Supplementary Information

Cross-coupled phenyl- and alkynyl-based phenanthrolines and their effect on the photophysical and electrochemical properties of heteroleptic $\mathrm{Cu}(\mathrm{I})$ photosensitizers

[^0]

Electronic Supplementary Information - Table of Contents

1 Experimental Details page S2
2 Synthetic Details page S4
2.1 Synthesis of the precatalyst XPhos-Pd-G2 page S4
2.2 Synthesis of 5,6-Dibromo-2,9-dimethyl-1,10-phenanthroline (L1) page S5
2.3 Synthesis of the Ligands $L_{p} 2-L_{p} 7$ and $L_{A} 2-L_{A} 5$ page S6
 page S11
3 NMR spectra of the Complexes $\mathbf{C 1}, \mathbf{C}_{\mathbf{P}} \mathbf{2 - C} \mathbf{C}$ and $\mathrm{C}_{\mathrm{A}} \mathbf{2}-\mathrm{C}_{\mathrm{A}} 5$ page S17
4 MS spectra of the Complexes $\mathbf{C 1}, \mathbf{C}_{\mathbf{p}} \mathbf{2}-\mathbf{C}_{\mathbf{p}} \mathbf{7}$ and $\mathbf{C}_{\mathrm{A}} \mathbf{2}-\mathbf{C}_{\mathrm{A}} \mathbf{5}$ page S38
5 Crystallographic Data and Structures of C1, $\mathrm{C}_{\mathbf{P}} \mathbf{2}-\mathrm{C}_{\mathrm{P}} \mathbf{7}$ and $\mathrm{C}_{\mathrm{A}} \mathbf{2 - C _ { A } 5}$ page S49
6 Calculated Ground State Structures of the Ligands and Complexes page S52
7 Electrochemical Data of $\mathbf{C}_{P} \mathbf{2 - C} \mathbf{C} 7$ and $\mathbf{C}_{A} \mathbf{2}-\mathbf{C}_{A} 5$ page S56
8 Absorption and Steady-State Emission of $\mathbf{C 1}, \mathbf{C P}_{\mathbf{P}} \mathbf{2}-\mathbf{C}_{\mathbf{P}} \mathbf{7}$ and $\mathbf{C}_{\mathrm{A}} \mathbf{2}-\mathbf{C}_{\mathrm{A}} 5$ page S62
9 Emission Lifetimes of C1, Cp2-Cp7, [(xant)Cu(dmp)] ${ }^{+}$and $[(\text {xant }) \mathrm{Cu}(b c p)]^{+}$ page S65

1 Experimental Details

NMR spectroscopy. Nuclear magnetic resonance (NMR) measurements were performed using spectrometers of the Bruker Avance series ($300 \mathrm{MHz}, 400 \mathrm{MHz}, 500 \mathrm{MHz}$, or 700 MHz) at 293 K . The solvent used for each measurement is indicated at the corresponding NMR data. The chemical shifts δ are denoted in ppm relative to the residual solvent signal of the deuterated solvent. ${ }^{1}$ NMR multiplicities are denoted as: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), b (broad). Coupling constants J are given in Hz . Measurements at 500 MHz and 700 MHz were conducted by an institutional service of the University of Stuttgart.

Mass spectrometry. Mass spectrometric (MS) measurements were carried out by the analytical service of the Institute of Organic Chemistry at the University of Stuttgart. Data were acquired from either a Bruker MicroTOFQ (ESI) or Finnigan MAT 95 (EI) instrument. MS values are denoted in m / z.

Infrared spectroscopy. Infrared (IR) spectra were collected from the solid state samples by the analytical service of the Institute of Organic Chemistry at the University of Stuttgart using a Bruker Vector 22 FT-IR spectrometer and an ATR module (Golden Gate). The location of the IR signals is given in wavenumbers.

X-ray diffraction. Single-crystal X-ray diffraction analysis was carried out at 135 K on a Bruker Kappa APEXII Duo diffractometer using graphite-monochromated $\operatorname{Mo}-\mathrm{K}_{\alpha}\left(\lambda=0.71073 \AA\right.$ A or $\mathrm{Cu}-\mathrm{K}_{\alpha}(\lambda=1.54178 \AA)$ radiation by using Omega-Phi scan technique. ${ }^{2}$ The structures were solved by direct methods using SHELXL97 software. Mercury 4.2.0 was utilized for structural analysis. Structural representations of ORTEP molecular graphics were performed by XP software. ${ }^{3}$ The structural data were deposited at the Cambridge Crystallographic Data Centre with the respective deposition numbers (CCDC): 2059397 (C1), 2059398 (Cp4), $2059399\left(C_{p} 6\right), 2059400\left(C_{p} 7\right)$ and $2059401\left(C_{A} 4\right)$. These data can be accessed free of charge at the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service via the web at www.ccdc.cam.ac.uk/structures/ or by emailing data_request@ccdc.cam.ac.uk or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK.

Cyclic voltammetry was carried out in acetonitrile using $0.1 \mathrm{M} \mathrm{Bu}{ }_{4} \mathrm{NPF}_{6}$ as the supporting electrolyte. Measurements were performed on an Autolab potentiostat PGSTAT204 from Metrohm using a threeelectrode configuration with a working electrode: glassy carbon disc with 3 mm diameter stick; counter electrode: platinum wire and reference electrode: $\mathrm{Ag} / \mathrm{Ag}^{+}$electrode ($0.01 \mathrm{M} \mathrm{AgNO}_{3}$ in acetonitrile). All data was referenced against the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple, which was added to the solution after each measurement. The scan rate was $100 \mathrm{mV} / \mathrm{s}$ unless otherwise stated.

Steady-state UV/vis absorption spectra were measured with a JASCO V-670 spectrophotometer. The complexes were dissolved in acetonitrile of spectroscopic grade and the spectra were recorded applying a standard 10 mm fluorescence quartz glass cuvette.

Steady-state emission spectra were recorded with a JASCO FP-8500 spectrofluorometer. All samples were measured in acetonitrile solution under inert conditions (unless stated otherwise) using a sealed 10 mm

[^1]fluorescence quartz glass cuvette and applying an optical density of approximately 0.1 at excitation wavelength.

Time-resolved emission spectroscopy. Emission lifetimes were determined using a Q-switched pulsed Nd :YAG laser. The excitation pulses were centered at 355 nm with a pulse duration of approx. 6 ns with a beam power of approximately 1.1 mJ per pulse at the sample. A photo multiplier tube inside a LP980 spectrometer from Edinburgh Instruments was applied as detector. All emission lifetimes were recorded either under oxygen free conditions in dry acetonitrile or under atmospheric conditions in standard spectroscopic grade acetonitrile in 10 mm fluorescence quartz glass cuvettes. The respective solutions had an optical density of approximately 0.1 at excitation wavelength. Measurements were taken at room temperature and at the respective emission maximum of the sample.

DFT calculations. Calculations at the density functional theory (DFT) level were performed using the ORCA program package (Version 4.1.2). ${ }^{4}$ For geometry optimizations of the electronic ground state, the BP86 exchange-correlation functional was used. ${ }^{5}$ As basis sets the triple zeta valance plus polarization functions (def2-TZVP) were used. ${ }^{6}$ Solvation effects were accounted for by the conductor-like polarizable continuum model, CPCM, with an appropriate dielectric constant and refractive index of acetonitrile. ${ }^{7}$ All stationary points on the potential energy surface of the S_{0} state were verified by calculations of the energy second derivatives with respect to nuclear coordinates. Visualizations of the molecular orbitals were made with IboView v20150427. ${ }^{8}$

[^2]
2 Synthetic Details

All chemicals were purchased from commercial suppliers (e.g. Sigma-Aldrich, VWR, Acros Organics or $A B C R$) and used as received, if not stated otherwise. Substrates, precursors, ligands, and complexes were synthesized according to the procedures described herein.

Solvents were purified and dried according to standard procedures or taken from a MBraun solvent purification system (MB-SPS-800). ${ }^{9}$ Dry dichloromethane (DCM) and dry tetrahydrofurane (THF) used for synthesis or complexation were purified by distillation over appropriate drying agents under nitrogen atmosphere. Degassed water was prepared by intensive bubbling through with nitrogen inside a Schlenk tube for several hours. Degassing other solvents than water was performed by the freeze-pump-thaw technique. ${ }^{10}$

Reactions with air- and/or moisture-sensitive substrates, reagents, catalysts, or complexes were carried out in dried glassware and under nitrogen atmosphere. Glassware was vacuum dried while heated with a heat gun at $500^{\circ} \mathrm{C}$ for several minutes and flushed with nitrogen three times. Column chromatography was performed using silica or aluminum oxide (neutral or basic) as stationary phase. Overpressure was applied by hand utilizing a pump ball. Selecting an appropriate column size was expedient in several cases. Hence, the length and diameter of the column chosen for separation are noted where decisive.

2.1 Synthesis of the precatalyst XPhos-Pd-G2

The synthesis of the XPhos-Pd-G2 precatalyst was performed according to a literature known procedure. ${ }^{11}$

A mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(0.518 \mathrm{~g}, 2.3 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and 2$-aminobiphenyl ($\left.0.429 \mathrm{~g}, 2.5 \mathrm{mmol}, 1.1 \mathrm{eq}.\right)$ in toluene (anhydrous, 13.5 mL) was stirred at $60^{\circ} \mathrm{C}$ under inert atmosphere for 60 min . During this time the red colour fades and a grey precipitate forms. After the reaction was allowed to cool to room temperature, toluene was removed via syringe. The remaining solid was washed with toluene (anhydrous, $3 \times 3.0 \mathrm{~mL}$) and suspended in acetone (anhydrous, distilled from CaCl_{2}, degassed, 13.5 mL). After addition of lithium chloride ($0.293 \mathrm{~g}, 7.0 \mathrm{mmol}, 3.0 \mathrm{eq}$.), the resulting slurry was stirred at room temperature under argon for 1 hour followed by the formation of a red-brown suspension.

XPhos ligand ($0.990 \mathrm{~g}, 2.1 \mathrm{mmol}, 0.9$ eq.) was added portion wise over 5 min . The mixture was stirred at room temperature for 2.5 hours. Removal of about 90% of the solvent under vacuum gave a pale yellow slurry which was treated with methyl tert-butyl ether (MTBE) (4.0 mL) and pentane (10.0 mL). The mixture

[^3]was stored at $0{ }^{\circ} \mathrm{C}$ for one hour and the solid was collected via filtration, washed with water ($3 \times 2.0 \mathrm{~mL}$), and dried under vacuum to obtain the product as grey solid.

Yield: 1.72 g (98 \%)
$\mathrm{C}_{45} \mathrm{H}_{59} \mathrm{ClNPPd}(\mathrm{M}=786.80 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$): complex spectrum (see Figure S 1.1). ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=66.59,64.21$ (two rotamers ${ }^{5}$).

2.2 Synthesis of 5,6-Dibromo-2,9-Dimethyl-1,10-Phenanthroline L1

The synthesis of $\mathbf{L 1}$ was performed by altering a literature known procedure. ${ }^{12}$ It was found that excluding air from the beginning and sealing the apparatus with a back-pressure valve was indispensable to achieve a reliable reaction. Applying a constant flow of nitrogen decreases the concentration of SO_{3} inside the apparatus and ultimately brings the reaction to a halt. Using highly concentrated oleum ($\omega_{\mathrm{so3}}=65 \%$) leads to tri- and tetrabrominated products instead.

