (O=S=O), 1210 (C–F) cm⁻¹; HRMS (ESI) m/z: [M + NH₄]⁺ Calcd for C₁₈H₂₁F₆N₂O₆S₂ 539.0740; Found 539.0752.

Bis(triflyl)-decorated tricyclic indoline 3j. From 50 mg (0.14 mmol) of allenol **2j**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1 \rightarrow 8:2) as eluent gave compound **3j** (47 mg, 54%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): δ = 7.70 (s, 1H, CH^{Ar}), 7.65 (d, 1H, *J* = 8.7, 1.6 Hz, CH^{Ar}), 7.53 (br s, 1H, CH^{Ar}), 5.60 (s, 1H, =C*H*H), 5.57 (d, 1H, *J* = 2.3 Hz,

=CH*H*), 4.46 (s, 1H, CH), 3.82 (m, 4H, C*H*H, OCH₃), 3.70 (d, 1H, *J* = 17.4 Hz, CH*H*), 1.64 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): δ = 152.6 (C=O), 143.7 (C^{Ar-q}), 141.7 (*C*=CH₂), 139.8 (CH^{Ar}), 137.4 (CH^{Ar}), 123.0 (C^{Ar-q}), 120.4 (q, C-F₃, ¹*J*_{C-F} = 332.1 Hz), 119.4 (q, C-F₃, ¹*J*_{C-F} = 333.0 Hz), 117.6 (CH^{Ar}), 117.3 (=CH₂), 96.0 (CTf₂), 84.9 (C^{Ar-q}), 75.8 (C^{Cq}), 60.9 (CH), 52.6 (OCH₃), 40.1 (CH₂), 19.9 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): δ = -67.5 (s, 3F, CF₃), -69.7 (s, 3F, CF₃); IR (CHCl₃): v = 1701 (C=O), 1389, 1203 (O=S=O), 1210 (C-F) cm⁻¹; HRMS (ES): calcd for C₁₇H₁₈F₆IN₂O₆S₂ [*M* + NH₄]⁺: 650.95497; found: 650.95454. HRMS (ESI) m/z: [M + NH₄]⁺ Calcd for C₁₇H₁₈F₆IN₂O₆S₂ 650.9550; Found 650.9545.

Bis(triflyl)-decorated tricyclic indoline 3k. From 36 mg (0.11 mmol) of allenol **2k**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound **3k** (33 mg, 49%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): $\delta = 7.70$ (d, 1H, J = 7.2 Hz, CH^{Ar}), 7.27 (m, 2H, 2CH^{Ar}), 5.66 (d, 1H, J = 2.5 Hz, =C*H*H), 5.59 (d, 1H, J = 2.5 Hz, =CH*H*), 4.57 (s, 1H, CH), 3.92 (d, 1H, J = 17.3 Hz, C*H*H), 3.85 (s, 3H, OCH₃), 3.69 (d, 1H, J = 17.3 Hz, CH*H*), 1.62 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 152.5$ (C=O), 145.6 (C^{Ar-q}), 141.2 (*C*=CH₂), 132.4 (CH^{Ar}), 127.6 (CH^{Ar}), 122.7 (C^{Ar-q}), 122.1 (C^{Ar-q}), 119.9 (q, C-F₃, ¹*J*_{C-F} = 332.4 Hz), 119.8 (q, C-F₃, ¹*J*_{C-F} = 334.0 Hz), 117.8 (=CH₂), 114.2 (CH^{Ar}), 98.3 (CTf₂), 76.1 (C^{Cq}), 62.1 (CH), 52.6 (OCH₃), 40.3 (CH₂), 18.2 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -68.5$ (s, 3F, CF₃), -68.9 (s, 3F, CF₃); IR (CHCl₃): $\nu = 1710$ (C=O), 1387, 1198 (O=S=O), 1211 (C-F) cm⁻¹; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₅BrF₆NO₆S₂ 587.9403; Found 587.9405.

Bis(triflyl)-decorated tricyclic indoline 31. From 32 mg (0.12 mmol) of allenol **21**, and after flash chromatography of the residue using hexanes/diethyl ethyl (8:2) as eluent gave compound **31** (36 mg, 56%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): $\delta = 7.76$ (br s, 1H, CH^{Ar}), 7.35 (d, 1H, J = 8.1 Hz, CH^{Ar}), 7.06 (d, 1H, J = 8.1 Hz, CH^{Ar}), 5.61 (s, 1H, =CHH), 5.58 (s, 1H, =CHH), 4.48 (s, 1H, CH), 3.86 (m, 4H, OCH₃, CHH), 3.71 (d, 1H, J = 17.3 Hz, CHH), 1.65 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 152.5$ (C=O), 144.8 (C^{Ar-q}), 141.7 (C=CH₂), 137.0 (C^{Ar-q}), 129.4 (CH^{Ar}), 123.1 (CH^{Ar}), 120.4 (q, C-F₃, ¹ $J_{C-F} = 332.1$ Hz), 119.4 (q, C-F₃, ¹ $J_{C-F} = 333.0$ Hz), 119.1 (C^{Ar-q}), 117.4 (=CH₂), 116.2 (CH^{Ar}), 95.9 (CTf₂), 76.3 (C^{Cq}), 61.1 (CH), 52.7 (OCH₃), 40.1 (CH₂), 19.9 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -67.5$ (s, 3F, CF₃), -69.7 (s, 3F, CF₃); IR (CHCl₃): v = 1706 (C=O), 1388, 1189 (O=S=O), 1201 (C–F) cm⁻¹; HRMS (ESI) m/z: [M + NH₄]⁺ Calcd for C₁₇H₁₈ClF₆N₂O₆S₂ 559.0193; Found 559.0171.

Bis(triflyl)-decorated tricyclic indoline 3m. From 35 mg (0.11 mmol) of allenol **2m**, and after flash chromatography of the residue using hexanes/diethyl ethyl (9:1) as eluent gave compound **3m** (25 mg, 40%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): $\delta = 7.37$ (s, 1H, CH^{Ar}), 7.19 (s, 1H, CH^{Ar}), 5.61 (s, 2H, =CH₂), 4.26 (s, 1H, CH), 3.80 (s, 3H, OCH₃), 3.74 (m, 2H, CH₂), 2.33 (s, 3H, CH₃), 1.59 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 151.5$ (C=O), 140.8 (C^{Ar-q}), 140.6 (*C*=CH₂), 135.9 (CH^{Ar}), 135.0 (C^{Ar-q}), 128.6 (CH^{Ar}), 126.9 (C^{Ar-q}), 120.4 (q, C-F₃, ¹*J_{C-F}*= 332.0 Hz),

119.4 (q, C-F₃, ${}^{1}J_{C-F}$ = 333.0 Hz), 118.1 (=CH₂), 111.3 (C^{Ar-q}), 95.6 (CTf₂), 77.8 (C^{Cq}), 61.5 (CH), 52.7 (OCH₃), 40.6 (CH₂), 21.4 (CH₃), 20.6 (CH₃); 19 F NMR (282 MHz, CHCl₃, 25 °C): δ = -67.6 (s, 3F, CF₃), -69.6 (s, 3F, CF₃); IR (CHCl₃): v = 1699 (C=O), 1391, 1203 (O=S=O), 1213 (C-F) cm⁻¹; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₇BrF₆NO₆S₂ 601.9559; Found 601.9556.

Bis(triflyl)-decorated tricyclic indoline 3n. From 30 mg (0.11 mmol) of allenol **2n**, and after flash chromatography of the residue using hexanes/ethyl acetate (85:15 \rightarrow 7:3) as eluent gave compound **3n** (39 mg, 65%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): $\delta = 7.07$ (m, 2H, 2CH^{Ar}), 6.95 (m, 1H, CH^{Ar}), 5.59 (m, 2H, =CH₂), 4.31 (s, 1H, CH), 3.86 (s, 3H, OCH₃), 3.81 (d, 1H, *J* = 18.2 Hz, C*H*H), 3.77 (s, 3H, OCH₃), 3.73 (d, 1H, *J* = 17.4 Hz, CH*H*), 1.61 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 152.2$ (C=O), 148.6 (C^{Ar-q}), 141.0 (C=CH₂), 133.0 (C^{Ar-q}), 125.0 (C^{Ar-q}), 124.4 (CH^{Ar}), 120.9 (C^{Ar-q}), 120.4 (q, C-F₃, ¹*J*_{C-F} = 332.0 Hz), 119.4 (q, C-F₃, ¹*J*_{C-F} = 333.0 Hz), 117.6 (=CH₂), 114.3 (CH^{Ar}), 95.8 (CTf₂), 77.6 (C^{Cq}), 61.7 (CH), 56.0 (OCH₃), 52.6 (OCH₃), 40.5 (CH₂), 20.9 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -67.6$ (s, 3F, CF₃), -69.7 (s, 3F, CF₃); IR (CHCl₃): $\nu = 1710$ (C=O), 1391, 1207 (O=S=O), 1208 (C–F) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₇F₆NO₇S₂Na 560.0243; Found 560.0253.

Bis(triflyl)-decorated tricyclic indoline 30. From 35 mg (0.12 mmol) of allenol **20**, and after flash chromatography of the residue using hexanes/ethyl acetate (85:15) as eluent gave compound **30** (27

mg, 41%) as a pale yellow oil, containing *ca.* 12% (¹H NMR spectroscopy) of a rotamer; ¹H NMR (500 MHz, CHCl₃, 25 °C): δ = 7.44 (br s, 1H, CH^{Ar}), 6.86 (s, 1H, CH^{Ar}), 5.48 (m, 1H, =CH₂), 4.42 (s, 1H, CH), 3.84 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.75 (m, 4H, OCH₃, *CH*H), 3.60 (d, 1H, *J* = 17.3 Hz, CH*H*), 1.57 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): δ = 152.8 (C^{Ar-q}), 151.2 (C=O), 150.6 (C^{Ar-q}), 145.0 (C^{Ar-q}), 142.3 (*C*=CH₂), 120.4 (q, C-F₃, ¹*J*_{C-F} = 332.1 Hz), 119.4 (q, C-F₃, ¹*J*_{C-F} = 333.0 Hz), 116.8 (=CH₂), 111.5 (CH^{Ar}), 110.4 (C^{Ar-q}), 100.1 (CH^{Ar}), 95.9 (CTf₂), 75.9 (C^{Cq}), 62.4 (CH), 56.3 (OCH₃), 55.9 (OCH₃), 52.2 (OCH₃), 40.0 (CH₂), 20.1 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): δ = -67.7 (s, 3F, CF₃), -69.9 (s, 3F, CF₃); IR (CHCl₃): v = 1703 (C=O), 1387, 1206 (O=S=O), 1213 (C-F) cm⁻¹; HRMS (ESI) m/z: [M + NH₄]⁺ Calcd for C₁₉H₂₃F₆N₂O₈S₂ 585.0794; Found 585.0774.

Bis(triflyl)-decorated tricyclic indoline [D]-3a. From 30 mg (0.13 mmol) of allenol **2a**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound [D]-**3a** (38 mg, 59%) as a colorless solid; mp 120–122 °C; ¹H NMR (500 MHz, CHCl₃, 25 °C): δ = 7.75 (br s, 1H, CH^{Ar}), 7.45 (d, 1H, *J* = 7.6 Hz, CH^{Ar}), 7.38 (t, 1H, *J* = 7.9 Hz, CH^{Ar}), 7.09 (t, 1H, *J* = 7.5 Hz, CH^{Ar}), 5.62 (s, 1H, =C*H*H), 5.57 (s, 1H, =CH*H*), 4.53 (s, 1H, CH), 3.84 (s, 3H, OCH₃), 1.65 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): δ = 152.8 (C=O), 143.8 (C^{Ar-q}), 141.9 (*C*=CH₂), 131.0 (CH^{Ar}), 128.7 (CH^{Ar}), 123.0 (CH^{Ar}), 120.5 (C^{Ar-q}), 120.4 (q, C-F₃, ¹*J*_{C-F} = 332.2 Hz), 119.4 (q, C-F₃, ¹*J*_{C-F} = 333.1 Hz), 117.1 (=CH₂), 115.6 (CH^{Ar}), 96.0 (CTf₂), 75.5 (C^{Cq}), 61.7 (CH), 52.4 (OCH₃), 39.6 (m, CD₂), 19.8 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): δ = -67.6 (s, 3F, CF₃), – 69.8 (s, 3F, CF₃); D(²H) NMR 107 MHz, CHCl₃, 25 °C): δ = 3.86 (s, 1D, CDD), 3.71 (s, 1D, CDD);

IR (CHCl₃): $\nu = 1701$ (C=O), 1392, 1203 (O=S=O), 1210 (C–F) cm⁻¹; HRMS (ESI) m/z: [M + NH₄]⁺ Calcd for C₁₇H₁₇D₂F₆N₂O₆S₂ 527.0709; Found 527.0708.

