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Experimental Procedures
General Experimental Details.

Starting materials were purchased from commercial suppliers were used without
further purification. NMR spectra were recorded on a spectrometer operating at 400
MHz for "H NMR spectra on a Bruker ascend spectrometer. UV/vis spectra were done
on Agilent Cary-100 spectrometer. Fluorescence spectra were performed by using a
Horiba Fluorolog-3 spectrometer and the absolute photoluminescence quantum
efficiency were acquired by using an integrating sphere. Fluorescence decay profiles
were recorded on a Flsp920. The CV measurement was conducted in dimethylsulfoxide
(DMSO) with 0.1 M tetrabutylammonium hexafluorophosphate as the supporting
electrolyte at a scan rate of 50 mV s7!, using platinum as the working electrode,
saturated calomel electrode (SCE) as the reference electrode, and platinum wire counter
electrode. The SCE reference electrode was calibrated using the ferrocene/ferrocenium
(Fc/Fet) redox couple as an external standard. The fsTA measurements were performed
based on a femtosecond Ti:Sapphire regenerative amplified Ti:sapphire laser system
(Spectra Physics, Spitfire-Pro) and an automated data acquisition system (Ultrafast

Systems, Helios model).

Materials.

Nile Red (NiR), Rhodamine 700 (R700), Rhodamine 800 (R800), Indocyanine
Green (ICG), Acid Green 25 (AG), Acid Violet 43 (AV), and other materials/solvents
were purchased and used as received. 1°8PF¢, 1+8Cl-, and 2+4PF4 were synthesized by

previously reported procedures.!
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NMR experiment

'"H NMR spectra were recorded on a Bruker ascend spectrometer. Chemical Shifts
are recorded in ppm (6) in D,O (internal reference set to 6 4.79), CD3CN (internal
reference set to 6 2.13). Titrations were performed by using stock solutions of host and

guest to make up samples of desired concentrations and equivalents. All spectra were

recorded at 298 K.

r~r
o
~ 9
oo
o o @ w

2641

2547

=T SBT3
3.6700

~

L, 2
1

internal reference

.1740
68.7392
64.5960

9.0000

74

Figure S1. 'H NMR (400 MHz, DMSO-dg) of 1 (20 pL saturated solution of 1 in
CD;CN was dried in high vacuum) with 20 pL of 1,3,5-trimethoxy-benzen (20.0 mM)
as internal reference. The solubility of 1 was calculated as 86.4 mM based on the

average integral from three proton resonances (Hgy, He, and H,).
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Figure S2. Experimental and calculated electrospray ionization mass spectra of 1+8PFg-

"INiR.
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Figure S3. The calculation of the host-guest binding constant was fitted with dynifit by
the data of fluorescence titration. a) 1*8PF4 and NiR in CH;CN; b) 1+8Cl- and R700;
c) 1:8Cl- and R800; d) 1-8Cl- and ICG:; e) 1-8Cl-and AG:; f) 1-8Cl- and AV in H,0.
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Figure S4. 'TH NMR titration (400 MHz, D,O, RT) 1+8CI- (0.40 mM) titrated with R700
(0-2.0 equiv).
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Figure S5. DOSY spectra recorded (400 MHz, D,O, RT) for (a) 1+8Cl- and (b) 1+8CI-
1R700.
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Figure S6. "H NMR titration (400 MHz, D,0, RT) 1+8CI- (0.40 mM) titrated with R800

(0-2.0 equiv).
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Figure S7. Experimental and calculated electrospray ionization mass spectra of 1+8Cl-

IR700.
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Figure S8. Experimental and calculated electrospray ionization mass spectra of 1¢8Cl-

"IR800.
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Figure S9. 'H NMR titration (400 MHz, D,0, RT) 1+8CI- (0.40 mM) titrated with ICG
(0-2.0 equiv).
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Figure S10. 'H NMR titration (400 MHz, D,O, RT) 1+8CI- (0.40 mM) titrated with AG
(0-2.0 equiv).
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Figure S11. '"H NMR titration (400 MHz, D,O, RT) 1+8Cl- (0.4 mM) titrated with AV
(0—2.0 equiv.).
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Figure S12. Experimental and calculated electrospray ionization mass spectra of 1¢8Cl-

HICG.
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Figure S13. Experimental and calculated electrospray ionization mass spectra of 1¢8Cl-

TAG.
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Figure S14. Experimental and calculated electrospray ionization mass spectra of 1¢8Cl-
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Figure S15. Job plot for the host-guest complexes between cage and dyes guest at room
temperature, showing a 1:1 binding in solution: a) 1*8PF¢ and NiR in CH;CN; b) 1+8Cl-
and R700; c) 1-8Cl- and R800; d) 1-8Cl- and ICG:; e) 1+8Cl-and AG; f) 1+8Cl- and AV
in H,O.
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Figure S16. (a) Excitation and emission spectra of NiR and 1*8PF4 [INiR in CH;CN.