Into a nitrogen flushed apparatus, cold oleum ($\omega_{\text {so3 }}=20 \%, 25 \mathrm{~mL}$) was added to 2,9-dimethyl-1,10phenanthroline ($\mathrm{dmp}, 2.00 \mathrm{~g}, 9.60 \mathrm{mmol}, 1 \mathrm{eq}$.$) (remarks: the apparatus was sealed with a vitreous back-$ pressure valve to exclude moisture and keep SO_{3} inside the apparatus). After the dmp had completely dissolved, an excess of bromine ($1.23 \mathrm{~mL}, 24.01 \mathrm{mmol}, 2.5 \mathrm{eq}$.) was added to the solution. This mixture was heated at $75{ }^{\circ} \mathrm{C}$ for 36 hours and then poured onto ice. The mixture was cooled with an ice bath and carefully neutralized with 6 M KOH solution. (The precipitate forms quickly, turns orange upon increasing pH and colours blood red at $\mathrm{pH} 3-6$. The precipitate at pH 7 is yellowish white or slightly orange.) Several portions of chloroform were used to dissolve the precipitate straight from the neutralized mixture. The organic phase was washed with water once and filtered to obtain a clear yellow solution, which was dried with $\mathrm{Mg}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the resulting solid dried at $40{ }^{\circ} \mathrm{C}$ in vacuo to afford the pale yellow product in high yield ($2.82 \mathrm{~g}, 7.69 \mathrm{mmol}, 80 \%$). It should be noted, that the product is hygroscopic. The reproducibility has been tested in three independent multi-gram approaches, where $\mathbf{L 1}$ was received in yields of 80%, 76%, and 79%, respectively (see below).

dmp	Oleum	Bromine	Yield
$2.00 \mathrm{~g}, 9.60 \mathrm{mmol}, 1.0$ eq.	25 mL	$1.23 \mathrm{~mL}, 24.01 \mathrm{mmol}, 2.5 \mathrm{eq}$.	$2.82 \mathrm{~g}, 7.69 \mathrm{mmol}, 80 \%$
$2.00 \mathrm{~g}, 9.60 \mathrm{mmol}, 1.0 \mathrm{eq}$.	25 mL	$1.23 \mathrm{~mL}, 24.01 \mathrm{mmol}, 2.5 \mathrm{eq}$.	$2.68 \mathrm{~g}, 7.32 \mathrm{mmol}, 76 \%$
$4.00 \mathrm{~g}, 19.21 \mathrm{mmol}, 1.0 \mathrm{eq}$.	50 mL	$2.46 \mathrm{~mL}, 48.02 \mathrm{mmol}, 2.5 \mathrm{eq}$.	$5.55 \mathrm{~g}, 15.16 \mathrm{mmol}, 79 \%$

$\mathbf{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2} \mathbf{N}_{2}(\mathrm{M}=366.06 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.56(d, J=9.08 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.49(d$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $2.88\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=159.50,143.80,136.39,125.86$, 123.94, 123.02, 24.59. HRMS (ESI+) m / z : calcd. for $[\mathrm{M}+\mathrm{H}]^{+}$: 364.9283, 366.9264, and 368.9244; found: $364.9286,366.9273$, and 368.9246 . Mp.: $166^{\circ} \mathrm{C}$ (lit. $163^{\circ} \mathrm{C}-166^{\circ} \mathrm{C}$).

[^4]
2.3 Synthesis of the Ligands $L_{P} 2-L_{P} 7$ and $L_{A} 2-L_{A} 5$

2.3.1 Syntheses of the Ligands $L_{p} 2-L_{p} 7$

General Synthetic Procedure

In a general synthetic procedure (GSP) a 100 mL round bottomed flask was equipped with a magnetic stir bar and charged with the precatalyst XPhos-Pd-G2 (0.04 eq.), 5,6-dibromo-2,9-dimethyl-1,10phenanthroline $\mathbf{L 1}$ (dmpBr_{2}) (1.0 eq .), and the corresponding boronic acid (3.0 eq .). The vessel was sealed with a septum, then evacuated and backfilled with nitrogen (this process was repeated three times). Degassed THF was added via syringe and the mixture was stirred for several minutes. Afterwards, degassed aqueous $0.5 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4}$ solution was added and the reaction was stirred at $40^{\circ} \mathrm{C}$ for 14 hours.
THF was evaporated directly from the reaction mixture, which resulted in a precipitation of the product. The remaining basic aqueous phase was extracted with DCM three times. The combined organic layer was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, water, and brine. The solvent was dried with $\mathrm{Mg}_{2} \mathrm{SO}_{4}$ and finally evaporated to yield the corresponding crude product as solid. In most reactions, subsequent recrystallization was necessary (vide infra).

Synthesis of Lp2

The reaction was conducted after the GSP in Section $\mathbf{2 . 3 . 1}$ using PBA = phenylboronic acid. After workup, the crude product was recrystallized from chloroform.

L1	PBA	Cat.	THF	K $_{3} \mathbf{P O}_{4}$ solution	Yield
300.0 mg	299.8 mg	25.2 mg	12 mL	14 mL	192.3 mg
$(0.82 \mathrm{mmol})$	$(2.46 \mathrm{mmol})$	$(0.033 \mathrm{mmol})$			(65%)

$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2}(\mathrm{M}=360.46 \mathrm{~g} / \mathrm{mol}):{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.75(d, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.18 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.09 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $2.89\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): 158.96, 144.81, 138.11, 135.93, 135.44, 131.03, 127.77, 126.91, 126.71, 123.38, 25.84. HRMS (ESI+) m/z: calcd. for $[\mathrm{M}+\mathrm{H}]^{+}: 361.1699$; found: 361.1699.

Synthesis of Lp3

The reaction was conducted after the GSP in Section 2.3.1 using 4F-PBA = 4-fluorophenylboronic acid. The product was recrystallized from a hot mixture of chloroform and n-hexane (1:1).

L1	4F-PBA	Cat.	THF	K $_{3} \mathrm{PO}_{4}$ solution	Yield
325.0 mg	372.7 mg	27.3 mg	15 mL	17 mL	292.6 mg
$(0.89 \mathrm{mmol})$	$(2.67 \mathrm{mmol})$	$(0.036 \mathrm{mmol})$			(90.1%)

$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~F}_{2} \mathbf{N}_{2}(\mathrm{M}=396.44 \mathrm{~g} / \mathrm{mol}):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.75(d, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 7.36(d$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.04(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.93(t, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.94\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 500 MHz): $\delta=163.05,160.60,159.32,144.68,135.33,133.74,132.59,126.65,123.69,115.09,25.60 .{ }^{19} \mathrm{~F}$ NMR (CDCl $3,400 \mathrm{MHz}$): -114.6. HRMS (EI) m / z : calcd. for [M] ${ }^{+}$: 396.1438; found: 396.1441.

Synthesis of Lp4

The reaction was conducted after the GSP in Section 2.3.1 using 4CF 3 -PBA $=4$-(trifluoromethyl)phenylboronic acid. After workup, the crude product was recrystallized from a hot mixture of ethanol and water.

L1	4CF $_{3}$-PBA	Cat.	THF	$\mathbf{K}_{3} \mathbf{P O}_{4}$ solution	Yield
300 mg	467.0 mg	25.2 mg	10 mL	20 mL	285.2 mg (70.1%)
$(0.82 \mathrm{mmol})$	$(2.50 \mathrm{mmol})$	$(0.033 \mathrm{mmol})$			

$\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{~N}_{2}(\mathrm{M}=496.46 \mathrm{~g} / \mathrm{mol}):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.65(d, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.50(d, \mathrm{~J}=8.2$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{Ar}-H), 7.36(d, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.23(d, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.91\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 500 MHz): 159.84, 141.43, 135.11, 134.73, 131.28, 129.81, 129.55, 126.05, 125.11, 123.90, 122.88, 25.82.
${ }^{19}$ F NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): -62.49. HRMS (ESI+) m / z : calcd. for $[\mathrm{M}+\mathrm{H}]^{+}: 497.1447$; found: 497.1449.

Synthesis of Lp5

The reaction was conducted after the GSP in Section 2.3.1 using 4OMe-PBA = 4-methoxyphenylboronic acid. After workup, the crude product was dissolved in hot toluene and filtered through a plug of celite.

L1	4OMe-PBA	Cat.	THF	$\mathbf{K}_{3} \mathrm{PO}_{4}$ solution	Yield
370.0 mg $(1.01 \mathrm{mmol})$	460.8 mg	31.1 mg	19 mL	23 mL	398 mg
$(3.03 \mathrm{mmol})$	$(0.040 \mathrm{mmol})$			(94%)	

$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}=420.51 \mathrm{~g} / \mathrm{mol}):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.78(d, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=8.5$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.99(d, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.75(d, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH})_{3}\right), 2.88(\mathrm{~s}, 6 \mathrm{H}$, CH_{3}). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): 157.73, 157.29, 143.76, 134.82, 134.45, 131.06, 129.47, 126.07, 122.27, 112.27, 54.13, 24.76.

Synthesis of Lp6

The reaction was conducted after the GSP in Section 2.3 .1 using 3,4,5F3-PBA $=3,4,5$-Trifluorophenylboronic acid). After workup, the crude product was recrystallized from toluene and the solid washed with n-hexane.

L1	3,4,5F3-PBA	Cat.	THF	$\mathbf{K}_{3} \mathbf{P O}_{4}$ solution	Yield
200.0 mg	288.3 mg	16.8 mg	16	10 mL	162.0 mg
$(0.55 \mathrm{mmol})$	$(1.64 \mathrm{mmol})$	$(0.022 \mathrm{mmol})$			(63.3%)

$\left.\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{~F}_{6} \mathbf{N}_{2}(\mathrm{M}=468.40 \mathrm{~g} / \mathrm{mol}): ~\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.65(d, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.50(d, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.91\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{19}$ F NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):-133.13,-160.19$. HRMS (ESI+) m / z : calcd. for $[\mathrm{M}+\mathrm{H}]^{+}: 469.1134$; found: 469.1146.

Synthesis of Lp7

The reaction was conducted after the GSP in Section 2.3.1 using 3,5 $\left(\mathrm{CF}_{3}\right)_{2}-\mathrm{PBA}=3,5$-bis(trifluoromethyl) phenylboronic acid. After workup, the crude product was recrystallized from an EtOH/water mixture.

L1	$\mathbf{3 , 5}\left(\mathbf{C F}_{3}\right)_{\mathbf{2}}$-PBA	Cat.	THF	$\mathbf{K}_{3} \mathbf{P O}_{4}$ solution	Yield
180.0 mg $(0.49 \mathrm{mmol})$	380.5 mg	15.1 mg	9 mL	10 mL	311.0 mg $(1.48 \mathrm{mmol})$
$(0.022 \mathrm{mmol})$					

$\mathrm{C}_{30} \mathrm{H}_{16} \mathrm{~F}_{12} \mathrm{~N}_{\mathbf{2}}(\mathrm{M}=632.45 \mathrm{~g} / \mathrm{mol}):{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.73(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.69(d, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-$ $H), 7.55(s, 4 H, \operatorname{Ar}-H), 7.46(d, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 2.96\left(s, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):-63.22$.

2.3.2 Syntheses of the Ligands $L_{A} 2-L_{A} 5$

Sonogashira cross-coupling reactions for the preparation of the ligands $L_{A} \mathbf{2}-L_{A} 5$ were performed on the homoleptic substrate complex $\left[\mathrm{Cu}(\mathrm{L1})_{2}\right] \mathrm{PF}_{6}$ using a "chemistry-on-the-complex" method. Therefore, the synthesis of $\left[\mathrm{Cu}(\mathbf{L 1})_{2}\right] \mathrm{PF}_{6}$ is also described in this section.

The cross-coupling towards the different alkynyl-based ligands $L_{A} 2-L_{A} 5$ was conducted following slightly differing synthetic procedures (see below). Afterwards, the desired ligands $\mathbf{L}_{A} \mathbf{2}-\mathrm{L}_{\boldsymbol{A}} 5 \mathrm{~s}$ were liberated from the homoleptic target complex by decomplexation using KCN. As the crude products were contaminated to different extends the respective work-up procedures were customized for each ligand.

Synthesis of the Substrate Complex [Cu(L1)2]PF6

Into a dried Schlenk-tube equipped with a stir bar, tetrakis(acetonitrile)-copper(I) hexafluorophosphate ($\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}, 857 \mathrm{mg}, 2.30 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and 5,6-dibromo-2,9-dimethyl-1,10-phenanthroline (1684 $\mathrm{mg}, 4.60 \mathrm{mmol}, 2.0$ eq.) were added. The vessel was set under vacuum and refilled with nitrogen three times. Dry DCM (200 mL) was added and the dark red solution stirred for 1 hour. The complex was precipitated with n-hexane and the solid washed with n-hexane once. The complex was obtained as dark red crystalline solid in excellent yield ($2078 \mathrm{mg}, 96$ \%).
$\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{Br}_{4} \mathrm{CuF}_{6} \mathrm{~N}_{4} \mathrm{P}(\mathrm{M}=940.62 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta=8.95(d, \mathrm{~J}=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 7.94(d$, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.41\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (CD $\left.\mathrm{CN}, 400 \mathrm{MHz}\right):-72.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PF} \mathrm{F}_{6}\right),-73.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PF} \mathrm{F}_{6}\right)$.