Bis(triflyl)-decorated tricyclic indoline 7a. From 30 mg (0.13 mmol) of alkenol **6a**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound **7a** (43 mg, 64%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): $\delta = 7.74$ (br s, 1H, CH^{Ar}), 7.46 (d, 1H, J = 7.6 Hz, CH^{Ar}), 7.38 (t, 1H, J = 7.9 Hz, CH^{Ar}), 7.10 (t, 1H, J = 7.5 Hz, CH^{Ar}), 4.51 (s, 1H, CH), 3.93 (s, 3H, OCH₃), 3.43 (br s, 1H, CHH), 3.11 (m, 2H, CH₂), 2.43 (m, 1H, CHH), 1.60 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 153.1$ (C=O), 143.8 (C^{Ar-q}), 130.9 (CH^{Ar}), 128.7 (CH^{Ar}), 122.9 (CH^{Ar}), 120.6 (C^{Ar-q}), 120.5 (q, C-F₃, ¹*J*_{C-F} = 332.1 Hz), 119.5 (q, C-F₃, ¹*J*_{C-F} = 333.4 Hz), 115.7 (CH^{Ar}), 99.9 (CTf₂), 77.8 (C^{Cq}), 61.8 (CH), 52.7 (OCH₃), 35.7 (CH₂), 33.7 (CH₂), 23.0 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -67.3$ (s, 3F, CF₃), -69.4 (s, 3F, CF₃); IR (CHCl₃): v = 1705 (C=O), 1391, 1213 (O=S=O), 1210 (C-F) cm⁻¹; HRMS (ESI) m/z: [M + NH₄]⁺ Calcd for C₁₆H₁₉F₆N₂O₆S₂ 513.0583; Found 513.0604.

Bis(triflyl)-decorated tricyclic indoline 7b. From 30 mg (0.11 mmol) of alkenol **6b**, and after flash chromatography of the residue using hexanes/ethyl acetate (95:5) as eluent gave compound **7b** (38 mg, 63%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): $\delta = 7.77$ (br s, 1H, CH^{Ar}), 7.43 (d, 1H, J = 7.6 Hz, CH^{Ar}), 7.34 (t, 1H, J = 7.9 Hz, CH^{Ar}), 7.05 (t, 1H, J = 7.6, 0.7 Hz, CH^{Ar}), 4.48 (s, 1H,

CH), 3.38 (br s, 1H, C*H*H), 3.08 (m, 2H, CH₂), 2.40 (m, 1H, CH*H*), 1.61 (s, 9H, 3CH₃), 1.58 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 151.6$ (C=O), 144.4 (C^{Ar-q}), 130.8 (CH^{Ar}), 128.5 (CH^{Ar}), 122.5 (CH^{Ar}), 120.5 (q, C-F₃, ¹*J*_{C-F} = 332.0 Hz), 120.2 (C^{Ar-q}), 119.5 (q, C-F₃, ¹*J*_{C-F} = 333.4 Hz), 115.7 (CH^{Ar}), 100.1 (CTf₂), 82.4 (C^{Cq}), 61.8 (CH), 36.2 (CH₂), 33.6 (CH₂), 28.4 (3CH₃), 23.3 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -67.3$ (s, 3F, CF₃), -69.4 (s, 3F, CF₃); IR (CHCl₃): $\nu = 1699$ (C=O), 1388, 1207 (O=S=O), 1208 (C-F) cm⁻¹; HRMS (ESI) m/z: [M + NH₄]⁺ Calcd for C₁₉H₂₅F₆N₂O₆S₂ 555.1053; Found 555.1079.

Bis(triflyl)-decorated tricyclic indoline 7c. From 30 mg (0.14 mmol) of alkenol **6c**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1 \rightarrow 8:2) as eluent gave compound **7c** (24 mg, 34%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): δ = 7.50 (d, 1H, *J* = 7.6 Hz, CH^{Ar}), 7.37 (m, 1H, CH^{Ar}), 7.12 (m, 2H, 2CH^{Ar}), 4.34 (s, 1H, CH), 3.60 (dd, 1H, *J* = 14.5, 6.4 Hz, CHH), 3.14 (dd, 1H, *J* = 15.6, 7.4 Hz, CHH), 2.96 (m, 1H, CHH), 2.46 (s, 3H, CH₃), 2.38 (m, 1H, CHH), 1.56 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): δ = 168.8 (C=O), 144.1 (C^{Ar-q}), 130.6 (CH^{Ar}), 129.6 (CH^{Ar}), 123.4 (CH^{Ar}), 123.0 (C^{Ar-q}), 120.5 (q, C-F₃, ¹*J*_{C-F} = 331.9 Hz), 119.5 (q, C-F₃, ¹*J*_{C-F} = 333.2 Hz), 115.2 (CH^{Ar}), 99.8 (CTf₂), 79.6 (C^{Cq}), 61.2 (CH), 34.7 (CH₂), 34.0 (CH₂), 25.8 (CH₃), 22.9 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): δ = -67.5 (s, 3F, CF₃), -69.4 (s, 3F, CF₃); IR (CHCl₃): v = 1652 (C=O), 1392, 1203 (O=S=O), 1210 (C-F) cm⁻¹; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₆F₆NO₅S₂ 480.0369; Found 480.0384.

Bis(triflyl)-decorated tricyclic indoline 7d. From 30 mg (0.10 mmol) of alkenol **6d**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound **7d** (50 mg, 86%) as a colorless solid; mp 192–194 °C; ¹H NMR (500 MHz, CHCl₃, 25 °C): $\delta = 8.10$ (br m, 1H, CH^{Ar}), 7.44 (t, 1H, *J* = 7.8 Hz, CH^{Ar}), 7.31 (m, 6H, 6CH^{Ar}), 7.09 (t, 1H, *J* = 7.5 Hz, CH^{Ar}), 4.74 (s, 1H, CH), 3.88 (br s, 4H, OCH₃, C*H*H), 3.38 (m, 1H, CH*H*), 3.26 (m, 2H, CH₂); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 153.4$ (C=O), 145.3 (C^{Ar-q}), 139.3 (C^{Ar-q}), 131.2 (CH^{Ar}), 129.0 (2CH^{Ar}), 128.7 (CH^{Ar}), 128.2 (CH^{Ar}), 124.9 (2CH^{Ar}), 123.3 (CH^{Ar}), 120.5 (q, C-F₃, ¹*J*_{C-F} = 332.1 Hz), 120.4 (C^{Ar-q}), 119.6 (q, C-F₃, ¹*J*_{C-F} = 333.6 Hz), 115.3 (CH^{Ar}), 99.7 (CTf₂), 82.4 (C^{Cq}), 64.0 (CH), 52.9 (OCH₃), 35.9 (CH₂), 34.0 (CH₂); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -67.0$ (s, 3F, CF₃), -69.0 (s, 3F, CF₃); IR (CHCl₃): v = 1707 (C=O), 1396, 1205 (O=S=O), 1205 (C-F) cm⁻¹; HRMS (ESI) m/z: [M + NH₄]⁺ Calcd for C₂₁H₂₁F₆N₂O₆S₂ 575.0740; Found 575.0744.

Bis(triflyl)-decorated tricyclic indoline 7e. From 30 mg (0.11 mmol) of alkenol **6e**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound **7e** (31 mg, 52%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): $\delta = 8.09$ (br s, 1H, CH^{Ar}), 7.89 (s, 1H, CH^{Ar}), 7.80 (m, 2H, 2CH^{Ar}), 7.48 (m, 1H, CH^{Ar}), 7.40 (m, 1H, CH^{Ar}), 4.64 (s, 1H, CH), 3.98 (s, 3H, OCH₃), 3.47 (br s, 1H, C*H*H), 3.14 (m, 2H, CH₂), 2.45 (m, 1H, CH*H*), 1.61 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 153.3$ (C=O), 140.9 (C^{Ar-q}), 135.1 (C^{Ar-q}), 129.9 (C^{Ar-q}), 128.8 (CH^{Ar}),
128.0 (CH^{Ar}), 127.8 (CH^{Ar}), 127.2 (CH^{Ar}), 124.9 (CH^{Ar}), 122.1 (C^{Ar-q}), 120.6 (q, C-F₃, ${}^{1}J_{C-F}$ = 331.9 Hz), 119.4 (q, C-F₃, ${}^{1}J_{C-F}$ = 333.3 Hz), 112.1 (CH^{Ar}), 100.1 (CTf₂), 77.9 (C^{Cq}), 61.1 (CH), 52.9 (OCH₃), 35.8 (CH₂), 33.7 (CH₂), 23.1 (CH₃); 19 F NMR (282 MHz, CHCl₃, 25 °C): δ = -67.2 (s, 3F, CF₃), -69.4 (s, 3F, CF₃); IR (CHCl₃): v = 1695 (C=O), 1389, 1205 (O=S=O), 1201 (C-F) cm⁻¹; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₈F₆NO₆S₂ 546.0474; Found 546.0489.

Bis(triflyl)-decorated tricyclic indoline 7f. From 32 mg (0.12 mmol) of alkenol **6**f, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound **7f** (32 mg, 49%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): $\delta = 7.73$ (br s, 1H, CH^{Ar}), 7.34 (d, 1H, J = 8.2 Hz, CH^{Ar}), 7.05 (dd, 1H, J = 8.2, 1.9 Hz, CH^{Ar}), 4.43 (s, 1H, CH), 3.92 (s, 3H, OCH₃), 3.38 (br s, 1H, CHH), 3.08 (m, 2H, CH₂), 2.40 (m, 1H, CHH), 1.58 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 152.8$ (C=O), 144.8 (C^{Ar-q}), 136.9 (C^{Ar-q}), 129.3 (CH^{Ar}), 123.1 (CH^{Ar}), 120.5 (q, C-F₃, ¹*J*_{C-F} = 332.0 Hz), 119.4 (q, C-F₃, ¹*J*_{C-F} = 333.2 Hz), 119.2 (C^{Ar-q}), 116.2 (CH^{Ar}), 99.7 (CTf₂), 78.5 (C^{Cq}), 61.2 (CH), 53.0 (OCH₃), 35.8 (CH₂), 33.6 (CH₂), 23.1 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -67.3$ (s, 3F, CF₃), -69.4 (s, 3F, CF₃); IR (CHCl₃): v = 1699 (C=O), 1385, 1203 (O=S=O), 1213 (C-F) cm⁻¹; HRMS (ESI) m/z: [M + NH₄]⁺ Calcd for C₁₆H₁₈ClF₆N₂O₆S₂ 547.0193; Found 547.0203.

Bis(triflyl)-decorated tricyclic indoline 7g. From 30 mg (0.11 mmol) of alkenol **6g**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound **7g** (42 mg, 67%) as a colorless solid; mp 114–116 °C; ¹H NMR (500 MHz, CHCl₃, 25 °C): δ = 7.07 (m, 2H, 2CH^{Ar}), 6.94 (dd, 1H, *J* = 7.4, 1.9 Hz, CH^{Ar}), 4.24 (s, 1H, CH), 3.86 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.45 (dd, 1H, *J* = 14.8, 6.6 Hz, *CH*H), 3.17 (dd, 1H, *J* = 15.6, 7.2 Hz, *CH*H), 2.96 (m, 1H, CH*H*), 2.31 (m, 1H, CH*H*), 1.51 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): δ = 152.9 (C=O), 148.8 (C^{Ar-q}), 133.1 (C^{Ar-q}), 125.3 (C^{Ar-q}), 124.5 (CH^{Ar}), 120.8 (CH^{Ar}), 120.5 (q, C-F₃, ¹*J*_{C-F} = 331.9 Hz), 119.5 (q, C-F₃, ¹*J*_{C-F} = 333.1 Hz), 114.1 (CH^{Ar}), 99.3 (CTf₂), 79.7 (C^{Cq}), 61.6 (CH), 55.9 (OCH₃), 52.8 (OCH₃), 34.4 (CH₂), 33.7 (CH₂), 23.9 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): δ = -67.4 (s, 3F, CF₃), -69.5 (s, 3F, CF₃); IR (CHCl₃): v = 1707 (C=O), 1393, 1206 (O=S=O), 1201 (C-F) cm⁻¹; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₈F₆NO₇S₂ 526.0423; Found 526.0449.

Procedure for the preparation of tricyclic dienyl triflone 8.