Ex/Em slit= 1.6 nm, A, =410 nm. (b) Normalized fluorescence excitation and emission

spectra of NiR.

Table S1. Fluorescence quantum yield and Fluorescence lifetime of dyes

Fluorescence Fluorescence
Compound  quantum yield lifetime
e (%) t ()
NiR 41.16¢ 4.86
R700 0.20° 5.70
R800 0.79% 5.76
ICG 0.1 _
AG 0.55° —
AV 0.1° -

“Determined in CH;CN (10 uM); ?Determined in water (10 pM); ‘Average lifetimes 1

= {(A11] + Ay12)/100}; “Decay at 545 nm; /Decay at 610 nm (NiR), 680 nm (R700),
715 nm (R800), respectively.
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Figure S17. Fluorescence spectra of NiR (10 uM) titrated with 1+8PF4 (0—2.0 equiv)
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Figure S18. (a) UV/vis spectra of 1+8Cl- (10 uM) titrated with R800 (0—3.0 equiv) in

H,0. (b) UV/vis spectra of R800 (10 uM) titrated with 1+8Cl- (0—2.0 equiv) in H,O.
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Figure S19. Fluorescence spectra of fluorescence spectra of 1¢8CI"[JR800 (10 uM) and
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R800 (10 uM) upon different excitation. Ex/Em slit = 1.6 nm, A, = 410/620 nm.
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Figure S20. Normalized fluorescence excitation (black) and emission (red) spectra of

(a) R700 and (b) R800 in H,O. Ex/Em slit = 1.5 nm, [R700] = [R800] = 1.0 x 105 M.
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Figure S21. Fluorescence spectra of R700 (10 uM) titrated with 18Cl- (0—2.0 equiv)
in H,O. Ex/Em slit = 1.6 nm, (a) Aex =410 nm, (b) Aex = 570 nm.

Energy-transfer efficiency (®gr)

Energy-transfer efficiency (®gr), the fraction of the absorbed energy that is
transferred to the acceptor is experimentally measured as a ratio of the fluorescence
intensities of the donor in the absence and presence of the acceptor (Ip and Ipy).

DOgr=1-Ipa/Ip

The energy-transfer efficiency(®gr) of 1+8PF¢ + 2.0 eq. NiR ([1] = 10 uM) was
calculated as 98% at 545 nm in CH;CN, A, =410 nm, Ex/Em slit=1.2 nm. The energy-
transfer efficiency(®gr) of 1°8Cl-+ 2.0 eq. R700 ([1] = 10 uM) was calculated as 79%
at 545 nm in H,O, Ay = 410 nm, Ex/Em slit = 1.2 nm. The energy-transfer
efficiency(®@gr) of 1+8C1-+ 2.0 eq. R800 ([1] = 10 uM) was calculated as 46.7% at 545

nm in H,O, A = 410 nm, Ex/Em slit = 1.2 nm.
S15
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Figure S22. Fluorescence decay profiles of (a) 1*8PF¢, (b) NiR and (c) 1-8PF¢ [] NiR

in MeCN.
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Figure S23. Fluorescence decay profiles of (a) 1+8Cl-, (b) R700 and (c) 1-8CI-[1 R700
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Figure S25. Fluorescence decay profiles of (a) 1+8CI-[JICG, (b) 1+8CI-[JAG and (c)
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Figure S26. (a) UV/vis spectra of 1+8CI- (10 uM) titrated with ICG (0—3.0 equiv) in
H,0. (b) UV/vis spectra of ICG (10 uM) titrated with 1<8CI- (0—2.0 equiv) in H,O.
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Figure S27. (a) UV/vis spectra of 18Cl- (10 uM) titrated with AG (0—3.0 equiv) in
H,0. (b) UV/vis spectra of AG (10 uM) titrated with 1+8Cl1- (0—2.0 equiv) in H,O.
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Figure S28. (a) UV/vis spectra of 1+8CIl- (10 uM) titrated with AV (0—3.0 equiv) in
H,0. (b) UV/vis spectra of AV (10 uM) titrated with 18CI- (0—2.0 equiv) in H,O.

The antenna effect under certain concentrations of donor and acceptor equals the ratio of the
emission intensity of the acceptor upon excitation of the donor, (J.. = 410 nm) direct excitation of

the acceptor.

1(608/678/711) nm __ 1(608/678/711) nm
A+ D(4ex =410nm) D(Ae, =410nm)

Antenna ef fect = (608/678/711) nm

A+ D(Ae; =525/570/ 620nm)