Synthesis of $L_{A} \mathbf{2}$

Into a dried 250 mL Schlenk flask [Cu(L1) ${ }_{2}$] $\mathrm{PF}_{6}(400.0 \mathrm{mg}, 0.43 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , Cul (40.5 \mathrm{mg}, 0.21 \mathrm{mmol}$, 0.5 eq.), and XPhos-Pd-G2 ($32.7 \mathrm{mg}, 0.043 \mathrm{mmol}, 10 \mathrm{~mol}$ \%) were added and the flask was then flushed with nitrogen three times. Dry and degassed acetonitrile (30 mL) and phenyl acetylene (260.6 mg , $2.55 \mathrm{mmol}, 6.0$ eq.) were added. After stirring for several minutes, dry and degassed triethylamine (30 mL) was added, the flask securely sealed, and the reaction was left to stir at $50^{\circ} \mathrm{C}$ for 43 hours.
Acetonitrile and triethylamine were evaporated and the remaining solid mixture dissolved in DCM. An appropriate amount of silica was added and the solvent evaporated to dry-load a short column for flash column chromatography ($L \approx 20 \mathrm{~cm}, \emptyset \approx 6 \mathrm{~cm}$). Impurities were washed away with pure DCM and the red target complex was eluted with $\mathrm{DCM}: \mathrm{MeOH}=25: 1$.
After evaporation of the solvents, the solid was dissolved in DCM and catalytic amounts of 18-crown-6 were added. Diluted aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and excess KCN were added and the mixture was stirred vigorously for one hour to subsequently destroy the target complex and liberate the desired ligand $\mathrm{L}_{\mathrm{A}} \mathbf{2}$. The phases were separated, the organic phase washed with water, brine, and dried with $\mathrm{Mg}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, the solid was dissolved in acetone and precipitated by adding water. Collecting and drying to solid yielded 188 mg (54%) of $\mathrm{L}_{\mathrm{A}} \mathbf{2}$.
$\mathrm{C}_{30} \mathrm{H}_{20} \mathbf{N}_{2}(\mathrm{M}=408.50 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.65(d, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 7.63(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-$ $H), 7.52(d, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.34(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.90\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (CDCl $\left.3,500 \mathrm{MHz}\right): 160.38$, 144.79, 135.20, 131.78, 128.98, 128.58, 126.23, 124.18, 123.00, 122.46, 99.83, 86.17, 25.93. IR: $v(\mathrm{C} \equiv \mathrm{C})=2197.39 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calcd. for $[\mathrm{M}+\mathrm{H}]^{+}$: 409.1699; found: 409.1699.

Synthesis of $\mathrm{L}_{\mathrm{A}} 3$

Into a dried 250 mL Schlenk flask [Cu(L1) ${ }_{2}$] $\mathrm{PF}_{6}(577.4 \mathrm{mg}, 0.61 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , Cul (58.5 \mathrm{mg}, 190.4 \mathrm{mmol}$, 0.5 eq.), and XPhos-Pd-G2 ($47.2 \mathrm{mg}, 0.061 \mathrm{mmol}, 10 \mathrm{~mol}$ \%) were added and then the flask was flushed with nitrogen three times. Dry and degassed acetonitrile (35 mL) and 1-ethynyl-4-flurobenzene (442.5 mg , $3.68 \mathrm{mmol}, 6.0 \mathrm{eq}$.$) were added. After stirring for several minutes, dry and degassed triethylamine (35 \mathrm{~mL}$) was added, the flask securely sealed, and the reaction was left to stir at $50^{\circ} \mathrm{C}$ for 65 hours.
Acetonitrile and triethylamine were evaporated and the remaining solid mixture dissolved in DCM. An appropriate amount of silica was added and the solvent evaporated to dry-load a short column for flash column chromatography ($L \approx 20 \mathrm{~cm}, \emptyset \approx 6 \mathrm{~cm}$). Impurities were washed away with pure DCM and the red target complex was eluted with $\mathrm{DCM}: \mathrm{MeOH}=25: 1$.

After evaporation of the solvents, the solid was dissolved in DCM and catalytic amounts of 18-crown-6 were added. Diluted aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and excess KCN were added and the mixture was stirred vigorously for one hour to subsequently destroy the target complex and liberate the desired ligand $\mathrm{L}_{\mathrm{A}} 3$.

Subsequently, column chromatography on neutral aluminum oxide ($L \approx 45 \mathrm{~cm}$, $\varnothing \approx 3.5 \mathrm{~cm}$, gradient DCM/MeOH: $0 \% \rightarrow 4 \%$) was performed and the isolated product recrystallized from toluene to finally yield 168 mg (31%) of $\mathrm{L}_{\mathrm{A}} 3$.
$\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{2}(\mathrm{M}=444.48 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.85(d, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 7.57(m, 4 \mathrm{H}, \mathrm{Ar}-$ $H), 7.49(d, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.88(t, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.89\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (CDCl $\left.3,500 \mathrm{MHz}\right)$: 162.81, 160.49, 144.81, 135.08, 133.70, 126.11, 124.19, 122.30, 119.06, 115.99, 98.61, 85.85, 25.91. ${ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):-109.29$. IR: $v(\mathrm{C} \equiv \mathrm{C})=2198.43 \mathrm{~cm}^{-1}$. HRMS (EI) m / z : calcd. for [M] ${ }^{+}: 444.1438$; found: 444.1440.

Synthesis of $\mathrm{L}_{\mathrm{A}} 4$

Into a dried 250 mL Schlenk flask was added [Cu(L1) ${ }_{2}$]PF 6 ($500.0 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.0 \mathrm{eq}$.), Cul (50.6 mg , $0.27 \mathrm{mmol}, 0.5 \mathrm{eq}$.) and XPhos-Pd-G2 ($40.9 \mathrm{mg}, 0.053 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were added and then the flask was flushed with nitrogen three times. Dry and degassed acetonitrile (35 mL) and 4-ethynyl- $\alpha, \alpha, \alpha-$ trifuorotoluene ($542.6 \mathrm{mg}, 3.19 \mathrm{mmol}, 6.0$ eq.) were added. After stirring for several minutes, dry and degassed triethylamine (35 mL) was added, the flask securely sealed, and the reaction was left to stir at $50^{\circ} \mathrm{C}$ for 48 hours.
Acetonitrile and triethylamine were evaporated and the remaining solid mixture dissolved in DCM. An appropriate amount of silica was added and the solvent evaporated to dry-load a short column for flash column chromatography ($L \approx 20 \mathrm{~cm}, \emptyset \approx 6 \mathrm{~cm}$). Impurities were washed away with pure DCM and the red target complex was eluted with $\mathrm{DCM}: \mathrm{MeOH}=25: 1$.

After evaporation of the solvents, the solid was dissolved in DCM and catalytic amounts of 18-crown-6 were added. Diluted aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and excess KCN were added and the mixture was stirred vigorously for one hour to subsequently destroy the target complex and liberate the desired ligand $\mathrm{L}_{\mathrm{A}} 4$. Subsequently, column chromatography on neutral aluminum oxide ($L \approx 45 \mathrm{~cm}, \emptyset \approx 3.5 \mathrm{~cm}$, gradient $\mathrm{DCM} / \mathrm{MeOH}: 0 \% \rightarrow 4 \%$) was performed and the isolated product dried in vacuo to obtain 285 mg (49%). $\mathrm{C}_{32} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{~N}_{2}(\mathrm{M}=544.50 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.57(d, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 7.69(d, \mathrm{~J}=8.3$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.60(d, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.52(d, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.91\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 500 MHz): 160.9455, 144.95, 135.02, 131.90, 130.80, 126.53, 125.96, 125.63, 125.16, 124.37, 122.38 , 98.20, 88.12, 25.93. ${ }^{19}$ F NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): -62.72. IR: $v(\mathrm{C} \equiv \mathrm{C})=2206.39 \mathrm{~cm}^{-1}$. HRMS (EI) m / z : calcd. for [M] ${ }^{+}$: 544.1369; found: 544.1376.

Synthesis of $\mathrm{L}_{\mathrm{A}} 5$

Into a dried 100 mL Schlenk flask [Cu(L1) ${ }_{2}$]PF 6 ($300 \mathrm{mg}, 0.32 \mathrm{mmol}, 1.0 \mathrm{eq}$), Cul ($6.7 \mathrm{mg}, 0.035 \mathrm{mmol}$, 0.11 eq.), and XPhos-Pd-G2 ($12.3 \mathrm{mg}, 0.016 \mathrm{mmol}, 5 \mathrm{~mol} \%$) were added and then the flask was flushed with nitrogen three times. Dry and degassed acetonitrile (40 mL) and 4-ethynylanisole (254.2 mg , $1.92 \mathrm{mmol}, 6.0$ eq.) were added. After stirring for several minutes, dry and degassed triethylamine (7.5 mL) was added, the vessel tightly sealed, and the reaction was left to stir at room temperature for 24 hours. The inhomogeneous mixture was cleared by filtering off precipitated impurities. The desired complex was precipitated by adding n-hexane to the cleared solution, washed with n-hexane and afterwards dissolved in DCM. An appropriate amount of silica was added and the solvent evaporated to dry-load a short column for flash column chromatography ($L \approx 20 \mathrm{~cm}, \emptyset \approx 6 \mathrm{~cm}$). Impurities were washed away with pure DCM and the red target complex was eluted with DCM: $\mathrm{MeOH}=25: 1$.
The solid was dissolved in DCM (10 mL) and water (10 mL), $\mathrm{KCN}(50 \mathrm{mg}, 0.8 \mathrm{mmol})$, and catalytic amounts of 18-crown-6 were added. The mixture was stirred vigorously for one hour. The phases were separated, the organic phase washed with water, brine, and dried with $\mathrm{Mg}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, the solid was recrystallized from EtOH to yield $101 \mathrm{mg}(34 \%)$ of pure $\mathrm{L}_{\mathrm{A}} 5$.
$\mathrm{C}_{32} \mathrm{H}_{24} \mathbf{N}_{2} \mathrm{O}_{2}(\mathrm{M}=468.56 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.65(d, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 7.57(d$, $J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-H), 7.51(d, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.81\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{3}\right), 2.94(\mathrm{~s}$, $6 \mathrm{H}, \mathrm{CH}_{3}$). IR: $v(\mathrm{C}=\mathrm{C})=2190.19 \mathrm{~cm}^{-1}$. HRMS (EI) m / z : calcd. for $[\mathrm{M}]^{+}: 468.1838$; found: 468.1840 .

2.4 Synthesis of the Complexes $\mathrm{C} 1, \mathrm{C}_{\mathrm{P}} 2-\mathrm{C}_{\mathrm{P}} 7$, and $\mathrm{C}_{\mathrm{A}} 2-\mathrm{C}_{\mathrm{A}} 5$

This section encompasses the complexation of the ligands $\mathbf{L 1}, \mathbf{L}_{\mathbf{P}} \mathbf{2}-\mathbf{L}_{P} \mathbf{7}$, and $\mathbf{L}_{\boldsymbol{A}} \mathbf{2}-\mathbf{L}_{A} \mathbf{5}$ towards the respective heteroleptic $\mathrm{Cu}(\mathrm{I})$ complexes. The general synthetic procedure (GSP) is described hereafter, followed by details about chemical quantities used, yields obtained, and analytical data for each complex.

GSP: Into a dried Schlenk-tube equipped with a stir bar tetrakis(acetonitrile)-copper(I) hexafluorophosphate ($\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}, 1.0$ eq.) and xantphos (xant, 1.0 eq.) were added. The vessel was linked to a condenser and the whole apparatus was put under vacuum and refilled with nitrogen three times. Dry and degassed DCM was added and the solution refluxed overnight.
After cooling to $0{ }^{\circ} \mathrm{C}$, a solution of the respective diimine ligand (1.0 eq.) in dry and degassed DCM was added dropwise carefully. Then, the solution was stirred for another 30 minutes and finally refluxed for four hours. The heteroleptic target complex was precipitated with n-hexane. The crystalline solid was collected and washed with n-hexane. The solid was re-dissolved in acetonitrile, the solution filtered until clear and finally dried in vacuo.

C1: [(xant)Cu(L1)]PF ${ }_{6}$

$\mathbf{C u}\left(\mathrm{MeCN}_{4}\right]$ PF $_{6}$	Xantphos	Diimine	DCM	Yield
52.9 mg	66.5 mg	42.1 mg	$13 \mathrm{~mL}+$	122.3 mg
$(0.115 \mathrm{mmol})$	$(0.115 \mathrm{mmol})$	$(0.115 \mathrm{mmol})$	13 mL	(92%)

$\mathrm{C}_{53} \mathrm{H}_{42} \mathrm{Br}_{2} \mathrm{CuF}_{6} \mathrm{~N}_{2} \mathrm{OP}_{3}(\mathrm{M}=1153.20 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right): \delta=8.74(d, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 7.81$ ($d, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.67(d, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.30(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.10(\mathrm{~m}, 16 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.05(m, 2 \mathrm{H}$, Ar-H), $2.32\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.76\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right): \delta=159.65,154.37,142.13,138.01$, $133.55,132.55,130.9,129.95,129.69,128.31,127.76,127.31,126.53,125.08,123.71,120.88,35.6,27.68$, 26.36. ${ }^{31}$ P NMR ($C_{3} \mathrm{CN}, 400 \mathrm{MHz}$): -12.70 ($s, \operatorname{Ar}-P$), -144.62 ($q i, J=708 \mathrm{~Hz}, P F_{6}$). HRMS (ESI) m / z : calcd. for $\left[\mathrm{C}_{53} \mathrm{H}_{42} \mathrm{Br}_{2} \mathrm{CuN}_{2} \mathrm{OP}_{2}\right]^{+}$: 1007.0415; found: 1007.0399.