To a stirred mixture of bis(triflyl)-decorated tricyclic indoline **3a** (1.0 mmol) in diethyl ether (20 mL) cooled at 0 °C, was added DBU (1.0 mmol). The mixture was stirred at 0 °C until complete consumption of starting material (5 min) as monitored by TLC. This reaction mixture was transferred directly to a chromatography column filled with silica gel and was purified by column chromatography to provide product **8**. *Note: It is very important to be rigorous with the amount of DBU used, because small excesses quickly reduce the yield. Besides, it is convenient to avoid the concentration of the crude.*

Tricyclic dienyl triflone 8. From 38 mg (0.07 mmol) of bis(triflyl)-decorated tricyclic indoline **3a**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound **8** (25 mg, 91%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): δ = 7.71 (br s, 1H, CH^{Ar}), 7.60 (d, 1H, *J* = 7.6 Hz, CH^{Ar}), 7.37 (s, 1H, =CH), 7.28 (t, 1H, *J* = 7.5 Hz, CH^{Ar}), 7.05 (t, 1H, *J* = 7.5 Hz, CH^{Ar}), 6.29 (br s, 1H, =CHH), 5.92 (s, 1H, =CHH), 4.47 (s, 1H, CH), 3.89 (s, 3H, OCH₃), 1.82 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): δ = 153.4 (=CH), 153.2 (C=O), 150.5 (TfC=), 141.6 (*C*=CH₂), 136.3 (C^{Ar-q}), 129.4 (CH^{Ar}), 127.0 (CH^{Ar}), 125.3 (C^{Ar-q}), 125.2 (=CH₂-*low intensity signal*), 123.2 (CH^{Ar}), 119.5 (q, C-F₃, ¹*J*_{C-F} = 326.6 Hz), 115.6 (CH^{Ar}), 74.5 (C^{Cq}), 60.3 (CH), 52.4 (OCH₃), 22.9 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): δ = -78.0 (s, 3F, CF₃); IR (CHCl₃): v = 1715 (C=O), 1342, 1212 (O=S=O), 1205 (C–F) cm⁻¹; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₅F₃NO4S 374.0668; Found 374.0671.

Procedure for the preparation of bromo-bis(triflyl)-decorated tricyclic indoline 9.

To a stirred mixture of bis(triflyl)-decorated tricyclic indoline **3a** (1.0 mmol) in THF (20 ml) was added NBS (3.0 mmol), and then the reaction was heated at 40 °C until complete consumption of starting material as monitored by TLC. The reaction mixture was concentrated under vacuum and the crude product was purified by column chromatography to provide product **9**.

Bromo-bis(triflyl)-decorated tricyclic indoline 9. From 27 mg (0.05 mmol) of bis(triflyl)-decorated tricyclic indoline **3a**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound **9** (30 mg, 97%) as a colorless solid; mp 142–144 °C; ¹H NMR (500 MHz, CHCl₃, 25 °C): δ = 7.64 (br s, 1H, CH^{Ar}), 7.53 (s, 1H, CH^{Ar}), 7.47 (dd, 1H, *J* = 8.8, 2.0 Hz, CH^{Ar}), 5.60 (s, 1H, =C*H*H), 5.57 (d, 1H, *J* = 2.3 Hz, =CH*H*), 4.47 (s, 1H, CH), 3.85 (m, 4H, C*H*H, OCH₃), 3.71 (d, 1H, *J* = 17.3 Hz, CH*H*), 1.64 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): δ = 152.6 (C=O), 143.0 (C^{Ar-q}), 141.7 (*C*=CH₂), 133.9 (CH^{Ar}), 131.5 (CH^{Ar}), 122.7 (C^{Ar-q}), 120.4 (q, C-F₃, ¹*J*_{C-*F*</sup> = 332.0 Hz), 119.4 (q, C-F₃, ¹*J*_{C-*F*} = 333.0 Hz), 117.3 (=CH₂), 117.0 (CH^{Ar}), 115.1 (C^{Ar-q}), 96.0 (CTf₂), 75.9 (C^{Cq}), 61.1 (CH), 52.6 (OCH₃), 40.1 (CH₂), 19.9 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): δ = -67.5 (s, 3F, CF₃), -69.7 (s, 3F, CF₃); IR (CHCl₃): v = 1699 (C=O), 1399, 1206 (O=S=O), 1217 (C-F) cm⁻¹; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₅BrF₆NO₆S₂ 585.9423; Found 585.9447.}

Procedure for the preparation of bis(triflyl)ethyl-decorated bicyclic indoline 10.

A mixture of bis(triflyl)-decorated tricyclic indoline **3a** (1.0 mmol) and Pd/C (10 mol %) in methanol (20 ml) was stirred at rt under an atmosphere of hydrogen (1 atm) until complete consumption of starting material as monitored by TLC. The reaction mixture was filtered through a Celite pad and

Bis(triflyl)ethyl-decorated bicyclic indoline 10. From 42 mg (0.08 mmol) of bis(triflyl)-decorated tricyclic indoline **3a**, and after washing up 3 times with a hexane:CHCl₃ (9:1) mixture gave compound **10** (31 mg, 75%) as a colorless solid; mp 89–91 °C; ¹H NMR (500 MHz, CHCl₃, 25 °C): $\delta = 7.75$ (br s, 1H, CH^{Ar}), 7.24 (t, 1H, J = 7.8 Hz, CH^{Ar}), 7.16 (d, 1H, J = 7.3 Hz, CH^{Ar}), 7.04 (t, 1H, J = 7.4 Hz, CH^{Ar}), 5.47 (br m, 1H, CHTf₂) 5.42 (s, 1H, =C*H*H), 5.11 (s, 1H, =CH*H*), 3.82 (s, 3H, OCH₃), 3.30 (d, 1H, J = 16.8 Hz, C*H*H), 3.25 (dd, 1H, J = 18.6, 6.2 Hz, C*H*H), 3.14 (dd, 1H, J = 17.9, 2.5 Hz, CH*H*), 3.05 (d, 1H, J = 16.8 Hz, CH*H*), 1.75 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 153.9$ (C=O), 145.7 (C=CH₂), 141.5 (C^{Ar-q}), 128.1 (CH^{Ar}), 127.7 (C^{Ar-q}), 124.8 (CH^{Ar}), 123.4 (CH^{Ar}), 119.3 (q, C-F₃, ¹ $J_{C-F} = 330.2$ Hz), 119.2 (q, C-F₃, ¹ $J_{C-F} = 329.9$ Hz), 115.9 (CH^{Ar}), 112.6 (=CH₂-*low intensity signal*), 77.2 (*C*HTf₂), 69.3 (C^{Cq}), 52.5 (OCH₃), 44.2 (CH₂), 26.1 (CH₂), 24.9 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -71.8$ (s, 3F, CF₃), -73.1 (s, 3F, CF₃); IR (CHCl₃): v = 1687 (C=O), 1393, 1203 (O=S=O), 1208 (C–F) cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₇F₆NO₆S₂Na 532.0294; Found 532.0293.

A round bottom flask equipped with a magnetic stir bar was charged with bis(triflyl)-decorated tricyclic indoline **3a** (1.0 mmol) and anhydrous diethyl ether (20 mL). LiAlH₄ (5.0 mmol) was added portionwise at 0 °C. The reaction mixture was warmed up to room temperature, and stirred until complete consumption of starting material as monitored by TLC. After then the reaction was quenched; water was added at 0 °C and the mixture was extracted with AcOEt (3 x 20 mL). The combined organic layer was washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure to afford the crude product, which was purified by column chromatography to give product **11**.

Bis(trifly1)ethyl-decorated bicyclic indoline 11. From 46 mg (0.09 mmol) of bis(trifly1)-decorated tricyclic indoline **3a**, and after flash chromatography of the residue using hexanes/ethyl acetate (1:1) as eluent gave compound **11** (27 mg, 63%) as a colorless oil; ¹H NMR (500 MHz, acetone-d₆, 25 °C): $\delta = 6.91$ (m, 2H, 2CH^{Ar}), 6.44 (t, 1H, J = 7.1 Hz, CH^{Ar}), 6.23 (d, 1H, J = 7.7 Hz, CH^{Ar}), 5.40 (s, 1H, =CHH), 5.12 (d, 1H, J = 1.4 Hz, =CHH), 3.14 (d, 1H, J = 15.8 Hz, CHH), 3.11 (m, 1H, CHH), 3.00 (d, 1H, J = 19.2 Hz, CHH), 2.58 (d, 1H, J = 15.9 Hz, CHH), 2.49 (s, 3H, NCH₃), 1.21 (s, 3H, CH₃); ¹³C NMR (125 MHz, acetone-d₆, 25 °C): $\delta = 152.7$ (*C*=CH₂), 151.5 (C^{Ar-q}), 128.5 (C^{Ar-q}), 128.1 (CH^{Ar}), 124.7 (CH^{Ar}), 122.6 (q, 2C-F₃, ¹*J*_{C-F} = 329.8 Hz), 117.0 (CH^{Ar}), 112.3 (=CH₂), 106.1 (CH^{Ar}), 71.1 (C^{Cq}), 63.0 (CTf₂), 42.6 (CH₂), 31.2 (CH₂), 28.8 (NCH₃), 21.1 (CH₃); ¹⁹F NMR (282 MHz, acetone-d₆, 25 °C): $\delta = -79.1$ (s, 6F, 2CF₃); IR (acetone): v = 1645 (C=C), 1396, 1207 (O=S=O), 1210 (C-F) cm⁻¹; HRMS (ESI) m/z: [M]⁻ Calcd for C₁₆H₁₆F₆NO₄S₂ 464.0430; Found 464.0430.

Procedure for the preparation of NH-free bis(triflyl)-decorated tricyclic indoline 12.

To a stirred solution of bis(triflyl)-decorated tricyclic indoline 3c (1.0 mmol) in dichloromethane (20 ml) was added trifluoroacetic acid (15.0 mmol), and then the reaction was heated at 40 °C until complete consumption of starting material (12 h) as monitored by TLC. The mixture was allowed to warm to rt and saturated aqueous sodium hydrogen carbonate (10 mL) was added before being partitioned between dichloromethane and water. The aqueous phase was extracted with dichloromethane (3 x 10 mL). The combined organic extract was washed with brine, dried (MgSO₄), and concentrated under reduced pressure. The resulting crude residue was purified by column chromatography to give product **12**.

NH-free bis(triflyl)-decorated tricyclic indoline 12. From 30 mg (0.05 mmol) of bis(triflyl)decorated tricyclic indoline 3c, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 12 (21 mg, 87%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): $\delta = 7.37$ (d, 1H, J = 7.6 Hz, CH^{Ar}), 7.21 (t, 1H, J = 7.7 Hz, CH^{Ar}), 6.83 (t, 1H, J = 7.5Hz, CH^{Ar}), 6.66 (d, 1H, J = 7.9 Hz, CH^{Ar}), 5.27 (d, 1H, J = 2.8 Hz, =C*H*H), 5.25 (d, 1H, J = 2.4 Hz, =CH*H*), 4.51 (s, 1H, CH), 4.06 (d, 1H, J = 17.3 Hz, CH^{AI}), 3.69 (d, 1H, J = 17.3 Hz, CH*H*), 3.25 (br s, 1H, NH), 1.53 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 151.3$ (C^{Ar-q}), 147.6 (*C*=CH₂), 130.8 (CH^{Ar}), 129.0 (CH^{Ar}), 119.7 (C^{Ar-q}), 119.2 (CH^{Ar}), 120.5 (q, C-F₃, ¹*J*_{C-F}= 332.3 Hz), 119.4 (q, C-F₃, ¹*J*_{C-F}= 333.0 Hz), 109.9 (=CH₂), 109.8 (CH^{Ar}), 96.9 (CTf₂), 73.9 (C^{Cq}), 61.7 (CH), 40.0 (CH₂), 21.6 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -67.3$ (s, 3F, CF₃), -69.9 (s, 3F, CF₃); IR (CHCl₃): v = 3335 (NH), 1388, 1203 (O=S=O), 1214 (C–F) cm⁻¹; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₄F₆NO₄S₂ 450.0263; Found 450.0250.

Procedure for the preparation of NH-free bis(triflyl)ethyl-decorated bicyclic indoline 13.

A mixture of bis(triflyl)-decorated tricyclic indoline **3b** (1.0 mmol) and Pd/C (10 mol %) in methanol (20 ml) was stirred at 55 °C under an atmosphere of hydrogen (1 atm) until complete consumption of starting material (1 h) as monitored by TLC. The reaction mixture was filtered through a Celite pad and concentrated under reduced pressure. The resulting residue was purified by column chromatography to give product **13**.