The antenna effect of 1°8PFs + 2.0 eq NiR ([1] = 10 uM) was calculated as 81.12 in MeCN. The
antenna effect of 1°8CIl- + 2.0 eq R700 ([1] = 10 uM) was calculated as 1.30 in H>O. The antenna
effect of 1°8CI + 2.0 eq R800 ([1] = 10 uM) was calculated as 1.27 in H,0O. When compared with

other self-assembled systems, this antenna effect is low.
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Figure S29. the 1931 CIE chromaticity coordinate changes of 1 (10 uM) titrated with

dyes (0—2.0 equiv): (a) NiR, (b) R700, (c) R800, (d) ICG, (¢) AG, (f) AV.
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Table S2. The redox potentials (vs Ag/AgCl in CH3;CN), HOMO and LUMO Energies

of the cages and host-guest complexes.“

Compound AE(V)”  Amaxionsey(tM)  E'red/E?rea(€V)  LUMO/HOMO(eV)<4

1-8PF¢ 2.71 456.00 -0.70/-1.09 -3.68/-6.39
2¢4PF¢ 2.71 456.00 -0.69/-1.37 -3.69/-6.39
10NiR 2.66 466.71 -0.48/-0.90 -3.90/-6.56
10/R700 2.65 467.97 -0.65/-0.90 -3.73/-6.38
100R800 2.64 469.05 -0.59/-0.79 -3.79/-6.43
10ICG 2.64 468.94 -0.73/-0.96 -3.65/-6.29
10AG 2.59 479.12 -0.75/-1.14 -3.63/-6.22
1AV 2.65 468.62 -0.68/-0.90 -3.70/-6.35
NiR 2.07 600.00 -1.16 -3.22/-5.29
R700 1.82 680.70 -0.60/-1.26 -3.78/-5.60
R800 1.68 737.03 -0.60/-1.00 -3.78/-5.46
ICG 1.34 923.25 -0.93 -3.45/-4.79
AG 1.76 705.39 -0.97/-1.29 -3.41/-5.17
AV 1.87 664.13 -0.35/0.97 -4.03/-5.90

“Determined by cyclic voltammetry with the ferrocene/ferricenium couple (Fc/Fc+) as
external or internal standard. A glassy carbon working electrode, an Ag/AgCl reference
electrode and a platinum counter electrode were used to characterize 1.0 mM DMSO
solutions of the hexafluorophosphate salts of the analytes at 298 K, with 0.1 M TBAPF
serving as the supporting electrolyte at a scan rate of 50 mVs~!. Calculation of HOMO

and LUMO energies: ’AEpomorumo = [1240/(Amaxonsey (m)]eV; “Erumo =

-[4.8-0.42+E1Red]eV fOI' ElRed VS Ag/AgCl, dEHOMO = ELUMO'AEHOMO/LUMO eV.
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Figure S33. Cyclic voltammetry of (a) 1.8PF¢, (b) 1-8CI-[/ICG, (c) ICG.
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Femtosecond Transient Absorption (fSTA) Experiments.

The fsTA measurements were performed based on a femtosecond Ti:Sapphire
regenerative amplified Ti:sapphire laser system (Spectra Physics, Spitfire-Pro) and an
automated data acquisition system (Ultrafast Systems, Helios model). The excitation
pulse (1 kHz, 240-2,600 nm, pulse width, 120 fs) was generated by an optical
parametric amplifier (TOPAS-C, Spectra-Physics) pumped by a regeneratively
amplified femtosecond Ti:sapphire laser system (800 nm, 1 kHz, pulse energy 4 mlJ,
pulse width, 120 fs, Spitfire Pro-F1KXP, Spectra-Physics), which was seeded by a
femtosecond Ti-sapphire oscillator (80 MHz, pulse width, 70 fs, 710-920 nm, Maitai
XF-1, Spectra-Physics). The probe pulse was obtained by using approximately 5% of
the amplified 800 nm output from the Spitfire to generate a white-light continuum (450-
800 nm) in a sapphire plate. The maximum extent of the temporal delay was 3300 ps.
The instrument response function was determined to be 150 fs. At each temporal delay,
data were averaged for 2 s and collected by the acquisition system. The probe beam
was split into two before passing through the sample. One probe beam traveled through
the sample; the other was sent directly to the reference spectrometer that monitored the
fluctuations in the probe beam intensity. Fiber optics was coupled to a multichannel
spectrometer with a CMOS sensor that had a 1.5 nm intrinsic resolution. The sample
suspension was excited by a 355 nm pump beam. The data were stored as three-
dimensional (3D) wavelength-time-absorbance matrices that were exported for use

with the fitting software.
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Figure S36. (a) Species-associated spectra obtained from deconvolution of the dataset

with the kinetic fit solution. HyO, A¢x =355 nm, 1.1 uJ pulse™. (b) Global fits to selected

wavelengths in 1+8CI- to the kinetic model described in the text and below.
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Figure S37. (a) Species-associated spectra obtained from deconvolution of the dataset

with the kinetic fit solution. MeCN, Ao, = 355 nm, 1.1 pJ pulse™'. (b) Global fits to

selected wavelengths in 1*8PF4 [ INiR to the kinetic model described in the text and

below.
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Figure S38. (a) Species-associated spectra obtained from deconvolution of the dataset

with the kinetic fit solution. HyO, Ao, =355 nm, 1.1 uJ pulse™. (b) Global fits to selected

wavelengths in 1+8CI-[JAYV to the kinetic model described in the text and below.
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