Supporting Information

# Co<sub>3</sub>O<sub>4</sub>/Nitrogen-Doped Graphitic Carbon/Fe<sub>3</sub>O<sub>4</sub> Nanocomposites as Reusable Catalysts for Hydrogenation of Quinoline, Cinnamaldehyde, and Nitroarenes

*M.* Nasiruzzaman Shaikh<sup>1</sup>\*, Mahmoud M. Abdelnaby<sup>2</sup>, Abbas S. Hakeem<sup>1</sup>, Galal A. Nasser<sup>1</sup> and Zain H. Yamani<sup>1</sup>

<sup>1</sup>Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia

<sup>2</sup>King Abdulaziz City for Science and Technology – Technology Innovation Center on Carbon Capture and Sequestration (KACST-TIC on CCS), KFUPM, Dhahran, 31261, Saudi Arabia

## Corresponding Author

M. Nasiruzzaman Shaikh, email: mnshaikh@kfupm.edu.sa

# Table of Contents

| Catalyst Characterization Techniques                                                                                                                                          | S3-S5       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Effect of solvents and pressure on the conversion and selectivity of quinoline                                                                                                | <b>S</b> 6  |
| hydrogenation at 40 bar H <sub>2</sub> pressure                                                                                                                               |             |
| Raman spectra for the re-used Co <sub>3</sub> O <sub>4</sub> /N-Gr/Fe <sub>3</sub> O <sub>4</sub> -800-1and its Raman shifts.                                                 | <b>S</b> 6  |
| XRD of ZIF-67                                                                                                                                                                 | <b>S</b> 7  |
| FTIR data of prepared catalyst and fresh Fe <sub>3</sub> O <sub>4</sub> .                                                                                                     | <b>S</b> 7  |
| ICP-OES data for Co <sub>3</sub> O <sub>4</sub> /N-Gr/Fe <sub>3</sub> O <sub>4</sub> -700-0.4, Co <sub>3</sub> O <sub>4</sub> /N-Gr/Fe <sub>3</sub> O <sub>4</sub> -800-1 and | <b>S</b> 8  |
| Co <sub>3</sub> O <sub>4</sub> /N-Gr/Fe <sub>3</sub> O <sub>4</sub> -800-1.3 catalysts                                                                                        |             |
| EDX of Co <sub>3</sub> O <sub>4</sub> /N-Gr/Fe <sub>3</sub> O <sub>4</sub> -800-1                                                                                             | <b>S</b> 8  |
| XPS survey of the Co <sub>3</sub> O <sub>4</sub> /N-Gr/Fe <sub>3</sub> O <sub>4</sub> -800-1catalyst                                                                          | <b>S</b> 9  |
| Possible reaction pathways for hydrogenation of cinnamaldehyde                                                                                                                | <b>S</b> 9  |
| Reusability of the catalyst                                                                                                                                                   | <b>S</b> 10 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectra                                                                                                                                | S11-S14     |
| GC-MS Spectra                                                                                                                                                                 | S15-S16     |

#### **Catalyst Characterization Techniques**

*X-ray Diffraction (XRD).* X-ray diffraction patterns were recorded on a Rigaku model Ultima-IV diffractometer employing Cu-K $\alpha$  radiation ( $\lambda = 1.5406$  Å) at 40 kV and 25 mA over a 2 $\theta$  range between 20 and 80°.

*Surface Area.* The total accessible area (S<sub>BET</sub>) was determined by N<sub>2</sub> physiosorption using ASAP 2020 (Micromeritics, USA).

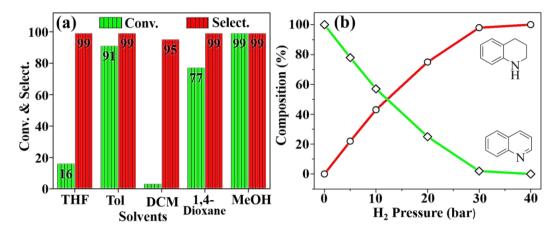
*Transmission Electron Microscopy (TEM).* TEM images were acquired at the Instituto de Nanociencia de Aragón (LMA-INA), University of Zaragoza, Spain, on a TEM (Titan, FEI) operated at 200 kV with 4k × 4k CCD camera (Ultra Scan 400SP, Gatan). High resolution transmission electron microscopic (HRTEM) images were obtained in an image corrected Titan (FEI) at a working voltage of 300 KV. X-ray Energy Dispersive Spectra (EDS) were obtained with an EDAX detector The TEM samples were prepared by dropping on a copper grid from an ethanolic suspension and drying at room temperature.

