Supporting Information ## Chamberless NDIR CO₂ Sensor Robust against Environmental Fluctuations ## Mostafa Vafaei and Amir Amini* Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran. Fig.S1. Drawing of Zemax ray tracing simulation for chamberless sensor. Fig. S2. The MISO model showing the three inputs, the created decision tree by the XGBoost algorithm, and the output. The dashed lines in the figure show that the presented decision tree is a shortened version. The first, second, and third layers of tree are shown. Table S1 Simulation results of total hits and total power for NDIR sensor in 4 different distances. | Distance (mm) | Total Hits (#) | Total Power (mW) | | | |---------------|----------------|------------------|--|--| | | | | | | | 10 | 835 | 1.95 | | | | 20 | 26028 | 59.17 | | | | 30 | 16496 | 37.51 | | | | 40 | 5538 | 12.27 | | | $\begin{tabular}{ll} Table S2 \\ Comparison of 5 commercial CO_2 gas sensor with the \\ current proposed sensor. \end{tabular}$ | Sensor name
/ ref | Measurement
Range (ppm) | Accuracy | Response
time (T ₉₀) | Working RH
range (%) | Working
Temp
range
(°C) | | Design structure | Compensation
Temp & RH | Self-heating | |-------------------------------|----------------------------|--------------------------|--|---|----------------------------------|---|---|---------------------------|--------------| | GUARDIAN®
NG [1] | 0-3000 | ±2% of
full scale | = <30 | 0-95 | Not
Available. | • | Equipped with a tube in its input sample line that might be condensed. | No | Yes | | | | | | | | • | Dual wavelength technology. | | | | SPECIAL
GUARDIAN NG
[1] | 0 – 1000 | ±10%
range | Variable
(determined
by bit switch
and
firmware) | Sensitive to
large changes in
humidity
depending on
gas and range | 0 - 45 | • | Equipped with a tube in its input sample line that might be condensed. Dual wavelength technology. | No | Yes | | smartGAS
BASICEVO[2] | 0-10000 | Not
available | appr. 60 s | 0-95 | -10 - 40 | • | Dual beam and dual wavelength. | No | Yes | | smartGAS
FLOWEVO [2] | 0-10000 | Not
available | ≤ 9.9 s | 0-95 | 0 - 50 | • | Dual beam and dual wavelength. | No | Yes | | Semeatech
IRM300SS [3] | 0-5000 | ±50ppm
±5%
reading | 60 s | 0-95 | 0 -50 | | Single wavelength | No | Yes | | Current Sensor | 400-2200 | ~ ± 1% of
full scale | 60 s | 15-85 | 25-50 | • | Single beam and single wavelength. | Yes | No | | | | | | | | • | Drift-like
compensation for RH
and Temp. | | | ## References: - [1] E. Sensors, Accessed: Feb. 1, 2021. [Online]. Available: https://edinburghsensors.com/. - [2] smartGas., Accessed: Feb. 1, 2021. [Online]. Available: https://www.smartgas.eu/en/. - [3] SemeaTech, Accessed: Feb. 1, 2021. [Online]. Available: http://semeatech.com/m/view.php?aid=193.