$C_{P} 2:\left[(\right.$ xant $) \mathrm{Cu}^{\left.\left(L_{P} 2\right)\right] P F_{6}}$

$\left[\mathrm{Cu}\left(\mathrm{MeCN}_{4}\right] \mathrm{PF}_{6}\right.$	Xantphos	Diimine	DCM	Yield
46.6 mg	72.3 mg	45.1 mg	$13 \mathrm{~mL}+$	136.3 mg
$(0.125 \mathrm{mmol})$	$(0.125 \mathrm{mmol})$	$(0.125 \mathrm{mmol})$	13 mL	(95%)

$\mathrm{C}_{65} \mathrm{H}_{52} \mathrm{CuF}_{6} \mathrm{~N}_{2} \mathrm{OP}_{3}(\mathrm{M}=1147.60 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta=7.80(t, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 7.46(d$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-H), 7.37(m, 10 \mathrm{H}, \operatorname{Ar}-H), 7.28(t, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-H), 7.22(m, 4 \mathrm{H}, \operatorname{Ar}-H), 7.15(m, 16 \mathrm{H}, \mathrm{Ar}-$ $H), 7.08(m, 2 H, \operatorname{Ar}-H), 2.32\left(s, 6 H, C H_{3}\right), 1.75\left(s, 6 H, C_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}$): 157.77, 154.32, 141.66, 136.50, 135.98, 135.72, 133.36, 132.43, 131.00, 130.24, 129.72, 129.50, 128.11, 127.56, 127.47, $127.22,127.04,124.85,124.76,121.02,35.42,27.44,26.20 .{ }^{31}$ P NMR ($C_{3} \mathrm{CN}, 400 \mathrm{MHz}$): -12.90 (s, Ar-P), 144.62 (qi, J = $701 \mathrm{~Hz}, \mathrm{PF}_{6}$). HRMS (ESI) m / z : calcd. for $\left[\mathrm{C}_{65} \mathrm{H}_{52} \mathrm{CuN}_{2} \mathrm{OP}_{2}\right]^{+}$: 1001.2845 ; found: 1001.2845.

$C_{P} 3:\left[(\right.$ xant $\left.) \mathrm{Cu}\left(L_{P} 3\right)\right] \mathrm{PF}_{6}$

$\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}$	Xantphos	Diimine	DCM	Yield
46.6 mg	72.3 mg	49.6 mg	$13 \mathrm{~mL}+$	101.3 mg
$(0.125 \mathrm{mmol})$	$(0.125 \mathrm{mmol})$	$(0.125 \mathrm{mmol})$	13 mL	(67%)

$\mathrm{C}_{65} \mathrm{H}_{50} \mathrm{CuF}_{8} \mathrm{~N}_{2} \mathrm{OP}_{3}(\mathrm{M}=1183.58 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right): \delta=7.85(d, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 7.80$ ($d, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.49(d, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.38(m, 4 \mathrm{H}, \mathrm{Ar}-H), 7.29(t, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.22$ $(m, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.33\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.76\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (CD ${ }_{3} \mathrm{CN}$, $500 \mathrm{MHz}): \delta=162.89, ~, 160.94,158.45,154.64,142.1,136.24,135.48,133.73,132.78,132.59,131.35$, 130.08, 129.84, 128.46, 127.84, 127.45, 125.23, 121.34, 114.94, 114.77, 35.88, 27.88, 26.59. ${ }^{19}$ F NMR $\left(C_{3} \mathrm{CN}, 400 \mathrm{MHz}\right):-72.00,-73.86,-155.81 .{ }^{31} \mathrm{P}$ NMR (CD ${ }_{3} \mathrm{CN}, 400 \mathrm{MHz}$): -12.90 (s, Ar-P), -144.63 (qi, J $=708 \mathrm{~Hz}, \mathrm{PF}_{6}$). HRMS (ESI) m / z : calcd. for $\left[\mathrm{C}_{65} \mathrm{H}_{50} \mathrm{CuF}_{2} \mathrm{~N}_{2} \mathrm{OP}_{2}\right]^{+}$: 1037.2657; found: 1037.2658.

Cp4: [(xant)Cu(Lp4)]PF6

$\left[\mathrm{Cu}\left(\mathrm{MeCN}_{4}\right] \mathrm{PF}_{6}\right.$	Xantphos	Diimine	DCM	Yield
46.6 mg	72.3 mg	62.1 mg	$13 \mathrm{~mL}+$	142.9 mg
$(0.125 \mathrm{mmol})$	$(0.125 \mathrm{mmol})$	$(0.125 \mathrm{mmol})$	13 mL	(89%)

$\mathrm{C}_{67} \mathrm{H}_{50} \mathrm{CuF}_{12} \mathrm{~N}_{2} \mathrm{OP}_{3}(\mathrm{M}=1283.60 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right): \delta=7.67(t, J=9.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 7.58$ $(d, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-H), 7.34(d, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.28(m, 8 \mathrm{H}, \mathrm{Ar}-H), 7.17(t, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.03$ ($m, 16 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $6.96(m, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.21\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.64\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}$): 158.83, $154.66,142.15,140.63,136.12,134.92,133.74,132.77,131.38,131.17,130.08,129.86,129.20,128.93$, $128.47,127.88,126.88,125.43,125.22,124.94,121.34,35.76,27.81,26.62 .{ }^{19}{ }^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):-$ 62.69, -72.78, -74.77. ${ }^{31}$ P NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): -12.09 ($s, \mathrm{Ar}-P$), -144.47 (qi, J = $711 \mathrm{~Hz}, P F_{6}$). HRMS (ESI) m / z : calcd. for $\left[\mathrm{C}_{67} \mathrm{H}_{50} \mathrm{CuF}_{6} \mathrm{~N}_{2} \mathrm{OP}_{2}\right]^{+}: 1137.2593$; found: 1137.2591 .

$C_{p} 5:\left[(\right.$ xant $\left.) C_{u}\left(L_{p} 5\right)\right] P_{6}$

$\left[\mathrm{Cu}\left(\mathrm{MeCN}_{4}\right]\right.$ PF $_{6}$	Xantphos	Diimine	DCM	Yield
46.6 mg	72.3 mg	52.6 mg	$13 \mathrm{~mL}+$	111.1 mg
$(0.125 \mathrm{mmol})$	$(0.125 \mathrm{mmol})$	$(0.125 \mathrm{mmol})$	13 mL	(73%)

$\mathrm{C}_{67} \mathrm{H}_{56} \mathrm{CuF}_{6} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{3}(\mathrm{M}=1207.65 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta=7.86(d, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 7.79$ $(d d, J=7.9 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.46(d, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.37(m, 4 \mathrm{H}, \mathrm{Ar}-H), 7.28(t, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H), $7.13(m, 20 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.06(m, 20 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.92(d, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.81\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.31(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.76\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (CD $\left.{ }_{3} \mathrm{CN}, 500 \mathrm{MHz}\right): 158.54,157.75,154.49,141.82,136.20,135.93,133.54$, 132.59, 131.61, 131.19, 129.88, 129.64, 128.88, 128.26, 127.77, 127.62, 125.01, 124.81, 121.21, 113.06, 54.61, 35.59, 27.59, 26.34. ${ }^{31}$ P NMR ($C_{3} C N, 400 \mathrm{MHz}$): -12.71 ($\left.s, \operatorname{Ar}-P\right),-144.63\left(q i, J=701 \mathrm{~Hz}, P F_{6}\right)$. HRMS (ESI) m / z : calcd. for $\left[\mathrm{C}_{67} \mathrm{H}_{56} \mathrm{CuN}_{2} \mathrm{O}_{3} \mathrm{P}_{2}\right]^{+}: 1061.3057$; found: 1061.3061.

$C_{p} 6:\left[(\right.$ xant $\left.) \mathrm{Cu}\left(L_{p} 6\right)\right] \mathrm{PF}_{6}$

$\left[\mathrm{Cu}\left(\mathrm{MeCN}_{4}\right]\right.$ PF $_{\mathbf{6}}$	Xantphos	Diimine	DCM	Yield
49.2 mg	76.4 mg	61.8 mg	$13 \mathrm{~mL}+$	132.3 mg
$(0.132 \mathrm{mmol})$	$(0.132 \mathrm{mmol})$	$(0.132 \mathrm{mmol})$	13 mL	(82%)

$\mathrm{C}_{65} \mathrm{H}_{46} \mathrm{CuF}_{12} \mathrm{~N}_{2} \mathrm{OP}_{3}(\mathrm{M}=1255.54 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right): \delta=7.79(d, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 7.65(d$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.49(d, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.29(t, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-H), 7.20(t, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.07(m, 16 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.97(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.80(t, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.30\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.74\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (CD ${ }_{3} \mathrm{CN}, 500 \mathrm{MHz}$): 158.99, 153.68, 136.01, 133.56, 133.04, 132.67, 131.11, 130.87, 129.93, 129.7, $128.56,128.39,127.72,126.38,125.48,125.08,125.05,115.12,114.97,114.62,35.66,27.65,26.45 .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):-72.00,-74.74,-132.11,-159.17 .{ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):-12.20(\mathrm{~s}, \mathrm{Ar}-\mathrm{P}),-144.62$ ($q i, J=712 \mathrm{~Hz}, P F_{6}$). HRMS (ESI) m / z : calcd. for $\left[\mathrm{C}_{65} \mathrm{H}_{46} \mathrm{CuF}_{6} \mathrm{~N}_{2} \mathrm{OP}_{2}\right]^{+}$: 1109.2280; found: 1109.2284.

$C_{p} 7:\left[(\right.$ xant $\left.) \mathrm{Cu}\left(L_{p} 7\right)\right] \mathrm{PF}_{6}$

$\left[\mathrm{Cu}\left(\mathrm{MeCN}_{4}\right] \mathrm{PF}_{6}\right.$	Xantphos	Diimine	DCM	Yield
46.6 mg	72.3 mg	79.1 mg	$13 \mathrm{~mL}+$	132.7 mg
$(0.125 \mathrm{mmol})$	$(0.125 \mathrm{mmol})$	$(0.125 \mathrm{mmol})$	13 mL	(75%)

$\mathrm{C}_{69} \mathrm{H}_{48} \mathrm{CuF}_{18} \mathrm{~N}_{2} \mathrm{OP}_{3}(\mathrm{M}=1419.59 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H} \quad \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right): \delta=8.01(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 7.94$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.81(d, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.76(m, 4 \mathrm{H}, \mathrm{Ar}-H), 7.57(d, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.38(m$, $4 \mathrm{H}, \mathrm{Ar}-H), 7.30(t, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.16(q, J=3.6 \mathrm{~Hz} 16 \mathrm{H}, \mathrm{Ar}-H), 7.03(m, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.36\left(s, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.77 ($s, 6 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}$): 159.51, 154.54, 142.24, 138.32, 136.07, 134.12, 133.65, 132.67, 131.21, 131.04, 131.02, 129.96, 129.73, 128.4, 27.7, 126.11, 125.71, 125.11, 123.94, 121.78, 121.14, 35.78, 27.61. ${ }^{19}$ F NMR ($C_{3} \mathrm{CN}, 400 \mathrm{MHz}$): -63.64, $-72.03,-73.89 .{ }^{31}$ P NMR (CD ${ }_{3} \mathrm{CN}, 400 \mathrm{MHz}$): -13.02 (s, Ar-P), -144.63 (qi, J = $701 \mathrm{~Hz}, P_{6}$). HRMS (ESI) m / z : calcd. for $\left[\mathrm{C}_{69} \mathrm{H}_{48} \mathrm{CuF}_{12} \mathrm{~N}_{2} \mathrm{OP}_{2}\right]^{+}$: 1273.2341; found: 1273.2337.

C_{A} 2: [(xant)Cu($\left.\left.L_{A} 2\right)\right]$ PF6

$\left[\mathrm{Cu}\left(\mathrm{MeCN}_{4}\right] \mathrm{PF}_{6}\right.$	Xantphos	Diimine	DCM	Yield
	99.6 mg	95.6 mg	65.4 mg	$13 \mathrm{~mL}+$
$(0.160 \mathrm{mmol})$	$(0.160 \mathrm{mmol})$	$(0.160 \mathrm{mmol})$	13 mL	(94%)

$\mathrm{C}_{69} \mathrm{H}_{52} \mathrm{CuF}_{6} \mathrm{~N}_{2} \mathrm{OP}_{3}(\mathrm{M}=1195.65 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta=8.84(d, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 7.98$ $(m, 6 \mathrm{H}, \mathrm{Ar}-H), 7.65(d, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.52(m, 6 \mathrm{H}, \mathrm{Ar}-H), 7.28(m, 6 \mathrm{H}, \mathrm{Ar}-H), 7.09(m, 16 \mathrm{H}, \mathrm{Ar}-H), 6.98$ $(m, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.30\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.74\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (CD $\left.{ }_{3} \mathrm{CN}, 500 \mathrm{MHz}\right): 159.76,154.70,142.17$, $136.21,133.79,132.79,131.69,131.24,130.11,129.86,129.70,128.84,128.51,127.81,126.92,126.04$, $125.26,122.13,121.87,121.29,100.81,84.61,35.81,27.71,26.57 .{ }^{31} \mathrm{P}$ NMR (CD ${ }_{3} \mathrm{CN}, 400 \mathrm{MHz}$): -12.99 (s, Ar-P), -144.62 (qi, J = $706 \mathrm{~Hz}, \mathrm{PF}_{6}$). HRMS (ESI) m / z : calcd. for $\left[\mathrm{C}_{69} \mathrm{H}_{52} \mathrm{CuN}_{2} \mathrm{OP}_{2}\right]^{+}$: 1049.2845; found: 1049.2810.