NH-free bis(triflyl)ethyl-decorated bicyclic indoline 13. From 25 mg (0.04 mmol) of bis(triflyl)decorated tricyclic indoline 3b, and after flash chromatography of the residue using hexanes/ethyl acetate (1:1) as eluent gave compound 13 (11 mg, 55%) as a colorless oil; ¹H NMR (500 MHz, acetone-d₆, 25 °C): $\delta = 6.93$ (d, 1H, J = 7.2 Hz, CH^{Ar}), 6.82 (t, 1H, J = 7.6 Hz, CH^{Ar}), 6.45 (m, 2H, CH^{Ar}), 2.97 (d, 1H, J = 15.6 Hz, C*H*H), 2.65 (m, 1H, C*H*H), 2.64 (d, 1H, J = 15.6 Hz, CH*H*), 2.02 (m, 1H, CH*H*), 1.96 (m, 1H, CH), 1.03 (s, 3H, CH₃), 0.99 (d, 1H, J = 6.2 Hz, CH₃); ¹³C NMR (125 MHz, acetone-d₆, 25 °C): $\delta = 151.8$ (C^{Ar-q}), 129.0 (C^{Ar-q}), 127.8 (CH^{Ar}), 125.5 (CH^{Ar}), 122.8 (q, 2C- F₃, ${}^{1}J_{C-F}$ = 330.7 Hz), 117.9 (CH^{Ar}), 109.5 (CH^{Ar}), 67.5 (C^{Cq}), 64.8 (CTf₂), 44.9 (CH), 42.3 (CH₂), 31.7 (CH₂), 22.7 (CH₃), 13.9 (CH₃); 19 F NMR (282 MHz, acetone-d₆, 25 °C): δ = -79.1 (s, 6F, 2CF₃); IR (acetone): v = 3345 (NH), 1395, 1198 (O=S=O), 1205 (C–F) cm⁻¹; HRMS (ESI) m/z: [M]⁻ Calcd for C₁₅H₁₆F₆NO₄S₂ 452.0430; Found 452.0432.

Procedure for the preparation of tricyclic (tert-butylamino)methyl-triflone 14.

To a stirred mixture of bis(triflyl)-decorated tricyclic indoline **3a** (1.0 mmol) in diethyl ether (20 mL) cooled at 0 °C, was added *tert*-butylamine (3.0 mmol). The mixture was warmed up to rt and stirred until complete consumption of starting material as monitored by TLC. The solvent was removed under reduced pressure to afford the crude product, which was purified by column chromatography to give product **14**.

Tricyclic (*tert*-butylamino)methyl-triflone 14. From 26 mg (0.05 mmol) of bis(triflyl)-decorated tricyclic indoline **3a**, and after flash chromatography of the residue using hexanes/ethyl acetate (6:4) as eluent gave compound 14 (19 mg, 84%) as an orange oil, containing *ca*. 20% (¹H NMR spectroscopy) of its epimer at the Tf-bearing stereocenter; ¹H NMR (500 MHz, CHCl₃, 25 °C): δ = 7.72 (br s, 1H, CH^{Ar}), 7.27 (m, 1H, CH^{Ar}), 7.18 (d, 1H, *J* = 7.5 Hz, CH^{Ar}), 7.06 (m, 1H, CH^{Ar}), 5.81 (s, 1H, =CH), 4.45 (s, 1H, CHTf), 4.30 (s, 1H, CH), 3.90 (s, 3H, OCH₃), 3.63 (d, 1H, *J* = 17.9 Hz,

CHH), 3.40 (d, 1H, J = 17.9 Hz, CHH), 2.00 (s, 3H, CH₃), 1.13 (s, 9H, 3CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 153.7$ (C=O), 153.2 (C=CH), 129.4 (CH^{Ar}), 128.4 (C^{Ar-q}), 123.8 (CH^{Ar}), 123.2 (CH^{Ar}), 120.1 (q, C-F₃, ¹*J*_{C-F} = 329.3 Hz), 116.7 (CH^{Ar}), 115.6 (C^{Ar-q}), 114.2 (C=CH), 79.4 (C^{Cq}), 72.6 (TfCH), 54.4 (CH), 52.5 (OCH₃), 50.6 (C^{Cq}), 41.2 (CH₂), 29.0 (3CH₃), 24.4 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -75.0$ (s, 3F, CF₃); IR (CHCl₃): v = 3347 (NH), 1707 (C=O), 1390, 1205 (O=S=O), 1211 (C-F) cm⁻¹; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₆F₃N₂O₄S 447.1560; Found 447.1558. *Note: Partial epimerization occurred during chromatographic purification, because just one isomer could be detected in the ¹H NMR of the crude material.*

Procedure for the preparation of tricyclic (phenylthio)methyl-triflone 15.

To a stirred mixture of bis(triflyl)-decorated tricyclic indoline **3a** (1.0 mmol) in diethyl ether (20 mL) cooled at 0 °C, was added DBU (1.0 mmol). The mixture was stirred at 0 °C until complete consumption of starting material (5 min) as monitored by TLC. The crude was transferred directly to a chromatography column filled with silica gel and was purified to provide product **8**, which was solved in diethyl ether (20 mL) and cooled down to 0 °C. Then, thiophenol (2.0 mmol) was added and the mixture was stirred at 0 °C until complete conversion (determined by TLC analysis). The reaction was concentrated in vacuo and purified by flash chromatography on silica gel to afford product **15**.

Tricyclic (phenylthio)methyl-triflone 15. From 48 mg (0.09 mmol) of bis(triflyl)-decorated tricyclic indoline **3a**, and after flash chromatography of the residue using hexanes/ethyl acetate (95:5) as eluent gave compound **15** (27 mg, 63%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): δ = 7.76 (br s, 1H, CH^{Ar}), 7.31 (t, 1H, *J* = 7.8 Hz, CH^{Ar}), 7.20 (m, 5H, 5CH^{Ar}), 7.16 (d, 1H, *J* = 7.6 Hz, CH^{Ar}), 7.08 (t, 1H, *J* = 7.4 Hz, CH^{Ar}), 5.47 (s, 1H, =CH), 4.34 (s, 1H, CHTf), 4.29 (s, 1H, CH), 3.91 (s, 3H, OCH₃), 3.88 (s, 2H, CH₂), 2.07 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): δ = 153.8 (C=O, C^{Ar-q}), 141.4 (*C*=CH), 134.8 (C^{Ar-q}), 130.9 (2CH^{Ar}), 129.6 (CH^{Ar}), 128.9 (2CH^{Ar}), 128.3 (C^{Ar-q}), 127.0 (CH^{Ar}), 123.8 (CH^{Ar}), 123.7 (CH^{Ar}), 120.0 (q, C-F₃, ¹*J*_{C-F} = 329.4 Hz), 118.5 (C=CH), 116.7 (CH^{Ar}), 79.3 (C^{Cq}), 72.2 (TfCH), 54.3 (CH), 52.7 (OCH₃), 32.9 (CH₂), 24.2 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): δ = -75.1 (s, 3F, CF₃); IR (CHCl₃): v = 1703 (C=O), 1395, 1207 (O=S=O), 1200 (C–F) cm⁻¹; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₁F₃NO₄S₂ 484.0859; Found 484.0828.

Procedure for the preparation of tolyl-bis(triflyl)-decorated tricyclic indoline 16.

 $Pd(PPh_3)_4$ (0.05 mmol, 5.0 mol %) was added to a stirred solution of bis(triflyl)-decorated tricyclic indoline **3j** (1.0 mmol), 4-tolylboronic acid (1.5 mmol) and K₂CO₃ (3.0 mmol) in 1,4-dioxane/water (2:1, 14 mL). The resulting mixture was heated at 60 °C until disappearance of the starting material (TLC). The reaction was cooled to room temperature, water was added and the mixture was extracted

with AcOEt (3 x 15 mL). The organic phase was washed with water (2×5 mL), dried (MgSO₄) and concentrated under reduced pressure. The resulting residue was purified by column chromatography to give product **16**.

TolyI-bis(triflyI)-decorated tricyclic indoline 16. From 25 mg (0.04 mmol) of bis(triflyI)-decorated tricyclic indoline **3j**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound **16** (14 mg, 77%) as a pale yellow oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): $\delta = 7.84$ (s, 1H, CH^{Ar}), 7.70 (br s, 1H, CH^{Ar}), 7.49 (m, 3H, 3CH^{Ar}), 7.40 (s, 1H, =CH), 7.25 (m, 1H, 2CH^{Ar}), 6.33 (br s, 1H, =CHH), 5.93 (s, 1H, =CH*H*), 4.52 (s, 1H, CH), 3.91 (s, 3H, OCH₃), 2.40 (s, 3H, CH₃), 1.85 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): $\delta = 153.5$ (=CH), 153.2 (C=O), 150.5 (TfC=), 140.6 (*C*=CH₂-*low intensity signal*), 137.5 (C^{Ar-q}), 136.8 (C^{Ar-q}), 136.4 (C^{Ar-q}), 129.5 (2CH^{Ar}), 128.0 (CH^{Ar}), 126.6 (2CH^{Ar}), 125.9 (C^{Ar-q}), 125.3 (CH^{Ar}), 125.2 (=CH₂-*low intensity signal*), 119.6 (q, C-F₃, ¹*J*_{C-F} = 326.6 Hz), 115.8 (CH^{Ar}), 74.8 (C^{Cq}), 60.3 (CH), 52.5 (OCH₃), 23.0 (CH₃), 21.1 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -78.0$ (s, 3F, CF₃); IR (CHCl₃): v = 1708 (C=O), 1347, 1213 (O=S=O), 1205 (C–F) cm⁻¹; HRMS (ESI) m/z: [M + NH₄]⁺ Calcd for C₂₃H₂₄F₃N₂O₄S 481.1403; Found 481.1407.

Procedure for the preparation of tetracyclic triflone 17.

i) DBU, Et₂O, 0 °C, 5 min

ii) 2,3-Dimethylbuta-1,3-diene, toluene, 120 °C sealed tube, 48 h

To a stirred mixture of bis(triflyl)-decorated tricyclic indoline **3a** (1.0 mmol) in diethyl ether (20 mL) cooled at 0 °C, was added DBU (1.0 mmol). The mixture was stirred at 0 °C until complete consumption of starting material (5 min) as monitored by TLC. The crude was transferred directly to a chromatography column filled with silica gel and was purified to provide product **8**, which was solved in toluene (20 mL). Then, 2,3-dimethyl-1,3-butadiene (3.0 mmol) was added and the mixture was heated at 120 °C in a sealed tube until complete consumption of starting material as monitored by TLC. The reaction was allowed to cool to room temperature. The mixture was concentrated in vacuo and purified by flash chromatography on silica gel to afford product **17**.

Tetracyclic triflone 17. From 65 mg (0.12 mmol) of bis(triflyl)-decorated tricyclic indoline **3a**, and after flash chromatography of the residue using hexanes/ethyl acetate (95:5) as eluent gave compound 17 (27 mg, 45%) as a colorless oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): δ = 7.72 (br s, 1H, CH^{Ar}), 7.35 (d, 1H, *J* = 7.4 Hz, CH^{Ar}), 7.29 (d, 1H, *J* = 8.3 Hz, CH^{Ar}), 7.07 (td, 1H, *J* = 7.5, 0.8 Hz, CH^{Ar}), 5.58 (s, 1H, =C*H*H), 5.43 (d, 1H, *J* = 1.2 Hz, =CH*H*), 4.15 (s, 1H, CH), 3.82 (s, 3H, OCH₃), 3.67 (m, 1H, CH), 2.37 (m, 1H, C*H*H), 2.32 (d, 1H, *J* = 16.4 Hz, C*H*H), 2.02 (dd, 1H, *J* = 15.9, 4.5 Hz, CH*H*), 1.91 (d, 1H, *J* = 16.1 Hz, C*H*H), 1.60 (s, 3H, CH₃), 1.51 (s, 3H, CH₃), 1.06 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): δ = 153.3 (C=O), 151.1 (C^{Ar-q}), 143.3 (*C*=CH₂), 129.5 (CH^{Ar}), 127.0 (*C*=C), 126.8 (CH^{Ar}), 126.0 (C=*C*), 123.1 (CH^{Ar}), 123.0 (C^{Ar-q}), 120.8 (q, C-F₃, ¹*J*_{C-F} = 332.1 Hz), 116.0 (CH^{Ar}), 115.8 (=CH₂), 77.8 (C^{Cq}-Tf), 75.2 (C^{Cq}), 59.5 (CH), 52.0 (OCH₃), 47.1 (CH), 36.7 (CH₂), 31.3 (CH₂), 22.9 (CH₃), 18.8 (CH₃), 17.8 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): δ = -68.9 (s, 3F, CF₃); IR (CHCl₃): v = 1697 (C=O), 1389, 1195 (O=S=O), 1199 (C–F) cm⁻¹. Badly ionizing compound in MS.

Procedure for the preparation of tricyclic dienyl triflone 18.

A stirred mixture of bis(triflyl)-decorated tricyclic indoline **7a** (1.0 mmol) and K₂CO₃ (5.0 mmol) in 1,4-dioxane/water (2:1, 10 mL) was heated at 70 °C until disappearance of the starting material (TLC). The reaction was cooled to room temperature, water was added and the mixture was extracted with AcOEt (3 x 10 mL). The organic phase was washed with water (2×5 mL), dried (MgSO₄) and concentrated under reduced pressure. The resulting residue was purified by column chromatography to give product **18**.

