Base-mediated Intramolecular Cyclization of α -Nitroethylallenic Esters as a Synthetic Route to 5-Hydroxy-3-pyrrolin-2-ones Narendra Kumar Vaishanv,[†] Mohd Khalid Zaheer,[†] Sandeep Kumar, [†] Ruchir Kant, [§] and Kishor Mohanan^{†,‡,*} [†]Medicinal & Process Chemistry Division and [§]Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India [‡]Academy of Scientific and Innovative Research, Ghaziabad-201002, India kishor.mohanan@cdri.res.in ### SUPPORTING INFORMATION #### Contents: | 1. | X-ray data of compounds 2f and 4e | S2 | |----|--|----| | 2. | Copies of ¹ H and ¹³ C spectra for all compounds | S | #### X-Ray Data Collection and Structure Refinement Details for compound 2f: A good quality single crystal of size 0.37 x 0.20 x 0.10 mm, was selected under a polarizing microscope and was mounted on a glass fiber for data collection. Single crystal X-ray data for compound **2f** were collected on the Rigaku Kappa 3 circle diffractometer equipped with the AFC12 goniometer and enhanced sensitivity (HG) Saturn724+ CCD detector in the 4x4 bin mode using the monochromated Mo-K α radiation generated from the microfocus sealed tube MicroMax-003 X-ray generator equipped with specially designed confocal multilayer optics. Data collection was performed using ω -scans of 0.50 steps at 293(2) K. Cell determination, data collection and data reduction was performed using the Rigaku CrystalClear-SM Expert 2.1 b24 software. Structure solution and refinement were performed by using SHELXTL-NT. Refinement of coordinates and anisotropic thermal parameters of non-hydrogen atoms were carried out by the full-matrix least-squares method. The hydrogen atoms attached to carbon atoms were generated with idealized geometries and isotropically refined using a riding model. **Crystallization**: The compound **2f** (5mg) was dissolved in a 1ml mixture of n-hexane/DCM (2:1) and placed in a cabinet to evaporate slowly. After two days, **2f** was obtained as white crystal. **Figure S1.** ORTEP diagram drawn with 30% ellipsoid probability for non-H atoms of the crystal structure of compound **2f** determined at 293 K. **Table S1** Crystal data and structure refinement details for **2f**. | - | | | | |----------------------------------|---|--|--| | Compound | 2f | | | | Empirical formula | C ₁₄ H ₁₄ Br N O _{4.5} | | | | Formula weight | 348.17 | | | | Crystal System | Monoclinic | | | | Space group | <i>P</i> 2₁/n | | | | a (Å) | 9.838(4) | | | | <i>b</i> (Å) | 15.861(6) | | | | <i>c</i> (Å) | 20.361(9) | | | | α (°) | 90.00 | | | | β(°) | 101.9810(10) | | | | γ (°) | 90.00 | | | | V (ų) | 3108(2) | | | | Ζ | 8 | | | | D_c (g/cm ³) | 1.488 | | | | F ₀₀₀ | 1408 | | | | μ (mm ⁻¹) | 2.660 | | | | $ heta_{\sf max}$ (°) | 25.36 | | | | Total reflections | 19146 | | | | Unique reflections | 5580 | | | | Reflections $[I > 2\sigma(I)]$ | 2173 | | | | Parameters | 376 | | | | R_{int} | 0.1136 | | | | Goodness-of-fit | 1.007 | | | | $R\left[F^2>2\sigma(F^2)\right]$ | 0.0731 | | | | wR (F^2 , all data) | 0.1412 | | | | CCDC No. | 2006864 | | | #### X-Ray Data Collection and Structure Refinement Details for compound 4e: A good quality single crystal of size 0.43 x 0.23x 0.19 mm, was selected under a polarizing microscope and was mounted on a glass fiber for data collection. Single crystal X-ray data for compound **4e** were collected on the Rigaku Kappa 3 circle diffractometer equipped with the AFC12 goniometer and enhanced sensitivity (HG) Saturn724+ CCD detector in the 4x4 bin mode using the monochromated Mo-K α radiation generated from the microfocus sealed tube MicroMax-003 X-ray generator equipped with specially designed confocal multilayer optics. Data collection was performed using ω -scans of 0.5° steps at 293(2) K. Cell determination, data collection and data reduction was performed using the Rigaku CrystalClear-SM Expert 2.1 b24 software.¹ Structure solution and refinement were performed by using SHELXTL-NT.² Refinement of coordinates and anisotropic thermal parameters of non-hydrogen atoms were carried out by the full-matrix least-squares method. The hydrogen atoms attached to carbon atoms were generated with idealized geometries and isotropically refined using a riding model. **Crystallization**: The compound **4e (5mg)** was dissolved in a 1mL mixture of *n*-hexane/DCM/acetone (2:1:1) and placed in a cabinet to evaporate slowly. After two days, **4e** was obtained as white crystal. **Figure S2.** ORTEP diagram drawn with 30% ellipsoid probability for non-H atoms of the crystal structure of compound **4e** determined at 293 K. Table S2 Crystal data and structure refinement details for 4e. | Compound | 4e | |--------------------------------|---| | Empirical formula | C ₂₅ H ₂₄ N ₂ O ₃ | | Formula weight | 400.46 | | Crystal System | Triclinic | | Space group | <i>P</i> -1 | | a (Å) | 9.3094(3) | | <i>b</i> (Å) | 9.4648(3) | | <i>c</i> (Å) | 13.4239(4) | | α (°) | 70.898(3) | | β(°) | 76.491(3) | | γ (°) | 77.185(3 | | V (Å ³) | 1073.07(6) | | Z | 2 | | D_c (g/cm ³) | 1.239 | | F ₀₀₀ | 424 | | μ (mm ⁻¹) | 0.656 | | $ heta_{max}$ (°) | 72.80 | | Total reflections | 21777 | | Unique reflections | 4045 | | Reflections $[I > 2\sigma(I)]$ | 3638 | | Parameters | 282 | | R_{int} | 0.1291 | | Goodness-of-fit | 1.084 | | $R[F^2 > 2\sigma(F^2)]$ | 0.0756 | | wR (F^2 , all data) | 0.2164 | | CCDC No. | 2009054 | - 1. CrystalClear 2.1, Rigaku Corporation, Tokyo, Japan - 2. Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112–122. ## 4.253 4.218 4.200 —3.792 7.500 7.595 7.591 7.519 7.519 7.499 7.499 7.497 7.495 7.495 7.495 7.386 CO₂Et -Ме ΗO 2j 400 MHz/CDCI₃ 2.00-I 1.03 1010 1010 1011 1017 3.08 ₹ 4.5 f1 (ppm) 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0. CO₂Et -Me HO 2j 100 MHz/CDCI₃ 90 f1 (ppm) 170 160 150 140 130 120 110 100 80 70 60 50 40 30 20 10 -1.774 $\begin{cases} 1.397 \\ 1.362 \end{cases}$ 100 90 f1 (ppm)