$C_{A} 3:\left[(\right.$ xant $\left.) C u\left(L_{A} 3\right)\right] P F_{6}$

$\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]$ PF $_{6}$	Xantphos	Diimine	DCM	Yield
59.6 mg	92.6 mg	71.1 mg	$13 \mathrm{~mL}+$	168.5 mg
$(0.160 \mathrm{mmol})$	$(0.160 \mathrm{mmol})$	$(0.160 \mathrm{mmol})$	13 mL	(86%)

$\mathrm{C}_{69} \mathrm{H}_{50} \mathrm{CuF}_{8} \mathrm{~N}_{2} \mathrm{OP}_{3}(\mathrm{M}=1231.63 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta=8.85(d, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 7.82$ $(m, 6 \mathrm{H}, \mathrm{Ar}-H), 7.68(d, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.30(m, 10 \mathrm{H}, \mathrm{Ar}-H), 7.11(m, 16 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.38(m, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $2.32\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.76\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}$): 163.03, 159.59, 154.49, 141.94, 136.00, $133.86,133.59,132.59,131.04,129.90,129.67,128.32,127.62,126.64,125.85,125.07,121.78,121.13$, 118.01, 115.89, 99.47, 84.15, 35.61, 27.49, 26.38. ${ }^{19}$ F NMR (CD ${ }_{3} \mathrm{CN}, 400 \mathrm{MHz}$): -72.09, -73.93, -110.19. ${ }^{31} \mathrm{P}$ NMR ($C_{3} \mathrm{CN}, 400 \mathrm{MHz}$): -12.97 ($\mathrm{s}, \mathrm{Ar}-\mathrm{P}$), - 144.63 ($q \mathrm{i}, \mathrm{J}=701 \mathrm{~Hz}, P F_{6}$). HRMS (ESI) m / z : calcd. for $\left[\mathrm{C}_{69} \mathrm{H}_{50} \mathrm{CuF}_{2} \mathrm{~N}_{2} \mathrm{OP}_{2}\right]^{+}: 1085.2657$; found: 1085.2614.

$\mathrm{C}_{\mathrm{A}} 4:\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{A}} 4\right)\right] \mathrm{PF}_{6}$

$\left[\mathrm{Cu}\left(\mathrm{MeCN}_{4}\right]\right.$ PF $_{6}$	Xantphos	Diimine	DCM	Yield
33.5 mg	52.1 mg	49.0 mg	$10 \mathrm{~mL}+$	108.3 mg
$(0.090 \mathrm{mmol})$	$(0.090 \mathrm{mmol})$	$(0.090 \mathrm{mmol})$	10 mL	(90%)

$\mathrm{C}_{71} \mathrm{H}_{50} \mathrm{CuF}_{12} \mathrm{~N}_{2} \mathrm{OP}_{3}(\mathrm{M}=1331.64 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right): \delta=8.85(d, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 7.96$ ($d, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-H), 7.85(d, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-H), 7.81(d, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.69(d, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H), $7.31(m, 6 H, \operatorname{Ar}-H), 7.12(m, 16 H, \operatorname{Ar}-H), 7.02(m, 2 H, \operatorname{Ar}-H), 2.33\left(s, 6 H, C_{3}\right), 1.77\left(s, 6 H, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (CD ${ }_{3} \mathrm{CN}, 500 \mathrm{MHz}$): 160.15, 154.64, 142.24, 136.18, 133.75, 132.75, 132.28, 131.16, 130.18, 130.07, $129.85,128.50,127.83,126.69,126.16,125.82,125.68,125.25,122.84,122.06,121.18,99.12,86.46,5.78$, 27.69, 26.59. ${ }^{19} \mathrm{~F}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}$): -63.36, $-71.95,-73.88 .{ }^{31} \mathrm{P}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}$): -12.92 (s , ArP), -144.63 (qi, J = $704 \mathrm{~Hz}, P F_{6}$). HRMS (ESI) m / z : calcd. for $\left[\mathrm{C}_{71} \mathrm{H}_{50} \mathrm{CuF}_{6} \mathrm{~N}_{2} \mathrm{OP}_{2}\right]^{+}$: 1185.2593; found: 1185.2593.

$\mathrm{C}_{\mathrm{A}} 5:\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{A}} 5\right)\right] \mathrm{PF}_{6}$

$\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}$	Xantphos	Diimine	DCM	Yield
33.5 mg	52.1 mg	42.2 mg	$10 \mathrm{~mL}+$	82.9 mg
$(0.090 \mathrm{mmol})$	$0.090 \mathrm{mmol})$	$(0.090 \mathrm{mmol})$	10 mL	(73%)

$\mathrm{C}_{71} \mathrm{H}_{56} \mathrm{CuF}_{6} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{3}(\mathrm{M}=1255.70 \mathrm{~g} / \mathrm{mol}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right): \delta=8.82(d, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; 8.80$ ($d, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.37(d, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \operatorname{Ar}-H), 7.65(d, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.31(m, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.11$ $(m, 16 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.07(d, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.90\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.30\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.76$ $\left(s, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (CD ${ }_{3} \mathrm{CN}, 500 \mathrm{MHz}$): 160.56, 159.19, 154.51, 141.80, 135.97, 133.59, 133.16, 132.59, $131.05,129.88,129.66,128.31,127.59,126.76,125.70,125.06,121.67,121.22,114.27,113.61,100.88$, 83.60, 54.93, 35.61, 27.47, 26.34. ${ }^{31}$ P NMR ($\left.C_{3} \mathrm{CN}, 400 \mathrm{MHz}\right):-12.96(s, \operatorname{Ar}-P),-144.61\left(q i, J=706 \mathrm{~Hz}, P F_{6}\right)$. IR: $v(\mathrm{C} \equiv \mathrm{C})=2190.19 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z : calcd. for $\left[\mathrm{C}_{71} \mathrm{H}_{56} \mathrm{CuN}_{2} \mathrm{O}_{3} \mathrm{P}_{2}\right]^{+}: 1109.3057$; found: 1109.3059.

3 NMR spectra of XPhos-Pd-G2 and the Complexes C1, $L_{P} 2-L_{P} 7$, and $L_{A} 2-L_{A} 5$

Figure S1.1: ${ }^{1} \mathrm{H}$ NMR spectrum of the precatalyst XPhos-Pd-G2 $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Figure S1.2: ${ }^{31} \mathrm{P}$ NMR spectrum of the precatalyst XPhos-Pd-G2 (CDCl $\left.{ }_{3}, 400 \mathrm{MHz}\right)$.

Figure S1.3: ${ }^{1} \mathrm{H}$ NMR spectrum of $[($ xant $) \mathrm{Cu}(\mathrm{L} 1)] \mathrm{PF}_{6} \mathbf{C 1}\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$.

Figure S1.4: ${ }^{13} \mathrm{C}$ NMR spectrum of $[($ xant $) \mathrm{Cu}(\mathrm{LL})] \mathrm{PF}_{6} \mathbf{C 1}\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$.

Figure S1.5: ${ }^{31} \mathrm{P}$ NMR spectrum of $[($ xant $) \mathrm{Cu}(\mathrm{L1})] \mathrm{PF}_{6} \mathrm{C1}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

Figure S1.6: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{p}} 2\right)\right] \mathrm{PF}_{6} \mathbf{C}_{\mathrm{P}} \mathbf{2}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

Figure S1.7: ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{P}} 2\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{P}} \mathbf{2}\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$.

Figure S1.8: ${ }^{31} \mathrm{P}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{P}} \mathbf{2}\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathbf{p}} \mathbf{2}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

Figure S1.9: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{P}} 3\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{P}} 3\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$.

Figure S1.10: ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{p}} 3\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{P}} 3\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$.

Figure S1.11: ${ }^{19} \mathrm{~F}$ NMR spectrum of $\left[(\right.$ (xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{p}} 3\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{P}} 3\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

Figure S1.12: ${ }^{31} \mathrm{P}$ NMR spectrum of $\left[(x a n t) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{P}} 3\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{P}} 3\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

Figure S1.13: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\right.$ (xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{p}} 4\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{p}} 4\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$.

Figure S1.14: ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[(x a n t) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{p}} 4\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{p}} 4\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$.

Figure S1.15: ${ }^{19} \mathrm{~F}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{p}} 4\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{p}} 4\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

Figure S1.16: ${ }^{31} \mathrm{P}$ NMR spectrum of $\left[(x a n t) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{p}} 4\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{p}} 4\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

Figure S1.17: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{p}} 5\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{P}} 5\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

Figure S1.18: ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[(x a n t) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{p}} 5\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{p}} 5\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$.

Figure S1.19: ${ }^{31} \mathrm{P}$ NMR spectrum of $\left[(x a n t) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{p}} 5\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{P}} 5\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

Figure S1.20: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{p}} 6\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{P}} 6\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right)$.

Figure S1.21: ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{p}} 6\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{p}} 6\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$.

Figure S1.22: ${ }^{19} \mathrm{~F}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{p}} 6\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{P}} 6\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Figure S1.23: ${ }^{31} \mathrm{P}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{p}} 6\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{p}} 6\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Figure S1.24: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{P}} 7\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{P}} 7\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$.

Figure S1.25: ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[(x a n t) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{p}} 7\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{p}} 7\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$.

Figure S1.26: ${ }^{19} \mathrm{~F}$ NMR spectrum of $\left[(x a n t) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{p}} 7\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{P}} 7\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

Figure S1.27: ${ }^{31} \mathrm{P}$ NMR spectrum of $\left[(x a n t) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{p}} 7\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{P}} 7\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

Figure S1.28: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(x a n t) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{A}} \mathbf{2}\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{A}} \mathbf{2}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

Figure S1.29: ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{A}} \mathbf{2}\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{A}} \mathbf{2}\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$.

Figure S1.30: ${ }^{31} \mathrm{P}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{A}} \mathbf{2}\right)\right] \mathrm{PF}_{6} \mathbf{C}_{\mathrm{A}} \mathbf{2}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

Figure S1.31: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(x a n t) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{A}} 3\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{A}} \mathbf{3}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

Figure S1.32: ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[(x a n t) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{A}} 3\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{A}} 3\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$.

Figure S1.33: ${ }^{19} \mathrm{~F}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{A}} 3\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{A}} 3\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

Figure S1.34: ${ }^{31} \mathrm{P}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{A}} 3\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{A}} 3\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

Figure S1.35: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{A}} 4\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{A}} 4\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$.

Figure S1.36: ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{A}} 4\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{A}} 4\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$.

Figure S1.37: ${ }^{19} \mathrm{~F}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{A}} 4\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{A}} 4\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

Figure S1.38: ${ }^{31} \mathrm{P}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{A}} 4\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{A}} 4\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

Figure S1.39: ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{A}} 5\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{A}} 5\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$.

Figure S1.40: ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{A}} 5\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{A}} 5\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$.

Figure S1.41: ${ }^{31} \mathrm{P}$ NMR spectrum of $\left[(\right.$ xant $\left.) \mathrm{Cu}\left(\mathrm{L}_{\mathrm{A}} 5\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{A}} 5\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$.

4 MS spectra of the Complexes $\mathrm{C} 1, \mathrm{C}_{\mathrm{P}} 2-\mathrm{C}_{\mathrm{P}} 7$ and $\mathrm{C}_{\mathrm{A}} 2-\mathrm{C}_{\mathrm{A}} 5$

Acquisition Parameter

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	$200{ }^{\circ} \mathrm{C}$
Scan Begin	$250 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V	Set Dry Gas	$4.0 \mathrm{l} / \mathrm{min}$
Scan End	$3000 \mathrm{~m} / \mathrm{z}$	Set Collision Cell RFF	500.0 Vpp	Set Divert Valve	Waste

Figure S2.1: Mass spectrum of $[(x a n t) \mathrm{Cu}(\mathbf{L 1})] \mathrm{PF}_{6} \mathbf{C 1}$ (experimental (top) vs. simulated (bottom)).

Figure S2.2: Mass spectrum of [(xant)Cu(Lp2)]PF ${ }_{6} \mathbf{C}_{\mathbf{P}} \mathbf{2}$ (experimental (top) vs. simulated (bottom)).

Figure S2.3: Mass spectrum of [(xant) $\left.C_{u}\left(L_{p} 3\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{P}} 3$ (experimental (top) vs. simulated (bottom)).