Tricyclic dienyl triflone 18. From 50 mg (0.10 mmol) of bis(triflyl)-decorated tricyclic indoline 7a, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound 18 (31 mg, 86%) as a pale yellow oil; ¹H NMR (500 MHz, CHCl₃, 25 °C): δ = 8.16 (d, 1H, *J* = 7.8 Hz, CH^{Ar}), 8.13 (br s, 1H, CH^{Ar}), 7.51 (t, 1H, *J* = 7.8 Hz, CH^{Ar}), 7.15 (t, 1H, *J* = 7.7 Hz, CH^{Ar}), 3.89 (s, 3H, OCH₃), 3.18 (m, 1H, CHH), 3.08 (dd, 1H, *J* = 16.2, 8.3 Hz, CHH), 2.54 (br s, 1H, CHH), 2.39 (dd, 1H, *J* = 19.9, 11.2 Hz, CHH), 1.50 (s, 3H, CH₃); ¹³C NMR (125 MHz, CHCl₃, 25 °C): δ = 169.9 (*C*=CTf), 152.1 (C=O), 150.2 (C=CTf), 134.8 (CH^{Ar}), 128.4 (CH^{Ar}), 123.9 (OCH₃), 120.2 (q, C-F₃, ¹*J*_{C-F} = 326.9 Hz), 118.7 (C^{Ar-q}), 117.2 (C^{Ar-q}), 116.4 (CH^{Ar}), 79.6 (C^{Cq}), 52.9 (OCH₃),

39.3 (CH₂), 36.1 (CH₂), 20.9 (CH₃); ¹⁹F NMR (282 MHz, CHCl₃, 25 °C): $\delta = -78.6$ (s, 3F, CF₃); IR (CHCl₃): v = 1697 (C=O), 1345, 1216 (O=S=O), 1208 (C–F) cm⁻¹. Badly ionizing compound in MS.

A round bottom flask equipped with a magnetic stir bar was charged with bis(triflyl)-decorated tricyclic indoline **7a** (1.0 mmol) and anhydrous diethyl ether (20 mL). LiAlH₄ (5.0 mmol) was added portionwise at 0 °C. The reaction mixture was warmed up to room temperature, and stirred until complete consumption of starting material as monitored by TLC. After then the reaction was quenched; water was added at 0 °C and the mixture was extracted with AcOEt (3 x 20 mL). The combined organic layer was washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure to afford the crude product, which was purified by column chromatography to give product **19**.

Bis(triflyl)ethyl-decorated bicyclic indoline 19. From 50 mg (0.10 mmol) of bis(triflyl)-decorated tricyclic indoline **7a**, and after flash chromatography of the residue using hexanes/ethyl acetate (1:1) as eluent gave compound **19** (38 mg, 80%) as a colorless oil; ¹H NMR (500 MHz, acetone-d₆, 25 °C): $\delta = 6.88$ (m, 2H, 2CH^{Ar}), 6.41 (t, 1H, J = 7.3 Hz, CH^{Ar}), 6.20 (d, 1H, J = 8.0 Hz, CH^{Ar}), 2.95 (d, 1H, J = 15.6 Hz, CHH), 2.59 (s, 3H, NCH₃), 2.56 (d, 1H, J = 15.6 Hz, CHH), 2.26 (m, 2H, CH₂), 1.91 (m, 1H, CHH), 1.80 (m, 1H, CHH), 1.03 (s, 3H, CH₃); ¹³C NMR (125 MHz, acetone-d₆, 25 °C): $\delta = 100$

153.1 (C^{Ar-q}), 128.4 (C^{Ar-q}), 128.0 (CH^{Ar}), 124.5 (CH^{Ar}), 122.5 (q, 2C-F₃, ${}^{1}J_{C-F}$ = 328.6 Hz), 116.8 (CH^{Ar}), 105.7 (CH^{Ar}), 67.3 (C^{Cq}), 64.4 (CTf₂), 41.5 (CH₂), 40.6 (CH₂), 27.9 (NCH₃), 24.5 (CH₂), 23.1 (CH₃); 19 F NMR (282 MHz, acetone-d₆, 25 °C): δ = -79.9 (s, 6F, 2CF₃); IR (acetone): v = 1393, 1205 (O=S=O), 1207 (C–F) cm⁻¹; HRMS (ESI) m/z: [M] ⁻ Calcd for C₁₅H₁₆F₆NO₄S₂ 452.0430; Found 452.0409.

¹³C NMR (75 MHz, CDCl₃)

 $\underbrace{+1.5}_{1.55}$

-

10.0

¹³C NMR (125 MHz, CDCl₃)

nOe irradiations of the protons of the methyl group and the methine moiety of both stereocenters at the minor set of signals in compound **3d** gave enhancements compatible with a *syn*-stereochemistry. Besides, in addition of the correlations with protons of the minor set of signals, enhancements on the signals of the protons of the major set of signals were observed, which points to the rotameric nature of both set of signals.

NOE Experiment (500 MHz, 1,1,2,2-Tetrachloroethane-d2). Irradiation CH (minor compound)

8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 δ (ppm)

------67.02 -----69.34

¹⁹F NMR (282 MHz, CDCl₃)

0.95 0.93 0.93 F20.2 F00.1 4.08 1.06 1.06 3.13H 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 δ (ppm) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

-

10.0

0.0

10.0

13C NMR (125 MHz, CDCl₃)

-

200

13C NMR (125 MHz, CDCl₃)

10.0

10.0

¹H NMR (500 MHz, CDCl₃)

-----67.16 -----69.42

¹H NMR (500 MHz, CDCl₃)

-

10.0

¹⁹F NMR (282 MHz, CDCl₃)

----75.05

¹⁹F NMR (282 MHz, Acetone)

DFT calculations

All calculations were carried out by using *Gaussian 09* program, revision D.01.ⁱ Molecular geometries were optimized and characterized by frequency analysis using a hybrid density functional $(M06-2X)^{ii}$ and the 6-31+G(d) basis set as implemented in the *Gaussian 09* program. Single imaginary frequency was obtained in all transition states, which were supported by the intrinsic reaction coordinate (IRC) calculations using the 'lqa' keyword. Each geometry of intermediates was obtained by optimization of the IRC geometries.

Table S1. Coordinates and energies for optimized geometry of 2a

E(RM062X) = -784.505724922

Zero-point correction = 0.261950 (Hartree/Particle)

Sum of electronic and thermal Enthalpies = -784.213291

Sum of electronic and thermal Free Energies = -784.314103

Center	Atomic	Atomic	Coor	dinates (Angstron	ms)
Number	Number	Туре	Х	Y	Ζ
1	6	0	0.216714	-1.674729	1.663132
2	1	0	-0.622436	-1.912748	2.311548
3	1	0	1.219302	-1.944192	1.986454
4	6	0	0.012864	-1.077705	0.488444
5	16	0	-1.677790	-0.818587	-0.058444
6	8	0	-1.825569	-1.230527	-1.439105
7	8	0	-2.536645	-1.321287	0.999658
8	16	0	1.411374	-0.710903	-0.568632
9	8	0	0.948841	-0.266224	-1.867238
10	8	0	2.406635	-1.750872	-0.392972
11	6	0	2.116354	0.796226	0.278989
12	9	0	3.113797	1.252158	-0.458216
13	9	0	1.175424	1.724005	0.390944
14	9	0	2.557230	0.465552	1.484317
15	6	0	-1.889679	1.034293	-0.012710
16	9	0	-1.509184	1.486399	1.173938
17	9	0	-1.166912	1.600910	-0.963496
18	9	0	-3.172334	1.294484	-0.202447

E(RM062X) = -1849.36746136

Zero-point correction = 0.083638 (Hartree/Particle)

Sum of electronic and thermal Enthalpies = -1849.256781

Sum of electronic and thermal Free Energies = -1849.351150

To evaluate the importance of intermolecular hydrogen bonding in the initial electrophilic attack of $Tf_2C=CH_2$ on the allenol **2a**, two transition states **TS-1** and **TS-1B** were computed. Among these, **TS-1** bearing an intramolecular hydrogen bond was 3.7 kcal mol⁻¹ more stable than **TS-1B** without that bond.

Center	Atomic	Atomic	Coor	dinates (Angstron	ms)
Number	Number	Туре	Х	Ŷ	Ź
1	6	0	-2.309275	-1.120020	-0.640771
2	6	0	-3.803883	-1.190775	-0.376461
3	6	0	-6.556784	-1.346678	0.100934
4	6	0	-4.411197	-2.424388	-0.141844
5	6	0	-4.590011	-0.032420	-0.378323
6	6	0	-5.959627	-0.110853	-0.139750
7	6	0	-5.781999	-2.504721	0.096102
8	8	0	-2.061852	-0.756465	-1.968191
9	6	0	-1.553707	-0.336908	0.402424
10	6	0	-0.538679	0.612363	0.085553
11	7	0	-3.980077	1.230585	-0.645831
12	6	0	-3.696457	2.122092	0.347047
13	8	0	-3.275969	3.283435	-0.171950
14	8	0	-3.762940	1.881283	1.540298
15	6	0	-2.882201	4.279863	0.781649
16	6	0	-1.850087	-0.696256	1.796607
17	6	0	-0.721681	1.505355	-0.916823
18	1	0	-1.902364	-2.130425	-0.443771
19	1	0	-7.624535	-1.402705	0.287666
20	1	0	-3.808306	-3.328365	-0.146737
21	1	0	-6.547546	0.802299	-0.144385
22	1	0	-6.241708	-3.471414	0.275670
23	1	0	-1.140769	-1.005306	-2.172987
24	1	0	-4.002421	1.584929	-1.596508
25	1	0	-2.044725	3.916714	1.380816
26	1	0	-3.722648	4.532293	1.430108
27	1	0	-2.582724	5.141920	0.189413
28	1	0	-1.028080	-0.510295	2.487083
29	1	0	-2.242089	-1.711114	1.898856
30	1	0	-2.667956	-0.003726	2.078320
31	1	0	-1.615313	1.517417	-1.525657
32	1	0	0.027264	2.278775	-1.081487
33	6	0	0.792732	0.615978	0.847311
34	1	0	1.010998	1.622704	1.210581
35	1	0	0.752733	-0.035582	1.721193
36	6	0	1.896659	0.196676	-0.097299
37	16	0	3.001230	1.349345	-0.669182
38	8	0	3.490592	1.104483	-2.020428
39	8	0	2.503125	2.677806	-0.299267
40	16	0	1.877476	-1.394635	-0.662982
41	8	0	2.829203	-1.675000	-1.729279
42	8	0	0.480889	-1.856249	-0.788057
43	6	0	2.475330	-2.459517	0.743799
44	9	0	2.428840	-3.739972	0.386445
45	9	0	3.724379	-2.144360	1.069213
46	9	0	1.697706	-2.287446	1.816946
47	6	0	4.534474	1.181445	0.364993
48	9	0	4.221370	1.228464	1.660605
49	9	0	5.137428	0.022852	0.110525
50	9	0	5.378656	2.174985	0.093086

 Table S3. Coordinates and energies for optimized geometry of TS-1

Zero-point correction = 0.347112 (Hartree/Particle)

Sum of electronic and thermal Enthalpies = -2633.465202

Sum of electronic and thermal Free Energies = -2633.628432

			9		
Center	Atomic	Atomic	Coor	dinates (Angstron	ms)
Number	Number	Туре	Х	Y	Z
1	6	0	-2.059333	-1.209811	-0.184784
2	6	0	-3.509570	-1.540231	0.100823
3	6	0	-6.185827	-2.060988	0.679818
4	6	0	-3.883566	-2.772348	0.629040
5	6	0	-4.489559	-0.569682	-0.158328
6	6	0	-5.827774	-0.830254	0.131145
7	6	0	-5.220947	-3.036234	0.924192
8	8	0	-1.921806	-0.960837	-1.563073
9	6	0	-1.614581	-0.022807	0.673197
10	6	0	-0.773733	0.893588	0.141269
11	7	0	-4.069868	0.660204	-0.716563
12	6	0	-4.495260	1.887212	-0.295934
13	8	0	-3.848717	2.850180	-0.977544
14	8	0	-5.320232	2.097215	0.572200
15	6	0	-4.192729	4.193616	-0.619087
16	6	0	-1.974178	-0.036656	2.120398
17	6	0	-0.527121	1.896695	-0.671482
18	1	0	-1.437975	-2.068663	0.122632
19	1	0	-7.229087	-2.259414	0.905871
20	1	0	-3.121986	-3.524250	0.819094
21	1	0	-6.576617	-0.072567	-0.070541
22	1	0	-5.505850	-3.996857	1.341458
23	1	0	-0.972887	-0.968838	-1.788389
24	1	0	-3.339580	0.627314	-1.424080
25	1	0	-3.970314	4.372010	0.434536
26	1	0	-5.251785	4.375509	-0.810650
27	1	0	-3.575705	4.827962	-1.252480
28	1	0	-1.464146	0.748114	2.679519
29	1	0	-1.767070	-1.018000	2.566618
30	1	0	-3.057584	0.120970	2.203280
31	1	0	-1.358755	2.468082	-1.079540
32	1	0	0.480288	2.205139	-0.936035
33	6	0	0.847290	0.087069	1.016906
34	1	0	0.843594	0.771169	1.862523
35	1	0	0.517182	-0.920363	1.249380
36	6	0	1.909429	0.208944	0.102240
37	16	0	2.866403	1.662544	0.095143
38	8	0	3.140147	2.172209	-1.238944
39	8	0	2.315334	2.529845	1.131603
40	16	0	2.118574	-1.038657	-1.072704
41	8	0	3.079115	-0.675694	-2.099612
42	8	0	0.804206	-1.595572	-1.405352

