Supplementary information

Table S1 lists the main review articles of recent years and their subsidiary information (the year up to which literature is covered, topic reviewed and refs), illustrating the complementary work and necessity of this review.

Number	Key review articles	Subject reviewed	Article	Year up	Necessary supplement to our
Number			information	literature cove	paper
		The research progress of three		Majority of the	The detailed data of NO
1		catalysts for catalytic decomposition		literatures	emissions in China has been
		of NO are reviewed, including Cu-	Applied Catalysis A: General (2012)	involved are	supplemented, the comparison
	Advances in direct	ZSM-5, perovskite-type and rare		concentrated	of various de-NO _x methods has
	NOx decomposition	earth oxides, with a few summaries		before 2000,	been added, the research
	catalysts	on the mechanism, and the tolerance		and the	progress of other three types of
		of the catalyst in the coexistence of		minority are	catalysts for NO decomposition
		reactant gases O2 and CO2 is		concentrated	has been added, which include
		concerned.		in 2000-2010.	precious metals, hydrotalcite,
2	A review on the	The research progress of three	Catalysis Science	Majority of the	and heteropoly acids, and both
	catalytic	catalysts for catalytic decomposition	& Technology	literatures	experiments and mechanism

Table S1. Summary of existing key review articles and supplementary work of this review

decomposition of NO	of NO are reviewed, including metal			
to N_2 and O_2 : catalysts	oxide catalysts, supported metal			
and processes	oxide catalysts and Cu-ZSM-5, and			
	the tolerance performance of them in			
	coexisting reaction gases (including			
	O ₂ , H ₂ O, and CO ₂) are compared.			
	The research progress on the			
Recent Advances on	decomposition of N ₂ O with non- noble metal oxide catalysts since 2000 is reviewed. Including: pure oxide, hexaaluminate, hydrotalcite,			
Nitrous Oxide (N ₂ O)				
Decomposition over				
NonNoble-Metal				
Oxide Catalysts:	spinel, perovskite, etc. The reaction			
Catalytic Performance,	mechanism, relationship between			
Mechanistic	structure and activity, the role of			
Considerations, and	various inhibitors (such as O ₂ , NO,			
Surface Chemistry	H_2O) and the strategies for adjusting			
Aspects	the local surface structure of MOs			

(2018)	involved are	research on NO decomposition		
	concentrated	by Cu-ZSM-5 has been		
	in 2000-2010.	summarized in detail.		

Majority of the literatures involved are concentrated in 2000-2014, and the minority are concentrated before 2000.

Some papers reported that N₂O is an intermediate product in the decomposition of NO by catalysts such as Cu-ZSM-5, and some catalysts that are active in the decomposition of N₂O are also effective for the decomposition of NO. The summary of this paper also benefits the research on N₂O decomposition.

3

are reviewed.

	The research progress on the	
	conversion of nitrogen-containing	
Selective	exhaust gas (HCN, CH ₃ CN,	
Transformation of	C ₂ H ₃ CN, N ₂ O, NO) to N ₂ on zeolite	
Various Nitrogen-	catalysts is reviewed, and the	Chemical Reviews
Containing Exhaust	physical and chemical properties of	(2016)
Gases toward N2 over	zeolite are introduced. For the	
Zeolite Catalysts	removal of NO, two methods include	
	catalytic reduction and catalytic	
	decomposition are introduced.	
Local Environment	The local environment of the key	
and Nature of Cu	information copper species in the	
Active Sites in Zeolite-	copper-based zeolite catalyst in the	ACS Catalysis
Based Catalysts for the	mobile source NH ₃ -SCR technology	(2013)
Selective Catalytic	is reviewed. Including Y, ZSM-5,	

In addition to catalytic reduction and catalytic decomposition, other de-NO_x There are methods such as adsorption, totally 335 storage reduction and selective references and non-catalytic reduction are supplemented. The types of concentrated in 2000-2015. catalysts used for the catalytic decomposition of NO have been expanded, and Cu-ZSM-5 is further introduced. The local environment and The literature conversion mechanism of the involved copper species in Cu-ZSM-5 ranging from are the key and difficult points 1990 to 2012. to study the mechanism of its

4

5

	Reduction of NOx	SSZ-13. The experiment and			catalytic reduction and
		characterization methods used to			catalytic decomposition of NO,
		study metal-containing zeolite			and a review article studying
		catalysts are introduced.			this topic in the catalytic
					decomposition reaction has not
					appeared yet. The fourth part of
					our paper focuses on this
					content.
	Continue Orelida Desert	E-R and L-H mechanisms of low-			SCR technology is the most
	Cerium Oxide-Based Catalysts for Low- Temperature Selective Catalytic Reduction of NOx with NH ₃ : A Review	temperature NH ₃ -SCR method are		Majority of the	mature de-NO _x method for
		introduced, and the research progress	Energy & Fuels	literatures	pollutant control in industrial
6		of three Ce-based catalysts (single		involved are	boilers and diesel engines, and
		CeOx, multimetal oxides and	(2021)	concentrated	vanadium-based oxides and
		multimetal oxides with support) in		in 2010-2020.	CHA zeolite catalysts have also
		SCR reactions are reviewed.			been successfully applied in
7	Selective Catalytic	The NH ₃ -SCR reaction and anti-	Chemical Reviews	There are	commercial applications.
7	Reduction of NOx	poisoning mechanism are described,	(2019)	totally 589	However, considering other