Acquisition Parameter

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	$200^{\circ} \mathrm{C}$
Scan Begin	$250 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min
Scan End	$3000 \mathrm{~m} / \mathrm{z}$	Set Collision Cell RF	500.0 Vpp	Set Divert Valve	Waste

Figure S2.4: Mass spectrum of [(xant)Cu(Lp4)]PF ${ }_{6} \mathrm{C}_{\mathbf{p}} 4$ (experimental (top) vs. simulated (bottom)).

Figure S2.5: Mass spectrum of [(xant) $\left.C_{u}\left(L_{p} 5\right)\right] \mathrm{PF}_{6} \mathbf{C P}^{\mathbf{P}}$ (experimental (top) vs. simulated (bottom)).

Figure S2.6: Mass spectrum of $\left[(x a n t) C u\left(L_{p} 6\right)\right] P F_{6} C_{p} 6$ (experimental (top) vs. simulated (bottom)).

Acquisition Parameter

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	$200^{\circ} \mathrm{C}$
Scan Begin	$250 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V	Set Dry Gas	$4.0 \mathrm{l} / \mathrm{min}$
Scan End	$3000 \mathrm{~m} / \mathrm{z}$	Set Collision Cell RF	500.0 Vpp	Set Divert Valve	Waste

Figure S2.7: Mass spectrum of [(xant)Cu($L_{p} 7$)]PF ${ }_{6} \mathbf{C}_{\mathbf{p}} 7$ (experimental (top) vs. simulated (bottom)).

Figure S2.8: Mass spectrum of [(xant) $\left.\mathrm{Cu}\left(\mathrm{L}_{\mathrm{A}} \mathbf{2}\right)\right] \mathrm{PF}_{6} \mathrm{C}_{\mathrm{A}} \mathbf{2}$ (experimental (top) vs. simulated (bottom)).

Figure S2.9: Mass spectrum of $\left[(x a n t) C u\left(L_{A} 3\right)\right] P F_{6} C_{A} 3$ (experimental (top) vs. simulated (bottom)).

Figure S2.10: Mass spectrum of $\left[(\right.$ xant $\left.) C u\left(L_{A} 4\right)\right] P F_{6} C_{A} 4$ (experimental (top) vs. simulated (bottom)).

Figure S2.11: Mass spectrum of $\left[(x a n t) C u\left(L_{A} 5\right)\right] P_{6} C_{A} 5$ (experimental (top) vs. simulated (bottom)).

$5 \quad$ Crystallographic Data and Structures of $C_{1}, C_{P} 4, C_{P} 6, C_{P} 7$ and $C_{A} 4$

Single crystals of the complexes $\mathbf{C 1}, \mathbf{C}_{\mathbf{P}} 4, \mathbf{C}_{\mathbf{P}} \mathbf{6}, \mathbf{C}_{\mathbf{P}} \mathbf{7}$ and $\mathbf{C}_{\mathbf{A}} \mathbf{4}$ could be obtained by crystallization from a moderately concentrated methylene chloride solution by overlayering firstly with a film of ethanol and secondly with n-hexane. Crystal growth was completed after 3-10 days depending on the amount of ethanol and n-hexane applied (e.g. crystallizing $\mathrm{C}_{\mathrm{A}} 4$ was found to be most challenging demanding to increase the ratio EtOH/n-hexane to slow down crystallization).

Table S1: Crystallographic data of the complexes $\mathbf{C 1}, C_{P} 4, C_{P} 6, C_{P} 7$ and $C_{A} 4$

Complex	C1	Cp4	Cp6
CCDC Number ${ }^{\text {a }}$	2059397	2059398	2059399
Empirical formula	$\mathrm{C}_{53} \mathrm{H}_{42} \mathrm{Br}_{2} \mathrm{CuF}_{6} \mathrm{~N}_{2} \mathrm{OP}_{3}$	$\mathrm{C}_{70} \mathrm{H}_{56} \mathrm{Cl}_{6} \mathrm{CuF}_{12} \mathrm{~N}_{2} \mathrm{O}_{1.50} \mathrm{P}_{3}$	$\mathrm{C}_{67} \mathrm{H}_{50} \mathrm{Cl}_{4} \mathrm{CuF}_{12} \mathrm{~N}_{2} \mathrm{OP}_{3}$
Formula weight [g/mol]	1153.15	1546.31	1425.34
Temperature [K]	135(2)	135(2)	135(2)
Wavelength [Å]	0.71073	0.71073	0.71073
Crystal system, space group	Triclinic, P-1	Triclinic, P-1	Monoclinic, P2(1)/n
Unit cell dimensions [\AA] and [${ }^{\circ}$]	$\begin{aligned} & \mathrm{a}=11.4578(4) \\ & \text { alpha }=85.881(2) \\ & \mathrm{b}=12.5865(5) \\ & \text { beta }=71.850(2) \\ & \mathrm{c}=17.3085(6) \\ & \text { gamma }=82.826(3) \end{aligned}$	$\begin{aligned} & \mathrm{a}=10.8280(8) \\ & \text { alpha }=92.634(4) \\ & \mathrm{b}=16.9026(11) \\ & \text { beta }=102.328(4) \\ & \mathrm{c}=20.6531(14) \\ & \text { gamma }=103.549(3) \end{aligned}$	$\begin{aligned} & a=17.2053(9) \\ & \text { alpha }=90 \\ & b=14.8342(8) \\ & \text { beta }=106.899(3) \\ & c=28.1951(14) \\ & \text { gamma }=90 \end{aligned}$
Volume [${ }^{3}$]	2351.92(15)	3571.6(4)	6885.4(6)
Z, Calculated density [$\mathrm{Mg} / \mathrm{m}^{-3}$]	2, 1.628	2, 1.438	4, 1.375
Absorption coefficient [mm^{-1}]	2.332	0.673	0.617
F(000)	1160	1572	2896
Crystal size [mm]	$0.270 \times 0.120 \times 0.084$	$0.219 \times 0.139 \times 0.113$	$0.353 \times 0.175 \times 0.090$
Theta range for data collection [${ }^{\circ}$]	1.632 to 28.383	1.684 to 24.999	1.510 to 25.499
Limiting indices	$\begin{aligned} & -15<=h<=15, \\ & -16<=k<=16, \\ & -22<=\mid<=23 \end{aligned}$	$\begin{aligned} & -12<=h<=12, \\ & -20<=k<=20, \\ & -24<=\mid<=24 \end{aligned}$	$\begin{aligned} & -20<=h<=20, \\ & -17<=k<=17, \\ & -34<=\mid<=34 \end{aligned}$
Reflections collected / unique	$\begin{aligned} & 47300 / 11727 \text { [R(int) }= \\ & 0.0390] \end{aligned}$	$\begin{aligned} & 42631 / 12378[R(\text { int })= \\ & 0.0791] \end{aligned}$	$\begin{aligned} & 99093 / 12531[R(\text { int })= \\ & 0.1112] \end{aligned}$
Completeness to theta $=\mathrm{X}$	$X=25.242$ Completeness: 99.9 \%	$X=24.999$ Completeness: 98.6 \%	$X=25.242$ Completeness: 98.3 \%
Absorption correction	Numerical	Semi-empirical from equivalents	Numerical
Max. and min. transmission	0.8932 and 0.6552	0.8620 and 0.7505	0.9689 and 0.7989
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data / restraints / parameters	11727 / 48/654	12378 / 180 / 924	12531 / 24 / 815
Goodness-of-fit on F^{2}	1.013	1.041	1.037
Final R indices [1>2sigma(l)]	$1=0.0348, w R 2=0.0695$	$\mathrm{R} 1=0.1085, \mathrm{wR2}=0.2571$	$R 1=0.0821, w R 2=0.2032$
R indices (all data)	$\mathrm{R} 1=0.0635, \mathrm{wR2}=0.0747$	$\mathrm{R} 1=0.1785, \mathrm{wR2}=0.2789$	R1 $=0.1385, w R 2=0.2212$
Extinction coefficient	n/a	n/a	n/a
Largest diff. peak and hole [e. A^{-3}]	0.490 and -0.462	1.252 and -0.866	0.888 and -0.986

Complex	CP7	$\mathrm{C}_{\text {A }} 4$
CCDC Number ${ }^{a}$	2059400	2059401
Empirical formula	$\mathrm{C}_{70} \mathrm{H}_{50} \mathrm{Cl}_{2} \mathrm{CuF}_{18} \mathrm{~N}_{2} \mathrm{OP}_{3}$	$\mathrm{C}_{72.50} \mathrm{H}_{53} \mathrm{Cl}_{3} \mathrm{CuF}_{12} \mathrm{~N}_{2} \mathrm{OP}_{3}$
Formula weight [g/mol]	1504.47	1458.97
Temperature [K]	135(2)	135(2)
Wavelength [\AA]	0.71073	1.54178
Crystal system, space group	Monoclinic, P2(1)/n	Monoclinic, P2(1)/c
Unit cell dimensions [Å] and [${ }^{\circ}$]	$\begin{aligned} & a=18.9277(9) \\ & a l p h a=90 \\ & b=15.2284(6) \\ & b e t a=93.399(2) \\ & c=22.3255(11) \\ & \text { gamma }=90 \end{aligned}$	$\begin{aligned} & a=10.9736(3) \\ & \text { alpha }=90 \\ & b=26.4107(10) \\ & b e t a=94.986(2) \\ & c=48.6238(16) \\ & \text { gamma }=90 \end{aligned}$
Volume [${ }^{3}$]	6423.8(5)	14038.8(8)
Z , Calculated density [$\mathrm{Mg} / \mathrm{m}^{-3}$]	4, 1.556	8, 1.381
Absorption coefficient [mm^{-1}]	0.598	2.793
F(000)	3048	5944
Crystal size [mm]	$0.308 \times 0.256 \times 0.165$	$0.281 \times 0.111 \times 0.030$
Theta range for data collection [${ }^{\circ}$]	1.620 to 26.432	1.905 to 65.596
Limiting indices	$\begin{aligned} & -23<=h<=23, \\ & -19<=k<=11, \\ & -27<=1<=26 \\ & \hline \end{aligned}$	$\begin{aligned} & -12<=h<=12, \\ & -30<=k<=30, \\ & -43<===57 \\ & \hline \end{aligned}$
Reflections collected / unique	$55838 / 13176$ [R(int) $=0.0598$]	$85542 / 23471$ [R(int) $=0.1162$]
Completeness to theta $=\mathrm{X}$	$x=25.242$ Completeness: 99.9 \%	$\mathrm{X}=65.596$ Completeness: 96.9 \%
Absorption correction	Semi-empirical from equivalents	Numerical
Max. and min. transmission	0.7454 and 0.7086	0.9840 and 0.5271
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	13176 / 141 / 915	23471 / 176 / 1782
Goodness-of-fit on F^{2}	1.043	1.036
Final R indices [$1>2$ sigma(1]]	R1 $=0.0513, \mathrm{wR2}=0.1168$	R1 $=0.0931$, wR2 $=0.1983$
R indices (all data)	R1 $=0.1045, w R 2=0.1303$	R1 $=0.1599, w R 2=0.2205$
Extinction coefficient	n/a	n/a
Largest diff. peak and hole [e. A^{-3}]	0.790 and -0.907	1.546 and -0.720

${ }^{a}$ The CCDC reference numbers shown contain the supplementary crystallographic data for this paper. The data can be accessed free of charge at the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Table S2: Selected crystallographic bond lengths (pm), bond angles $\left({ }^{\circ}\right)$, inter plane angles (P-P-N-N, ${ }^{\circ}$), phenyl-to-phenanthroline distances $d(p m)$, and torsion angles $\tau_{\text {sub }}\left({ }^{\circ}\right)$ of the complexes $\mathbf{C}_{p} 4$ and $\mathbf{C}_{p} 7$ its corresponding crystal structure (structures not presented in main text).

	CP4
$\beta_{\text {ncun }}$	79.7(3)
$\beta_{\text {PCup }}$	120.30(9)
P-P-N-N	84.17
$\mathrm{Cu}-\mathrm{N}_{1}$	210.1(6)
$\mathrm{Cu}-\mathrm{N}_{2}$	210.5(6)
$\mathrm{Cu}-\mathrm{P}_{1}$	224.4(3)
$\mathrm{Cu}-\mathrm{P}_{2}$	229.3(3)
$\tau_{\text {sub, } 1}$	-59.2(9)
$\tau_{\text {sub, } 2}$	-53.0(9)
d_{1}	367(1)
d_{2}	371(1)
$\mathrm{N}_{1} \mathrm{CuP}_{1}$	128.9(2)
$\mathrm{N}_{1} \mathrm{CuP}_{2}$	103.1(2)
$\mathrm{N}_{2} \mathrm{CuP}_{1}$	119.3(2)
$\mathrm{N}_{2} \mathrm{CuP} 2$	96.6(2)

	CP7
$\beta_{\text {ncun }}$	79.71(9)
$\beta_{\text {PCup }}$	119.43(3)
P-P-N-N	87.19
$\mathrm{Cu}-\mathrm{N}_{1}$	209.9(2)
$\mathrm{Cu}-\mathrm{N}_{2}$	210.0(2)
$\mathrm{Cu}-\mathrm{P}_{1}$	224.40(8)
$\mathrm{Cu}-\mathrm{P}_{2}$	228.78(9)
$\tau_{\text {sub, } 1}$	-72.3(4)
$\tau_{\text {sub, } 2}$	-69.2(4)
d_{1}	380.2(4)
d_{2}	360.5(4)
$\mathrm{N}_{1} \mathrm{CuP}_{1}$	127.61(7)
$\mathrm{N}_{1} \mathrm{CuP}_{2}$	102.22(7)
$\mathrm{N}_{2} \mathrm{CuP}_{1}$	119.00(7)
$\mathrm{N}_{2} \mathrm{CuP}_{2}$	100.36(7)

6 Calculated Ground State Structures of the Ligands and Complexes

Figure S3.1. Calculated ground state $\left(S_{0}\right)$ structure of $L_{p} 2, L_{p} 3, L_{p} 4$ and $L_{p} 5$ optimized at the BP86/def2-TZVP level of theory. Hydrogen atoms are omitted for clarity.