43	6	0	2.913383	-2.437235	-0.132613
44	9	0	3.122034	-3.447022	-0.965148
45	9	0	4.067888	-2.040351	0.385258
46	9	0	2.109078	-2.835233	0.850950
47	6	0	4.533007	1.160304	0.756797
48	9	0	4.389268	0.501438	1.900778
49	9	0	5.165037	0.392277	-0.119930
50	9	0	5.240001	2.262582	0.970083

Zero-point correction = 0.349937 (Hartree/Particle)

Sum of electronic and thermal Enthalpies = -2633.483115

Sum of electronic and thermal Free Energies = -2633.645754

Table S5. Coordinates and energies for optimised geometry of TS-2

Center	Atomic	Atomic	Coord	inates (Angstron	ıs)
Number	Number	Туре	Х	Y	Z
1	6	0	-2.275148	-1.346768	-0.537928
2	6	0	-3.788865	-1.232547	-0.544499
3	6	0	-6.576662	-1.069514	-0.611554
4	6	0	-4.555764	-2.389252	-0.695496
5	6	0	-4.427965	0.002953	-0.444574
6	6	0	-5.819611	0.088410	-0.470196
7	6	0	-5.943956	-2.308823	-0.729763
8	8	0	-1.833027	-1.650308	-1.832703
9	6	0	-1.573740	-0.179774	0.121153
10	6	0	-0.534808	0.569718	-0.529103
11	7	0	-3.614635	1.175522	-0.328877
12	6	0	-3.773806	2.030334	0.753240
13	8	0	-3.168028	3.192567	0.504830
14	8	0	-4.328026	1.731239	1.787431
15	6	0	-3.220837	4.157352	1.567414
16	6	0	-1.741166	-0.111567	1.589751
17	6	0	-0.64050	0.916375	-1.829137
18	1	0	-2.017436	-2.176078	0.145995
19	1	0	-7.659932	-1.005393	-0.631020
20	1	0	-4.058685	-3.351607	-0.782168
21	1	0	-6.295886	1.060161	-0.379898
22	1	0	-6.533723	-3.213365	-0.840249
23	1	0	-0.909952	-1.957755	-1.755669
24	1	0	-3.378014	1.652097	-1.196112
25	1	0	-2.720240	3.765465	2.454413
26	1	0	-4.259291	4.397438	1.800458
27	1	0	-2.699108	5.032474	1.186575
28	1	0	-1.562551	0.886954	1.994062

29	1	0	-0.974867	-0.784385	2.010032
30	1	0	-2.717291	-0.487061	1.906794
31	1	0	-1.498101	0.649822	-2.436551
32	1	0	0.139831	1.519806	-2.290002
33	6	0	0.739190	0.923768	0.244233
34	1	0	0.959147	1.986459	0.121055
35	1	0	0.615043	0.751817	1.315358
36	6	0	1.907975	0.134532	-0.308470
37	16	0	3.082935	0.916986	-1.246004
38	8	0	3.668424	0.094348	-2.297944
39	8	0	2.592094	2.263737	-1.554833
40	16	0	1.895544	-1.536070	-0.086380
41	8	0	2.889290	-2.268131	-0.859808
42	8	0	0.497931	-2.014193	-0.051261
43	6	0	2.406847	-1.843638	1.677864
44	9	0	2.343582	-3.145165	1.944828
45	9	0	3.647595	-1.417469	1.885418
46	9	0	1.588057	-1.195458	2.514547
47	6	0	4.535583	1.259161	-0.138061
48	9	0	4.129208	1.851749	0.985811
49	9	0	5.157796	0.125696	0.176341
50	9	0	5.396871	2.064142	-0.757804

Zero-point correction = 0.350621 (Hartree/Particle)

Sum of electronic and thermal Enthalpies = -2633.486363

Sum of electronic and thermal Free Energies = -2633.643426

Table S6. Coordinates and energies for optimised geometry of INT-2

Atomic	Atomic	Coore	dinates (Angstror	ns)
Number	Туре	Х	Y	Ζ
6	0	-2.384984	-1.392219	-0.398299
6	0	-3.882915	-1.262309	-0.458902
6	0	-6.567803	-0.566978	-0.641437
6	0	-4.826416	-2.262049	-0.675237
6	0	-4.305333	0.047368	-0.342395
6	0	-5.630660	0.443166	-0.430566
6	0	-6.170665	-1.903309	-0.760313
8	0	-1.917574	-1.735271	-1.670679
6	0	-1.906175	0.011020	0.149593
6	0	-0.691944	0.603780	-0.550266
7	0	-3.151518	0.944699	-0.179563
6	0	-3.319727	2.023292	0.842811
8	0	-2.402649	2.925602	0.621019
8	0	-4.155809	1.967441	1.689718
6	0	-2.379851	4.039187	1.549796
	Atomic Number 6 6 6 6 6 6 6 8 6 6 7 6 8 8 8 6 8 8 8 6	$\begin{array}{c ccc} Atomic & Atomic \\ \hline Number & Type \\ \hline 6 & 0 \\ \hline 7 & 0 \\ \hline 6 & 0 \\ \hline 7 & 0 \\ \hline 6 & 0 \\ \hline 8 & 0 \\ \hline 6 & 0 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

16	6	0	-1.813406	-0.098764	1.667150
17	6	0	-0.743630	0.903248	-1.849974
18	1	0	-2.069745	-2.142713	0.335285
19	1	0	-7.619171	-0.308497	-0.712054
20	1	0	-4.514083	-3.296804	-0.777240
21	1	0	-5.931022	1.481277	-0.337653
22	1	0	-6.921532	-2.670036	-0.921735
23	1	0	-0.967644	-1.937999	-1.570722
24	1	0	-2.935725	1.417434	-1.068923
25	1	0	-2.201715	3.660641	2.556701
26	1	0	-3.331954	4.567133	1.496933
27	1	0	-1.559550	4.666696	1.213349
28	1	0	-1.546195	0.845276	2.150361
29	1	0	-1.039735	-0.832400	1.906875
30	1	0	-2.759312	-0.458176	2.084602
31	1	0	-1.615361	0.716025	-2.473918
32	1	0	0.124110	1.325991	-2.350504
33	6	0	0.603147	0.831044	0.226327
34	1	0	0.842948	1.898138	0.195911
35	1	0	0.483735	0.585044	1.282020
36	6	0	1.789009	0.081822	-0.352111
37	16	0	2.961723	0.905845	-1.247790
38	8	0	3.559204	0.131369	-2.330879
39	8	0	2.469642	2.263633	-1.505663
40	16	0	1.807517	-1.588431	-0.162907
41	8	0	2.805153	-2.293299	-0.959335
42	8	0	0.419346	-2.088071	-0.114146
43	6	0	2.347082	-1.934734	1.586791
44	9	0	2.296530	-3.243870	1.825488
45	9	0	3.590381	-1.508353	1.787134
46	9	0	1.541176	-1.313182	2.455388
47	6	0	4.417424	1.222969	-0.134788
48	9	0	4.012079	1.765323	1.015638
49	9	0	5.062447	0.089470	0.132278
50	9	0	5.263753	2.066280	-0.725989

Zero-point correction = 0.354310 (Hartree/Particle)

Sum of electronic and thermal Enthalpies = -2633.506162 Sum of electronic and thermal Free Energies = -2633.662014

Table S7. Coordinates and energies for optimised geometry of INT-3

2	6	0	-3.762971	-1.471928	0.528520
3	6	0	-6.456988	-1.344882	0.011201
4	6	0	-4.541451	-2.592448	0.786974
5	6	0	-4.315735	-0.288805	0.026793
6	6	0	-5.681576	-0.211975	-0.246898
7	6	0	-5.909652	-2.522551	0.526220
8	8	0	-1.702200	-1.918391	-0.602660
9	6	0	-2.065918	0.230549	0.586351
10	6	0	-0.790594	0.550380	-0.181697
11	7	0	-3.313692	0.695879	-0.083539
12	6	0	-3.603122	2.014388	-0.367522
13	8	0	-2.595324	2.825011	-0.042496
14	8	0	-4.648192	2.387415	-0.865637
15	6	0	-2.769597	4.202442	-0.400504
16	6	0	-2.063178	0.737134	2.039506
17	6	0	-0.799945	0.854230	-1.477260
18	1	0	-1.795832	-1.787752	1.477815
19	1	0	-7.522807	-1.299100	-0.192340
20	1	0	-4.094241	-3.498398	1.187263
21	1	0	-6.124229	0.691774	-0.641032
22	1	0	-6.546117	-3.378615	0.723826
23	1	0	-0.623332	-1.980671	-0.591823
24	1	0	-3.633618	4.619769	0.119311
25	1	0	-2.904033	4.294277	-1.479716
26	1	0	-1.853577	4.697591	-0.084710
27	1	0	-1.937400	1.820842	2.054509
28	1	0	-1.261142	0.280105	2.623330
29	1	0	-3.016292	0.484927	2.515325
30	1	0	-1.727186	0.950673	-2.033475
31	1	0	0.124982	1.020549	-2.020544
32	6	0	0.494505	0.398994	0.624428
33	1	0	0.660211	1.314239	1.206569
34	1	0	0.387568	-0.398043	1.369456
35	6	0	1.722154	0.122438	-0.211566
36	16	0	2.806180	1.370038	-0.578251
37	8	0	3.777048	0.988404	-1.599093
38	8	0	2.104143	2.650654	-0.643691
39	16	0	1.925904	-1.416056	-0.842304
40	8	0	2.381942	-1.530722	-2.218724
41	8	0	0.723248	-2.215169	-0.421326
42	6	0	3.211086	-2.363957	0.118524
43	9	0	3.136914	-3.654234	-0.190513
44	9	0	4.420657	-1.910667	-0.183948
45	9	0	2.998976	-2.216371	1.423587
46	6	0	3.846593	1.573971	0.950330
47	9	0	3.069200	1.829149	2.005255
48	9	0	4.538674	0.463029	1.194077
49	9	0	4.696006	2.585068	0.788698
50	1	0	-2.081211	-2.806729	-0.761550

Zero-point correction = 0.351047 (Hartree/Particle)

Sum of electronic and thermal Enthalpies = -2633.519364

Sum of electronic and thermal Free Energies = -2633.674015

Center	Atomic	Atomic	Coor	dinates (Angstro	ms)
Number	Number	Type	X	Y	Z
1	6	0	-2.511921	-1.237669	0.968197
2	Ğ	Ŏ	-3.881701	-1.400421	0.745600
3	6	Õ	-6.512406	-1.237099	-0.015365
4	6	Õ	-4.733445	-2.492871	1.029469
5	6	0	-4.358368	-0.238219	0.082123
6	6	0	-5.702947	-0.151267	-0.308877
7	6	0	-6.049866	-2.401238	0.647632
8	8	0	-1.765355	-2.355749	-0.685672
9	6	0	-2.118588	0.179992	0.647825
10	6	0	-0.845074	0.279697	-0.194219
11	7	0	-3.335393	0.678047	-0.035651
12	6	0	-3.518700	1.978468	-0.506836
13	8	0	-2.475029	2.742431	-0.220578
14	8	0	-4.512620	2.336209	-1.098759
15	6	0	-2.529611	4.086638	-0.727480
16	6	0	-1.992271	0.879560	2.031827
17	6	0	-0.893109	0.431787	-1.514392
18	1	0	-1.896018	-1.856547	1.609688
19	1	0	-7.556958	-1.191404	-0.309741
20	1	0	-4.341008	-3.371245	1.532778
21	1	0	-6.088481	0.720393	-0.817904
22	1	0	-6.741497	-3.212548	0.844991
23	1	0	-0.784614	-2.297971	-0.761062
24	1	0	-3.380988	4.611989	-0.292362
25	1	0	-2.613366	4.068486	-1.814991
26	1	0	-1.591941	4.543573	-0.419539
27	1	0	-1.688245	1.915581	1.875766
28	1	0	-1.252522	0.377537	2.657621
29	1	0	-2.958100	0.858735	2.543288
30	1	0	-1.831927	0.510934	-2.053703
31	1	0	0.022267	0.477944	-2.096084
32	6	0	0.446848	0.144561	0.596546
33	1	0	0.546596	1.015436	1.254869
34	1	0	0.382317	-0.721676	1.269258
35	6	0	1.696330	0.029694	-0.242639
36	16	0	2.634007	1.406584	-0.512661
37	8	0	3.677874	1.199326	-1.512733
38	8	0	1.793024	2.604406	-0.543877
39	16	0	2.097617	-1.465895	-0.909119
40	8	0	2.641961	-1.443088	-2.261854
41	8	0	0.990894	-2.393064	-0.593783