with NH ₃ by Using	and the research progress of new		references and	sources of NO production and
Novel Catalysts: State	SCR catalysts are reviewed,		the majority	the drawbacks of SCR itself, it
of the Art and Future	including VOx, MnOx, CeO ₂ , Fe ₂ O ₃ ,		concentrated	is necessary to introduce and
Prospects	CuO, acidic compound catalysts		in 2000-2019,	develop other de-NO _x methods,
	containing vanadate, phosphate and		the minority	this work has not been
	sulfate catalysts, and ion exchanged		existed before	reviewed and reported yet.
	zeolite catalysts such as Fe, Cu, Mn,		2000.	
	etc.			
	The mechanism of the H ₂ -SCR			
Recent Progress and	reaction is reviewed, the influence		Majority of the	
Future Challenges in	and effect of the catalyst on the	yst on the Industrial &		
Selective Catalytic	reaction activity are reviewed, and	Engineering		
Reduction of NO by	the influence of exhaust gas	Chemistry		
H ₂ in the Presence of	components on the reaction is	Research (2019)		
O ₂	focused from a practical point of		in 2000-2019.	
	view.			
A Perspective on the	The research progress of commercial	ACS Catalysis	It's a huge time	The industry in this review

Selective Catalytic V ₂ O ₅ WO ₃ /TiO ₂ catalyst of NH ₃ -		(2018)	span,	only includes industrial boilers,	
Reduction (SCR) of	SCR technology in industrial boiler		literatures	and the catalyst is only for	
NO with NH ₃ by	is introduced. The perspective		before 2000	V_2O_5 WO ₃ /TiO ₂ . We hope to	
Supported V ₂ O ₅ -	includes molecular structures of		accounted for	cover as many de-NOx	
WO ₃ /TiO ₂ Catalysts titaniasupported vanadium and			a large	methods and catalyst types as	
	tungsten oxide species, surface		proportion.	possible to improve the	
	acidity, catalytic active sites, surface			scientificity and	
	reaction intermediates, reaction			comprehensiveness of our	
	mechanism and reaction kinetics.			review and provide a reference	
				for readers who are initially	
				studying in this field.	
	Four mostly representative catalytic	International Journal of Automotive		The de-NO _x conditions for	
Review of recent after-	treatment technologies for diesel			Literatures	diesel vehicles differs
treatment technologies	vehicles are reviewed, including		involved	significantly from that of	
for DE-NOx process in	DE-NOx process in LNT+SCR, Urea/NH ₃ -SCR, HC-		ranging from	industrial boilers, and catalytic	
1. 1 .		Technology	1000 / 2020	1	

(2020)

10

diesel engines

the progress of the mechanism and

SCR, and CO/H₂-SCR. The focus is

1990 to 2020.

for pe to)x bes as he our erence ially ۱. for S of talytic decomposition method is worth considering in the field of

the challenges it faces, and the activity, hydrothermal stability and anti-poisoning performance are also summarized.

Catalytic NOx The research progress and ideas of Abatement Systems for Mobile Sources: From Three-Way to Lean Burn After-Treatment Technologies

11

three-way, SCR and NSR de-NO_x methods are reviewed, and the impact on SCR when using biodiesel and synthetic Gas-to liquid as fuel are also summarized.

the majority **Chemical Reviews** concentrated (2011)in 2000-2010,

There are

totally 542

references and

the minority

existed before

2000.

diesel vehicle de-NO_x. Zeolite catalysts are commonly used catalysts in SCR technology of diesel vehicle, and the state of copper species in the Cu-ZSM-5 catalyst is summarized which also conducive to clarifying the mechanism of Cu-ZSM-5 in the SCR reaction.

SOx/NOx Removal from Flue Gas Streams by Solid Adsorbents: A Review of Current Challenges and Future Directions

The removing of SOx/NOx in flue gas by adsorption is reviewed, and the characteristics of solid adsorbent materials are discussed, as well as their applications in traditional and emerging acid gas removal technologies. Majority of the literatures

involved are

Energy&Fuels (2015) concentrated in 2000-2014,

and the minority are concentrated

before 2000.

The adsorption method is only one of many denitrification methods, and since the application background of this article review is power station, the introduction of liquid absorption method is not carried out. We reviewed the research progress of adsorption method including solid and liquid comprehensively, and introduced new developments in recent years, such as adsorption method and technology combining catalytic reduction and catalytic oxidation.