Table S3. Selected bond lengths (pm) and angles (${ }^{\circ}$) of the calculated ground state (S_{0}) structure BP86/def2TZVP) of Lp2-Lp5 in acetonitrile. For atom labeling see structures in Figure S3.1.

	S_{0} of $L_{p} \mathbf{2}$	S_{0} of $L_{p} 3$	S_{0} of $L_{p} 4$	S_{0} of $L_{p} 5$
N1-N2	275.6	275.6	275.1	275.7
C2-C3	138.1	138.1	138.2	138.2
C1-C4	293.7	293.3	292.5	293.9
C1-C2-C3	121.4	121.3	121.0	121.3
C2-C3-C4	121.2	121.1	121.1	121.1
torsion of phenyl rings	$90.1 \& 91.0$	$89.9 \& 90.8$	$107.7 \& 73.9$	$91.1 \& 90.3$

Figure S3.2. Calculated ground state $\left(S_{0}\right)$ structure of $L_{A} 2, L_{A} 3, L_{A} 4$ and $L_{A} 5$. Hydrogen atoms are omitted for clarity.

Table S4. Selected bond lengths (pm) and angles $\left({ }^{\circ}\right)$ of the calculated ground state $\left(\mathrm{S}_{0}\right)$ structure BP86/def2TZVP) of $L_{A} \mathbf{2}$ and $\mathbf{L}_{\mathbf{p}} \mathbf{2}$ in acetonitrile. For atom labeling see structures in Figure S3.2.

	S_{0} of $\mathrm{L}_{\mathrm{A}} \mathbf{2}$	S_{0} of $\mathrm{L}_{\mathrm{A}} \mathbf{3}$	S_{0} of $\mathrm{L}_{\mathrm{A}} \mathbf{4}$	S_{0} of L_{A} 5
N1-N2	275.0	276.6	274.9	275.1
C3-C6	286.1	283.0	285.6	286.5
C2-C7	421.7	411.1	421.1	422.5
C1-C8	580.0	561.4	579.0	580.9
C3-C4-C5	121.0	120.5	120.9	121.1
C4-C5-C6	121.0	120.9	120.9	121.1
torsion of phenyl rings	$-4.4 \&-11.2$	$-5.4 \&-18.2$	$-5.6 \&-9.7$	$-4.1 \&-6.1$

Figure S3.3. Calculated ground state (S_{0}) structure of $\mathbf{C}_{\mathbf{P}} \mathbf{2}$ and $\mathbf{C}_{\mathrm{P}} 3$ (right). Hydrogen atoms are omitted for clarity.

Table S5. Selected bond lengths (pm) and angles (${ }^{\circ}$) of the calculated ground state (S_{0}) structure BP86/def2TZVP) of $\mathbf{C}_{\mathbf{P}} \mathbf{2}$ and $\mathbf{C}_{\mathbf{P}} \mathbf{3}$ in acetonitrile. For atom labeling see structures in Figure S3.3.

	S_{0} of $\mathrm{C}_{\mathrm{p}} \mathbf{2}$	S_{0} of $\mathrm{C}_{\mathrm{P}} 3$
N1-Cu	212.5	212.1
N2-Cu	213.0	213.1
N1-Cu-N2	79.6	79.5
$\mathrm{O}-\mathrm{Cu}$	322.8	322.8
P1-P2	395.5	396.1
P1-Cu	233.8	234.0
P2-Cu	234.1	233.8
P1-Cu-P2	115.4	115.7
N1-N2	272.2	272.0
C1-C4	294.3	293.5
C1-C2-C3	121.4	121.3
C2-C3-C4	121.5	120.8

Figure S3.4. Calculated ground state $\left(S_{0}\right)$ structure of $\mathbf{C}_{A} \mathbf{2}$. Hydrogen atoms are omitted for clarity. The structure of $\mathrm{C}_{\mathrm{A}} 3-\mathrm{C}_{\mathrm{A}} 5$ look similar besides the substitution pattern (cf. with ligands in Figure S3.2).

Table S6. Selected bond lengths (pm) and angles (${ }^{\circ}$) of the calculated ground state (S_{0}) structure BP86/def2TZVP) of $\mathbf{C}_{\mathbf{P}} \mathbf{2}$ and $\mathbf{C}_{\mathbf{P}} \mathbf{3}$ in acetonitrile. For atom labeling see structures in Figure S3.4.

	S_{0} of $\mathbf{C}_{\mathrm{A}} \mathbf{2}$	S_{0} of $\mathbf{C}_{\mathrm{A}} \mathbf{3}$	S_{0} of $\mathbf{C}_{\mathrm{A}} \mathbf{4}$	S_{0} of $\mathbf{C}_{\mathrm{A}} \mathbf{5}$
$\mathrm{N} 1-\mathrm{Cu}$	212.3	212.5	212.6	212.5
$\mathrm{~N} 2-\mathrm{Cu}$	213.1	213.3	213.3	213.1
$\mathrm{~N} 1-\mathrm{Cu}-\mathrm{N} 2$	79.6	79.5	79.4	79.5
$\mathrm{O}-\mathrm{Cu}$	322.7	323.6	323.4	323.6
$\mathrm{P} 1-\mathrm{P} 2$	396.8	395.9	395.9	395.8
$\mathrm{P} 1-\mathrm{Cu}$	233.7	234.1	234.3	234.0
$\mathrm{P} 2-\mathrm{Cu}$	233.9	234.1	234.0	234.1
$\mathrm{P} 1-\mathrm{Cu}-\mathrm{P} 2$	116.1	115.5	115.4	115.5
$\mathrm{~N} 1-\mathrm{N} 2$	272.3	272.2	272.1	272.2
$\mathrm{C} 3-\mathrm{C} 6$	286.2	286.5	285.8	287.2
$\mathrm{C} 2-\mathrm{C} 7$	420.4	421.4	419.4	423.8
$\mathrm{C} 1-\mathrm{C} 8$	580.0	578.0	575.1	582.2
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	121.1	121.1	121.0	121.3
C4-C5-C6	121.1	121.2	121.0	121.3
torsion of phenyl rings	$9.6 \& 14.6$	$9.6 \& 13.6$	$9.3 \& 16.0$	$0.5 \& 0.9$

7 Electrochemical Data of $\mathrm{C}_{\mathrm{P}} 2-\mathrm{C}_{\mathrm{P}} 7$ and $\mathrm{C}_{\mathrm{A}} 2-\mathrm{C}_{\mathrm{A}} 5$

Figure S4.1 Cyclic voltammogram (top) and differential pulse voltammograms (DPV) of of $\mathbf{C}_{\mathbf{p}} \mathbf{2}$ (with dark color, 1 mM) and Lp2 (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple. Conditions: scan rate of $100 \mathrm{mVs}^{-1}$, [$\left.\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ (0.1 M) as supporting electrolyte.
Reductive (bottom left) and oxidative events (bottom right) of the cyclic voltammograms of $\mathbf{C}_{\mathbf{p}} \mathbf{2}$ (with dark color, 1 mM) and $\mathrm{L}_{\mathbf{p}} \mathbf{2}$ (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple at different scan rates. Conditions: scan rate of 25 mVs^{-1} (red), $50 \mathrm{mVs}^{-1}$ (green), $100 \mathrm{mVs}^{-1}$ (blue), $250 \mathrm{mVs}^{-1}$ (purple), $500 \mathrm{mVs}^{-1}$ (magenta) and $800 \mathrm{mVs}^{-1}$ (yellow), with $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M})$ as supporting electrolyte. The arrow illustrates the initial scan direction.

Figure S4.2 Cyclic voltammogram (top) and differential pulse voltammograms (DPV) of of $\mathbf{C}_{\mathbf{p}} 3$ (with dark color, 1 mM) and $\mathrm{L}_{\mathrm{p}} 3$ (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple. Conditions: scan rate of $100 \mathrm{mVs}^{-1}$, $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ (0.1 M) as supporting electrolyte.
Reductive (bottom left) and oxidative events (bottom right) of the cyclic voltammograms of $\mathbf{C}_{\mathbf{p}} \mathbf{3}$ (with dark color, 1 mM) and $\mathrm{L}_{\mathrm{P}} 3$ (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution
referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple at different scan rates. Conditions: scan rate of 25 mVs^{-1} (red), $50 \mathrm{mVs}^{-1}$ (green), $100 \mathrm{mVs}^{-1}$ (blue), $250 \mathrm{mVs}^{-1}$ (purple), $500 \mathrm{mVs}^{-1}$ (magenta) and $800 \mathrm{mVs}^{-1}$ (yellow), with $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M}$) as supporting electrolyte. The arrow illustrates the initial scan direction.

Figure S4.3 Cyclic voltammogram (top) and differential pulse voltammograms (DPV) of of $\mathbf{C}_{\mathbf{p}} 4$ (with dark color, 1 mM) and Lp4 (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple. Conditions: scan rate of $100 \mathrm{mVs}^{-1}$, [$\left.\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ (0.1 M) as supporting electrolyte.

Reductive (bottom left) and oxidative events (bottom right) of the cyclic voltammograms of $\mathbf{C}_{\mathbf{p}} 4$ (with dark color, 1 mM) and $\mathrm{L}_{\mathrm{p}} 4$ (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple at different scan rates. Conditions: scan rate of 25 mVs^{-1} (red), $50 \mathrm{mVs}^{-1}$ (green), $100 \mathrm{mVs}^{-1}$ (blue), $250 \mathrm{mVs}^{-1}$ (purple), $500 \mathrm{mVs}^{-1}$ (magenta) and $800 \mathrm{mVs}^{-1}$ (yellow), with $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M})$ as supporting electrolyte. The arrow illustrates the initial scan direction.

Figure S4.4 Cyclic voltammogram (top) and differential pulse voltammograms (DPV) of of $\mathbf{C}_{\mathbf{p}} 5$ (with dark color, 1 mM) and Lp5 (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution
referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple. Conditions: scan rate of $100 \mathrm{mVs}^{-1}$, [$\left.\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ (0.1 M) as supporting electrolyte.

Reductive (bottom left) and oxidative events (bottom right) of the cyclic voltammograms of $\mathbf{C}_{\mathbf{p}} 5$ (with dark color, 1 mM) and $\mathrm{L}_{\mathrm{p}} 5$ (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple at different scan rates. Conditions: scan rate of 25 mVs^{-1} (red), $50 \mathrm{mVs}^{-1}$ (green), $100 \mathrm{mVs}^{-1}$ (blue), $250 \mathrm{mVs}^{-1}$ (purple), $500 \mathrm{mVs}^{-1}$ (magenta) and $800 \mathrm{mVs}^{-1}$ (yellow), with $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M}$) as supporting electrolyte. The arrow illustrates the initial scan direction.

Figure S4.5 Cyclic voltammogram (top) and differential pulse voltammograms (DPV) of of $\mathbf{C}_{\mathrm{p}} 6$ (with dark color, 1 mM) and $\mathrm{L}_{\mathrm{p}} 6$ (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple. Conditions: scan rate of $100 \mathrm{mVs}^{-1}$, [$\left.\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ (0.1 M) as supporting electrolyte.
Reductive (bottom left) and oxidative events (bottom right) of the cyclic voltammograms of $\mathbf{C}_{\mathbf{p}} 6$ (with dark color, 1 mM) and $\mathrm{L}_{\mathrm{p}} 6$ (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple at different scan rates. Conditions: scan rate of 25 mVs^{-1} (red), $50 \mathrm{mVs}^{-1}$ (green), $100 \mathrm{mVs}^{-1}$ (blue), $250 \mathrm{mVs}^{-1}$ (purple), $500 \mathrm{mVs}^{-1}$ (magenta) and $800 \mathrm{mVs}^{-1}$ (yellow), with $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M}$) as supporting electrolyte. The arrow illustrates the initial scan direction.