42	6	0	3.482341	-2.226528	0.076890
43	9	0	3.618928	-3.508140	-0.260815
44	9	0	4.628997	-1.597199	-0.159274
45	9	0	3.208857	-2.154891	1.380456
46	6	0	3.608943	1.674136	1.052034
47	9	0	2.786076	1.822642	2.095370
48	9	0	4.406872	0.635824	1.292610
49	9	0	4.356372	2.771208	0.941555
50	1	0	-1.963392	-3.290662	-0.505902

Zero-point correction = 0.349445 (Hartree/Particle)

Sum of electronic and thermal Enthalpies = -2633.500914

Sum of electronic and thermal Free Energies = -2633.659075

Table S9. Coordinates and energies for optimised geometry of H₂O

Center	Atomic	Atomic	Coor	dinates (Angstron	ns)			
Number	Number	Туре	Х	Y	Ζ			
1	8	0	0.000000	0.117737	0.000000			
2	1	0	0.767958	-0.470846	0.000000			
3	1	0	-0.767958	-0.471053	0.000000			

E(RM062X) = -76.3914479629

Zero-point correction = 0.021361 (Hartree/Particle)

Sum of electronic and thermal Enthalpies = -76.364960

Sum of electronic and thermal Free Energies = -76.396393

Table S10. Coordinates and energies for optimised geometry of INT-4'

			- C2-24		
Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	6	0	-2.246697	-1.222033	0.961184
2	6	0	-3.438056	-1.648213	0.449563
3	6	0	-5.937321	-1.905719	-0.669193
4	6	0	-3.981959	-2.962643	0.293468
5	6	0	-4.174709	-0.482069	0.022705
6	6	0	-5.454256	-0.619234	-0.546786
7	6	0	-5.221988	-3.075846	-0.259539
8	6	0	-2.134506	0.261874	0.884859
9	6	0	-0.932162	0.511432	-0.046156
10	7	0	-3.426734	0.625567	0.265700
11	6	0	-3.825446	1.934548	-0.064551
12	8	0	-2.887999	2.801415	0.267776

13	8	0	-4.883218	2.186970	-0.588243
14	6	0	-3.165063	4.175310	-0.065205
15	6	0	-2.006386	0.883027	2.293291
16	6	0	-1.086974	0.696368	-1.355039
17	1	0	-1.439989	-1.842740	1.340777
18	1	0	-6.922096	-2.040390	-1.107264
19	1	0	-3.405763	-3.824211	0.613662
20	1	0	-6.025608	0.237397	-0.872899
21	1	0	-5.681915	-4.047386	-0.399227
22	1	0	-4.055624	4.510100	0.468105
23	1	0	-3.309568	4.268500	-1.142114
24	1	0	-2.285639	4.726936	0.257546
25	1	0	-1.819582	1.953519	2.210047
26	1	0	-1.188872	0.415064	2.842693
27	1	0	-2.934915	0.715331	2.845005
28	1	0	-2.061064	0.742122	-1.832974
29	1	0	-0.218093	0.812778	-1.995145
30	6	0	0.420280	0.444309	0.647384
31	1	0	0.625760	1.422614	1.099427
32	1	0	0.378045	-0.261744	1.483731
33	6	0	1.566255	0.054228	-0.253577
34	16	0	2.582718	1.241919	-0.875079
35	8	0	3.475061	0.752155	-1.923079
36	8	0	1.847650	2.498146	-1.047973
37	16	0	1.720533	-1.585789	-0.635628
38	8	0	2.161231	-1.881390	-1.995290
39	8	0	0.541990	-2.270338	-0.084012
40	6	0	3.097281	-2.299801	0.394940
41	9	0	3.067195	-3.631397	0.327748
42	9	0	4.282746	-1.878038	-0.036509
43	9	0	2.950327	-1.936979	1.671503
44	6	0	3.758825	1.696910	0.495924
45	9	0	3.077017	2.116329	1.567139
46	9	0	4.499951	0.650599	0.856027
47	9	0	4.569386	2.677787	0.099312

E(RM062X) = -2557.50813009

Zero-point correction = 0.324269 (Hartree/Particle)

Sum of electronic and thermal Enthalpies = -2557.130885

Sum of electronic and thermal Free Energies = -2557.284051

2	6	0	1.781672	-1.296203	0.469288
3	ő	Ŏ	2.448626	0.911962	0.920747
4	ő	Ŏ	3.094554	2.157338	0.996527
5	ĩ	ŏ	3 914220	2 413343	0 341324
6	6	ŏ	2 615661	3 043843	1 941147
7	1	ŏ	3 091905	4 017496	2 015526
8	6	0	1 528/21	2 762838	2.013320
0	1	0	1 2080/8	3 523806	3 52/023
10	6	0	0 000025	1 551751	2.32 + 723 2 760712
10	1	0	0.900923	1.331/31	2.709712
11	1	0	1 268228	0.600722	1 8140655
12	0	0	1.306326	0.000722	1.014900
13	0	0	0.923787	-0.00119/	1.3133//
14	l	0	0.10221/	-1.21/300	2.044601
15	6	0	-0.986531	-0.231282	-0.505/35
10	6	0	0.105992	-0./6/64/	-1.409593
l /	1	0	-0.313692	-1.208/38	-2.318555
18	l	0	0.728870	0.081116	-1./13/32
19	6	0	0.906211	-3.095293	-1.048186
20	l	0	0.2526/5	-3.415908	-1.854429
21	1	0	1.489782	-3.863578	-0.552521
22	6	0	2.613281	-2.392951	1.175869
23	1	0	1.948965	-3.155612	1.587135
24	1	0	3.191264	-1.948459	1.989729
25	1	0	3.293836	-2.850389	0.455582
26	6	0	3.683584	-0.202970	-0.864391
27	6	0	4.701548	-1.541603	-2.486588
28	1	0	4.548247	-0.796352	-3.267839
29	1	0	4.553343	-2.546632	-2.874490
30	1	0	5.696422	-1.433579	-2.052465
31	6	0	-2.428597	-1.959702	1.284059
32	6	0	-2.213305	2.221757	-1.553707
33	9	0	-3.567908	-2.623771	1.452836
34	9	0	-1.413011	-2.822794	1.381874
35	9	0	-2.305191	-1.056991	2.256496
36	9	0	-2.251205	1.423891	-2.623932
37	9	Õ	-1.695702	3.393814	-1.919272
38	9	Ŏ	-3.447699	2.425110	-1.118763
39	7	ŏ	2 672384	-0 158536	0 103817
40	8	ŏ	4 418356	0 726074	-1 102981
41	8	ŏ	3 704721	-1 384123	-1 460964
42	8	ŏ	-2 385976	-2 279091	-1 298863
43	8	0	-3 611344	-0.281736	-0.311906
	8	0	0 1065/7	2 04/050	-0.510885
77 //5	Q Q	0	_1 702505	2.077030	1 02/055
т 5 Лб	0 16	0	-1.792303 -2.407701	_1 138780	-0.38/327
40	10	0	-2. 4 2//01 1 11160/	-1.130209	-0.30432/
4/	10	0	-1.111084	1.430342	-0.22324/

 $\overline{E(RM062X)} = -2557.51805172$

Zero-point correction = 0.324260 (Hartree/Particle)

Sum of electronic and thermal Enthalpies = -2557.141138

Sum of electronic and thermal Free Energies = -2557.291563

Center Atomic Atomic Coordinates (Angstroms) Number Number Туре Х Y Ζ 1 0 -0.964217 -1.801613 0.749638 6 2 0 -1.755979 6 -1.274760-0.4472243 0 -2.431662 0.930975 -0.9159406 4 6 0 -3.094366 2.164053 -1.0131625 0 1 -3.931664 2.410673 -0.376710 6 7 6 0 -2.6111023.054984 -1.9547190 4.020185 1 -3.101653 -2.0444338 0 2.783412 6 -1.505664 -2.8087869 0 1 -1.1826783.540764 -3.51428910 6 0 -0.858403 1.580649 -2.729009 11 1 0 -0.0010701.339614 -3.348592 12 0 6 -1.328131 0.634324 -1.77730913 0 6 -0.859778-0.621092-1.45133514 0 -1.181313 -1.997179 1 -0.112248 15 0 0.944613 -0.234868 6 0.461269 16 0 -0.101390-0.7612081.424380 6 17 1 0 0.353420 -1.195735 2.319328 18 1 0 -0.7168920.088296 1.741864 19 0 6 -0.954482-3.0827721.106788 200 1 -0.317788-3.4100561.923747 21 1 0 -1.556359 -3.840868 0.616919 22 0 -2.558271 -2.361695 -1.199342 6 23 0 -1.879811 -1.5879061 -3.12400324 1 0 -3.100546 -1.908116 -2.032624 25 1 0 -3.271105 -2.822041 -0.512659 0 26 6 -3.699867 -0.2019700.836095 27 6 0 -4.762289 -1.558499 2.415823 0 -4.629021 -0.823411 28 1 3.210430 29 1 0 -4.626568 -2.5684942.795686 -1.443138 30 1 0 -5.745617 1.957808 31 6 0 2.415146 -1.952926 -1.31790732 6 0 2.238994 2.158955 1.591840 33 9 0 3.559251 -2.607180-1.4824399 34 0 1.405551 -2.821767-1.415401 9 35 0 2.288046 -1.047716 -2.286638 36 9 0 2.333094 1.282541 2.594313 9 37 0 1.705087 3.283584 2.063980 9 7 38 0 3.449202 2.427720 1.128621 39 0 -2.662745 -0.144121 -0.097476

8

8

40

41

0

0

-4.445935

-3.738557

0.721886

-1.391043

1.065044

1.419893

Table S12. Coordinates and energies for optimised geometry of TS-4

42	8	0	2.368065	-2.275593	1.267479
43	8	0	3.580136	-0.266799	0.289791
44	8	0	-0.187062	2.070604	0.562203
45	8	0	1.785061	1.803909	-1.005388
46	16	0	2.406721	-1.137283	0.351615
47	16	0	1.107289	1.464311	0.241524

 $\overline{E(RM062X)} = -2557.51794717$

Zero-point correction = 0.323919 (Hartree/Particle) Sum of electronic and thermal Enthalpies = -2557.142503 Sum of electronic and thermal Free Energies = -2557.289077

Table S13. Coordinates and energies for optimised geometry of P

Center	Atomic	Atomic	Coor	dinates (Angstroi	ms)
Number	Number	Туре	Х	Y	Z
1	6	0	-1.301664	-1.999425	0.313216
2	6	0	-1.770123	-0.987564	-0.709575
3	6	0	-2.267281	1.339531	-0.566866
4	6	0	-2.952471	2.550684	-0.503548
5	1	0	-3.918409	2.623850	-0.023804
6	6	0	-2.348511	3.667674	-1.087659
7	1	0	-2.869524	4.620015	-1.049479
8	6	0	-1.110325	3.586111	-1.723993
9	1	0	-0.672486	4.467996	-2.180387
10	6	0	-0.430014	2.367271	-1.769228
11	1	0	0.543083	2.293939	-2.244069
12	6	0	-1.009261	1.257847	-1.171316
13	6	0	-0.490994	-0.151695	-1.044355
14	1	0	-0.060140	-0.510873	-1.981374
15	6	0	0.530701	-0.454380	0.130421
16	6	0	-0.224983	-1.356076	1.142012
17	1	0	0.421903	-2.070244	1.657263
18	1	0	-0.672273	-0.695230	1.896303
19	6	0	-1.679138	-3.268609	0.403701
20	1	0	-1.220604	-3.941745	1.122649
21	1	0	-2.463097	-3.671162	-0.230743
22	6	0	-2.390899	-1.571759	-1.972489
23	1	0	-1.693493	-2.274653	-2.437488
24	1	0	-2.612389	-0.767648	-2.681899
25	1	0	-3.319869	-2.095545	-1.737642
26	6	0	-3.877672	-0.185743	0.471542
27	6	0	-5.369062	-1.847364	1.180920
28	1	0	-5.351030	-1.505557	2.217329
29	1	0	-5.414805	-2.934119	1.137103

30	1	0	-6.220179	-1.405180	0.660075
31	6	0	2.936938	-0.449924	-1.740164
32	6	0	2.289742	0.605954	2.375585
33	9	0	3.919871	0.175445	-1.127526
34	9	0	3.433824	-1.321296	-2.604228
35	9	0	2.162118	0.413077	-2.383276
36	9	0	3.533342	0.491296	1.956377
37	9	0	1.892043	-0.507482	2.972175
38	9	0	2.206239	1.615460	3.230817
39	7	0	-2.662223	0.059520	-0.118936
40	8	0	-4.619616	0.677340	0.903239
41	8	0	-4.147551	-1.494782	0.522027
42	8	0	1.348752	-2.540957	-1.287103
43	8	0	2.831925	-1.730882	0.613612
44	8	0	0.006264	1.701025	1.600559
45	8	0	2.000708	1.789632	0.003784
46	16	0	1.934207	-1.468610	-0.500300
47	16	0	1.144430	1.082661	0.943518

E(RM062X) = -2557.56627582

Zero-point correction = 0.326298 (Hartree/Particle)

Sum of electronic and thermal Enthalpies = -2557.188537

Sum of electronic and thermal Free Energies = -2557.332811

We also examined a possibility of dehydration reaction from starting allenol 2a under the same level of DFT calculation. This process is highly up-hill process with +48.3 kcal mol⁻¹ of activation energy (vs Gibbs energy of 2a at 403 K). Therefore, we have concluded that the quinone imine forming process is unlikely under the reaction conditions.