Figure S4.6 Cyclic voltammogram (top) and differential pulse voltammograms (DPV) of $\mathbf{C}_{p} \mathbf{7}$ (with dark color, 1 mM) and $\mathrm{L}_{\mathrm{p}} 7$ (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple. Conditions: scan rate of $100 \mathrm{mVs}^{-1},\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ (0.1 M) as supporting electrolyte.

Reductive (bottom left) and oxidative events (bottom right) of the cyclic voltammograms of $\mathbf{C}_{\mathbf{p}} \mathbf{7}$ (with dark color, 1 mM) and $\mathrm{L}_{\mathrm{P}} 7$ (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple at different scan rates. Conditions: scan rate of 25 mVs^{-1} (red), $50 \mathrm{mVs}^{-1}$ (green), $100 \mathrm{mVs}^{-1}$ (blue), $250 \mathrm{mVs}^{-1}$ (purple), $500 \mathrm{mVs}^{-1}$ (magenta) and $800 \mathrm{mVs}^{-1}$ (yellow), with $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M}$) as supporting electrolyte. The arrow illustrates the initial scan direction.

Figure S4.7 Cyclic voltammogram (top) and differential pulse voltammograms (DPV) of of $\mathbf{C}_{\mathrm{A}} \mathbf{2}$ (with dark color, 1 mM) and $\mathrm{L}_{\boldsymbol{A}} \mathbf{2}$ (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple. Conditions: scan rate of $100 \mathrm{mVs}^{-1},\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ (0.1 M) as supporting electrolyte.

Reductive (bottom left) and oxidative events (bottom right) of the cyclic voltammograms of $\mathbf{C}_{\mathrm{A}} \mathbf{2}$ (with dark color, 1 mM) and $\mathrm{L}_{\mathrm{A}} \mathbf{2}$ (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple at different scan rates. Conditions: scan rate of 25 mVs^{-1} (red), $50 \mathrm{mVs}^{-1}$ (green), $100 \mathrm{mVs}^{-1}$ (blue), $250 \mathrm{mVs}^{-1}$ (purple), $500 \mathrm{mVs}^{-1}$ (magenta) and $800 \mathrm{mVs}^{-1}$ (yellow), with $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M}$) as supporting electrolyte. The arrow illustrates the initial scan direction.

Figure S4.8 Cyclic voltammogram (top) and differential pulse voltammograms (DPV) of of $\mathbf{C}_{\mathrm{A}} 3$ (with dark color, 1 mM) and $\mathrm{L}_{\mathrm{A}} 3$ (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple. Conditions: scan rate of $100 \mathrm{mVs}^{-1},\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ (0.1 M) as supporting electrolyte.

Reductive (bottom left) and oxidative events (bottom right) of the cyclic voltammograms of $\mathbf{C}_{A} \mathbf{3}$ (with dark color, 1 mM) and $\mathrm{L}_{\mathrm{A}} 3$ (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple at different scan rates. Conditions: scan rate of 25 mVs^{-1} (red), $50 \mathrm{mVs}^{-1}$ (green), $100 \mathrm{mVs}^{-1}$ (blue), $250 \mathrm{mVs}^{-1}$ (purple), $500 \mathrm{mVs}^{-1}$ (magenta) and $800 \mathrm{mVs}^{-1}$ (yellow), with $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M})$ as supporting electrolyte. The arrow illustrates the initial scan direction.

Figure S4.9 Cyclic voltammogram (top) and differential pulse voltammograms (DPV) of of $\mathbf{C}_{\mathrm{A}} \mathbf{4}$ (with dark color, 1 mM) and $\mathrm{L}_{\mathrm{A}} 4$ (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple. Conditions: scan rate of $100 \mathrm{mVs}^{-1}$, $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ (0.1 M) as supporting electrolyte.

Reductive (bottom left) and oxidative events (bottom right) of the cyclic voltammograms of $\mathbf{C}_{\mathrm{A}} 4$ (with dark color, 1 mM) and $\mathrm{L}_{\boldsymbol{A}} 4$ (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple at different scan rates. Conditions: scan rate of 25 mVs^{-1} (red), $50 \mathrm{mVs}^{-1}$ (green), $100 \mathrm{mVs}^{-1}$ (blue), $250 \mathrm{mVs}^{-1}$ (purple), $500 \mathrm{mVs}^{-1}$ (magenta) and $800 \mathrm{mVs}^{-1}$ (yellow), with $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M}$) as supporting electrolyte. The arrow illustrates the initial scan direction.

Figure S4.10 Cyclic voltammogram (top) and differential pulse voltammograms (DPV) of of $\mathbf{C}_{\mathrm{A}} 5$ (with dark color, 1 mM) and $\mathrm{L}_{\mathrm{A}} 5$ (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple. Conditions: scan rate of $100 \mathrm{mVs}^{-1}$, [$\left.\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ (0.1 M) as supporting electrolyte.

Reductive (bottom left) and oxidative events (bottom right) of the cyclic voltammograms of $\mathbf{C}_{\mathrm{A}} 5$ (with dark color, 1 mM) and $\mathrm{L}_{\mathrm{A}} 5$ (with light color, $<1 \mathrm{mM}$ due to low solubility in acetonitrile) in acetonitrile solution referenced vs. the ferrocene/ferricenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) couple at different scan rates. Conditions: scan rate of 25 mVs^{-1} (red), $50 \mathrm{mVs}^{-1}$ (green), $100 \mathrm{mVs}^{-1}$ (blue), $250 \mathrm{mVs}^{-1}$ (purple), $500 \mathrm{mVs}^{-1}$ (magenta) and $800 \mathrm{mVs}^{-1}$ (yellow), with $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M}$) as supporting electrolyte. The arrow illustrates the initial scan direction.

8 Absorption and Steady-State Emission

Figure S5.1: UV/vis absorption spectra (left) and emission spectra (right) acetonitrile solution of C1 (solid) and $\mathbf{L 1}$ (dashed). Emission measured in deaerated solution after excitation at 390 nm .

Figure S5.2: UV/vis absorption spectra (left) and emission spectra (right) acetonitrile solution of $\mathbf{C}_{\mathbf{p}} \mathbf{2}$ (solid, black), $\mathrm{L}_{\mathbf{P}} \mathbf{2}$ (dashed, black), $\mathbf{C}_{\mathrm{A}} \mathbf{2}$ (solid, red) and $\mathrm{L}_{\mathrm{A}} \mathbf{2}$ (dashed, red). Emission measured in deaerated solution after excitation at $390 \mathrm{~nm}\left(\mathbf{C}_{\mathbf{P}} 2\right)$ or $410 \mathrm{~nm}\left(\mathbf{C}_{\mathrm{A}} \mathbf{2}\right)$.

Figure S5.3: UV/vis absorption spectra (left) and emission spectra (right) acetonitrile solution of $\mathbf{C}_{\mathbf{p}} \mathbf{3}$
(solid, black), $L_{P} 3$ (dashed, black), $C_{A} 3$ (solid, red) and $L_{A} 3$ (dashed, red). Emission measured in deaerated solution after excitation at $390 \mathrm{~nm}\left(\mathbf{C}_{\mathbf{P}} 3\right)$ or $410 \mathrm{~nm}\left(\mathbf{C}_{\mathbf{A}} \mathbf{3}\right)$.

Figure S5.4: UV/vis absorption spectra (left) and emission spectra (right) acetonitrile solution of $\mathbf{C}_{\mathrm{p}} 4$ (solid, black), $L_{p} 4$ (dashed, black), $C_{A} 4$ (solid, red) and $L_{A} 4$ (dashed, red). Emission measured in deaerated solution after excitation at $390 \mathrm{~nm}\left(\mathbf{C}_{\mathrm{P}} 4\right)$ or $410 \mathrm{~nm}\left(\mathrm{C}_{\mathrm{A}} 4\right)$.

Figure S5.5: UV/vis absorption spectra (left) and emission spectra (right) acetonitrile solution of $\mathbf{C}_{\mathbf{p}} 5$ (solid, black), Lp5 (dashed, black), $\mathrm{C}_{\mathrm{A}} 5$ (solid, red) and $\mathrm{L}_{\mathrm{A}} 5$ (dashed, red). Emission measured in deaerated solution after excitation at $390 \mathrm{~nm}\left(\mathbf{C}_{\mathrm{P}} 5\right)$ or $410 \mathrm{~nm}\left(\mathbf{C}_{\mathrm{A}} 5\right)$.

Figure S5.6: UV/vis absorption spectra (left) and emission spectra (right) acetonitrile solution of Cp6 (solid, black), Lp6 (dashed, black), C $\mathbf{C}_{\mathbf{p}}$ (solid, red) and $\mathrm{L}_{\mathrm{p}} 7$ (dashed, red). Emission measured in deaerated solution after excitation at 390 nm ($\mathbf{C}_{\mathbf{p}} 6$ and $\mathbf{C}_{\mathbf{p}} 7$).

Table S7: Summary of the photophysical properties of all alkynyl-based complexes $\mathbf{C}_{\mathrm{A}} \mathbf{2}-\mathbf{C}_{\mathbf{A}} \mathbf{5}$ in acetonitrile solution at room temperature.

Compound	$\lambda_{a b s}$	$\lambda_{\text {em }}$	$\varphi_{e m}$	$\varphi_{e m}$	$\tau_{\text {em }}$	$\tau_{\text {em }}$
	[nm]	[nm]	[\%]	[\%]	[ns]	[ns]
	$\left(\varepsilon\left[10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)$	inert	inert	O_{2}	inert	O_{2}
$\mathrm{C}_{\mathrm{A}} 2$	$410{ }^{a}$ (3.6)	c	n.d.	n.d.	n.d.	n.d.
$\mathrm{C}_{\mathrm{A}} 3$	$410{ }^{a}(4.2)$	c	n.d.	n.d.	n.d.	n.d.
$\mathrm{C}_{\mathrm{A}} 4$	410^{a} (4.7)	c	n.d.	n.d.	n.d.	n.d.
$\mathrm{C}_{\mathrm{A}} 5$	$410{ }^{a}\left(18.6^{b}\right)$	517	n.d.	n.d.	$<6 \mathrm{~ns}{ }^{\text {d }}$	$<6 \mathrm{~ns}{ }^{\text {d }}$

Emission lifetimes τ_{em} were measured following 355 nm laser pulse excitation. ${ }^{a} \lambda_{a b s}$ approximated due to spectral superposition. ${ }^{b}$ absorption superimposed by ligandm centered transitions. ${ }^{c}$ no detectable emission at $\lambda>500 \mathrm{~nm} .{ }^{d}$ below resolution time. $n . d$. : not determined.

9 Emission Lifetime

Table S8: Time resolved emission data of the complexes [(xant)Cu(dmp)]PF ${ }_{6}$ (Ref), [(xant)Cu(bcp)]PF6, C1
 inert and aerobic conditions at the respective emission maxima after pulsed laser excitation at 355 nm . Emission decay observed displayed in orange; calculated fit displayed in black.

[^0]: Florian Doettinger, ${ }^{\mathrm{a}, \mathrm{b}}$ Yingya Yang, ${ }^{\mathrm{b}}$ Marie-Ann Schmid, ${ }^{\mathrm{b}}$ Wolfgang Frey, ${ }^{\mathrm{a}}$ Michael Karnahl, ${ }^{*}$,a and Stefanie Tschierlei* ${ }^{*}$,
 ${ }^{\text {a }}$ Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
 E-mail: michael.karnahl@oc.uni-stuttgart.de
 ${ }^{\mathrm{b}}$ Department Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany.
 E-mail: s.tschierlei@tu-bs.de

[^1]: 1 Gottlieb, H. E.; Kotlyar, V.; Nudelmann, A., NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities J. Org. Chem. 1997, 62, 7512-7515
 2 Bruker, APEX2 and SAINT. Bruker AXs Inc., Madison, Wisconsin, USA, 2008.
 G. M. Sheldrick, Acta Crystallogr. C, 2015, 71, 3-8.

[^2]: 4 a) F. Neese, WIREs Comput. Mol. Sci., 2017, 8. b) F. Neese, Interdiscip. Rev. Comput. Mol. Sci., 2012, 2, 73.
 5 a) K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, Chem. Phys. Lett., 1995, 242, 652-660. b) F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057-1065.
 6 F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
 V. Barone, M. Cossi, J. Phys. Chem. A, 1998, 102, 1995.

 8 G. Knizia, J. Chem. Theory Comput., 2013, 9, 4834-4883.

[^3]: 9 L. A. Wilfred and L. L. C. Christina, Purification of Laboratory Chemicals (Sixth Edition), Butterworth-Heinemann, Oxford, 2009.
 10 D. F. Shiver and M. A. Drezdzon, The Manipulation of Air-Sensitive Compounds (Second Edition), John Wiley \& Sons. Inc, 1986.
 11 Kinzel, Zhang and Buchwald, J. Am. Chem. Soc., 2010, 132, 14073-14075

[^4]: ${ }^{12}$ Afsar et al., Chem. Commun., 2013, 49, 8534-8536