Table S14.	Coordinates a	nd energies	for optimized	geometry	of TS-5
	Coordinates a	na energies	101 optimized	Scomeny	01 10 0

-		0		0 1		
Ce	nter	Atomic	Atomic	Coor	dinates (Angstro	ms)
Nu	mber	Number	Туре	Х	Y	Ζ
	1	6	0	1.556655	1.333377	-0.039824
	2	6	0	1.630517	-0.089687	0.026273
	3	6	0	1.923998	-2.807652	0.487429
	4	6	0	2.922343	-0.656270	0.147887
	5	6	0	0.461836	-0.926827	-0.019003
	6	6	0	0.653686	-2.302922	0.278648
	7	6	0	3.077307	-2.001107	0.404910
	8	8	0	0.583851	1.494729	-1.921062
	9	6	0	0.673456	2.201136	0.726512
1	0	6	0	-0.059000	1.667534	1.691022
1	1	7	0	-0.673586	-0.345549	-0.487575
1	2	6	0	-1.877543	-0.941130	-0.369258

13	8	0	-2.801670	-0.259871	-1.107355
14	8	0	-2.210085	-1.920198	0.298839
15	6	0	-4.129416	-0.769349	-1.048876
16	6	0	0.728435	3.691653	0.478176
17	6	0	-0.758706	1.125938	2.642143
18	1	0	2.457682	1.831459	-0.399993
19	1	0	2.035545	-3.869731	0.691804
20	1	0	3.788638	-0.000926	0.096083
21	1	0	-0.207497	-2.957368	0.299313
22	1	0	4.063247	-2.431819	0.541991
23	1	0	0.142682	2.343782	-2.080245
24	1	0	-0.121177	0.867334	-1.543644
25	1	0	-4.512569	-0.737397	-0.025662
26	1	0	-4.166940	-1.799146	-1.412978
27	1	0	-4.723649	-0.121250	-1.692683
28	1	0	0.195045	4.233492	1.260523
29	1	0	0.272338	3.947643	-0.483674
30	1	0	1.767065	4.036852	0.457178
31	1	0	-0.349653	0.986240	3.639994
32	1	0	-1.774842	0.785884	2.448024

E(RM062X) = -784.424967548

Zero-point correction = 0.256863 (Hartree/Particle) Sum of electronic and thermal Enthalpies = -784.137571

Sum of electronic and thermal Free Energies = -784.237093

Table S15. Coordinates and energies for optimized geometry of QI

Center	Atomic	Atomic	Coor	dinates (Angstroi	ms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.725220	1.317559	0.513683
2	6	0	1.686414	-0.029591	0.264275
3	6	0	1.904590	-2.828546	-0.171791
4	6	0	2.979284	-0.687344	0.118324
5	6	0	0.466834	-0.855528	0.089172
6	6	0	0.664970	-2.289625	-0.090102
7	6	0	3.096562	-2.018190	-0.081177
8	6	0	0.717502	2.325159	0.822523
9	6	0	-0.358621	2.056210	1.540638
10	7	0	-0.694080	-0.274373	0.032540
11	6	0	-1.869774	-0.988315	0.018407
12	8	0	-2.718944	-0.472322	-0.888235
13	8	0	-2.185018	-1.899005	0.768234
14	6	0	-4.017414	-1.070905	-0.925451
15	6	0	1.048802	3.748905	0.416986
16	6	0	-1.407030	1.819755	2.274691
17	1	0	2.728463	1.748199	0.477679
18	1	0	2.010091	-3.899604	-0.319841
19	1	0	3.866034	-0.064043	0.194694
20	1	0	-0.215803	-2.915103	-0.168639
21	1	0	4.070874	-2.484823	-0.172901
22	1	0	-4.521025	-0.941373	0.034670
23	1	0	-3.941068	-2.135532	-1.154708
24	1	0	-4.557482	-0.549614	-1.713321
25	1	0	0.281373	4.440562	0.766265
26	1	0	1.121823	3.827539	-0.671730
27	1	0	2.012196	4.050554	0.841062
28	1	0	-1.360697	1.855065	3.359746
29	1	0	-2.354130	1.555532	1.807477

E(RM062X) = -708.052003531 Zero-point correction = 0.231196 (Hartree/Particle) Sum of electronic and thermal Enthalpies = -707.792581 Sum of electronic and thermal Free Energies = -707.889049

Single crystal X-ray diffraction analysis

Single crystals were obtained by recrystallization through slow evaporation from a mixture of hexane and ethyl acetate (**3a**, **3e** and **7d**) or vapor diffusion of hexane in a chloroform solution at room temperature (**7g**). A suitable crystal with dimensions $0.16 \times 0.15 \times 0.07$ mm³ was mounted on a MiTeGen holder in perfluoro-polyether oil on a Bruker SMART APEX II CCD detector diffractometer. The crystal was kept at a steady 90 K during data collection. The structure was solved with *ShelXT 2014/5* solution programⁱⁱⁱ using a dual method and by using *Olex2*^{iv} as the graphical interface. The model was refined with *XL*^v using full matrix least squares minimization on *F*².

Figure S2. ORTEP drawing of bis(triflyl)-decorated tricyclic indoline **3a**. Thermal ellipsoids shown at 50% probability.

 Table S16. Crystal data of 3a

Formula	$C_{17}H_{15}F_6NO_6S_2$	Ζ	4
$D_{calc.}$ / g cm ⁻³	1.705	Z'	1
μ /mm ⁻¹	0.363	Wavelength/Å	0.71073
Formula Weight	507.42	Radiation type	MoK_{lpha}
Color	colorless	$\Theta_{min}/^{\circ}$	1.889
Shape	block	$\Theta_{max}/^{\circ}$	30.539
Size/mm ³	0.16×0.15×0.07	Measured Refl's.	27377
T/K	90	Indep't Refl's	6023
Crystal System	orthorhombic	Refl's I $\geq 2 \sigma$ (I)	5578
Flack Parameter	0.01(3)	$R_{\rm int}$	0.0491
Hooft Parameter	0.01(3)	Parameters	291
Space Group	$Pna2_1$	Restraints	525
a/Å	18.6410(7)	Largest Peak	0.369
<i>b</i> /Å	13.2144(5)	Deepest Hole	-0.288
c/Å	8.0254(3)	GooF	1.035
$\alpha/^{\circ}$	90	wR_2 (all data)	0.0709
$eta\!/^{\circ}$	90	wR_2	0.0689
$\gamma/^{\circ}$	90	R_1 (all data)	0.0340
$V/Å^3$	1976.89(13)	R_1	0.0300

Figure S3. ORTEP drawing of bis(triflyl)-decorated tricyclic indoline **3e**. Thermal ellipsoids shown at 50% probability.

Table S17. Crystal data of 3e

Formula	$C_{22}H_{17}F_6NO_6S_2$	Ζ	4
$D_{calc.}$ / g cm ⁻³	1.707	Z'	1
μ/mm^{-1}	0.334	Wavelength/Å	0.71073
Formula Weight	569.48	Radiation type	MoK_{α}
Color	colorless	$\Theta_{min}/^{\circ}$	2.000
Shape	block	$\Theta_{max}/^{\circ}$	30.552
Size/mm ³	0.31×0.26×0.11	Measured Refl's.	54497
T/K	90	Indep't Refl's	6790
Crystal System	monoclinic	Refl's I $\geq 2 \sigma(I)$	6249
Space Group	$P2_{1}/c$	$R_{\rm int}$	0.0330
a/Å	10.9273(2)	Parameters	335
b/Å	20.3695(4)	Restraints	462
c/Å	10.7249(2)	Largest Peak	0.487
$lpha/^{\circ}$	90	Deepest Hole	-0.395
$\beta / $	111.8660(10)	GooF	1.024
γl°	90	wR_2 (all data)	0.0795
$V/Å^3$	2215.45(7)	wR_2	0.0774
		R_1 (all data)	0.0312
		R_1	0.0285

Figure S4. ORTEP drawing of bis(triflyl)-decorated tricyclic indoline **7d**. Thermal ellipsoids shown at 50% probability.

Table S18. Crystal data of 7d

Formula	$C_{21}H_{17}F_6NO_6S_2$	Ζ	2
$D_{calc.}$ / g cm ⁻³	1.689	Z'	1
μ/mm^{-1}	0.336	Wavelength/Å	0.71073
Formula Weight	557.48	Radiation type	MoK_{lpha}
Color	colorless	$\Theta_{min}/^{\circ}$	2.055
Shape	block	$\Theta_{max}/^{\circ}$	30.552
Size/mm ³	0.31×0.27×0.12	Measured Refl's.	32214
T/K	89.95	Indep't Refl's	6720
Crystal System	monoclinic	Refl's I $\geq 2 \sigma(I)$	6573
Flack Parameter	-0.003(13)	$R_{\rm int}$	0.0256
Hooft Parameter	-0.002(13)	Parameters	326
Space Group	$P2_1$	Restraints	451
a/Å	9.8309(2)	Largest Peak	0.365
<i>b</i> /Å	11.2489(2)	Deepest Hole	-0.218
c/Å	10.0300(2)	GooF	1.032
$\alpha/^{\circ}$	90	wR_2 (all data)	0.0614
$\beta / $	98.8630(10)	wR_2	0.0609
γl°	90	R_1 (all data)	0.0236
$V/Å^3$	1095.94(4)	R_1	0.0230

Figure S5. ORTEP drawing of bis(triflyl)-decorated tricyclic indoline **7g**. Thermal ellipsoids shown at 50% probability.

Table S19. Crystal data of 7g

Formula	$C_{17}H_{17}F_6NO_7S_2$	Ζ	8
$D_{calc.}$ / g cm ⁻³	1.673	Z'	2
μ/mm^{-1}	0.350	Wavelength/Å	0.71073
Formula Weight	525.43	Radiation type	MoK_{α}
Color	colorless	$\Theta_{min}/^{\circ}$	1.231
Shape	block	$\Theta_{max}/^{\circ}$	30.538
Size/mm ³	0.37×0.23×0.16	Measured Refl's.	101376
T/K	90	Indep't Refl's	12771
Crystal System	monoclinic	Refl's I $\geq 2 \sigma(I)$	11582
Space Group	$P2_{1}/c$	$R_{\rm int}$	0.0319
a/Å	7.4454(2)	Parameters	601
<i>b</i> /Å	21.2261(5)	Restraints	396
c/Å	26.5606(6)	Largest Peak	0.518
$\alpha/^{\circ}$	90	Deepest Hole	-0.402
$\beta / $	96.2620(10)	GooF	1.043
γl°	90	wR_2 (all data)	0.0804
$V/Å^3$	4172.51(18)	wR_2	0.0779
		R_1 (all data)	0.0328
		R_1	0.0291
References

- For *Gaussian 09*, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- ⁱⁱ. Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.* 2008, 120: 215.
- ⁱⁱⁱ. G. M. Sheldrick, Acta Cryst. 2015, A71, 3.
- ^{iv}. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
- v. G. M. Sheldrick, Acta Cryst. 2008, A64, 339.