Scanning Transmission Electron Microscopy-High Angle Annular Dark Field (STEM-HAADF). STEM-HAADF images were obtained using a Cs-probe-corrected Titan (ThermoFisher Scientific, formerly FEI) at a working voltage of 300 KV, coupled with an HAADF detector (Fischione). *Scanning Electron Microscope (SEM).* Samples for SEM were prepared from ethanolic suspensions on single-sided alumina tape placed on alumina stubs. For the elemental analysis and mapping, the energy-dispersive X-ray spectra (EDS) were collected on a Lyra 3 (Tescan from the Chezch Republic) attachment to the SEM.

*Vibrating Sample Magnetometer (VSM)*. Magnetic susceptibilities were determined at room temperature using a vibrating sample magnetometer (VSM, model PMC Micromag 3900) equipped with a 1 tesla magnet.

*Autoclave*. Catalytic reactions were performed using Teflon-lined vessels in an autoclave from HiTech, USA (model M010SSG0010-E129A-00022-1D1101), fitted with a pressure gauge and a mechanical stirrer.

*Gas Chromatography-Mass Spectrometry (GC-MS).* Catalytic products were identified using a Shimadzu 2010 Plus (Japan) gas chromatograph coupled with a mass spectrometer. Disappearance of the reactants and sequential appearance of the products was recorded in real-time, identifying the species in terms of their molecular ion (M<sup>+</sup>) by comparing and matching them with the available Wiley library of the mass spectral database, in addition to the identification of mass fragmentation.


*Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES).* The amounts of Fe and Co content in the catalyst were determined using inductively coupled plasma optical emission spectrometry (ICP-OES; PlasmaQuant PO 9000 - Analytik Jena). The samples

were first digested in a mixture of dilute HNO<sub>3</sub> and dilute HCl. Calibration curves were prepared for Fe and Co using standard solutions (ICP Element Standard solutions, Merk).

*X-ray Photoelectron Spectroscopy (XPS).* The surface chemistry was determined using an *X-ray* photoelectron spectroscope (XPS) equipped with an Al-K $\alpha$  micro-focusing *X-ray* monochromator (ESCALAB 250Xi XPS Microprobe, Thermo Scientific, MA, USA). The chamber pressure was 2 × 10<sup>-9</sup> torr. Each XPS spectrum was corrected for steady-state charging by aligning C1s to 284.60 eV. Typical XPS survey spectra of the fabricated films and O1s, Co2p<sub>3/2</sub>, and N1s core-level spectra for the nanocatalyst.

*Raman Spectroscopy*. The Raman spectra were recorded using a Thermo Scientific DXR Raman spectroscope using DXR 455 nm filter.

*Nuclear Magnetic Resonance Spectroscopy*. The <sup>1</sup>H and <sup>13</sup>C solution NMR experiments were performed on a Bruker Advance 400 Spectrometer. <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts were given as  $\delta$  values with reference to tetramethylsilane (TMS) as an internal standard.



**Figure S1.** Effect of (a) solvents on the conversion and selectivity of quinoline hydrogenation at 40 bar H<sub>2</sub> pressure; (b) pressure on the formation of py-THQ at 120 °C in 15 h using  $Co_3O_4/N$ -Gr/Fe<sub>3</sub>O<sub>4</sub>-800-1 as the catalyst in methanol.

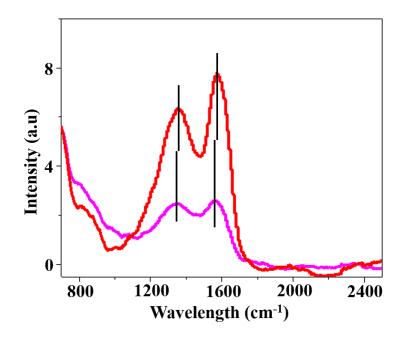



Figure S2. Raman spectra for the re-used Co<sub>3</sub>O<sub>4</sub>/N-Gr/Fe<sub>3</sub>O<sub>4</sub>-800-1 and its Raman shifts.

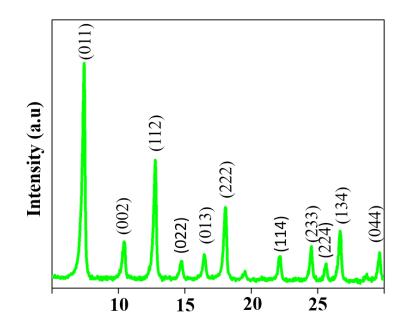



Figure S3. XRD of ZIF-67.

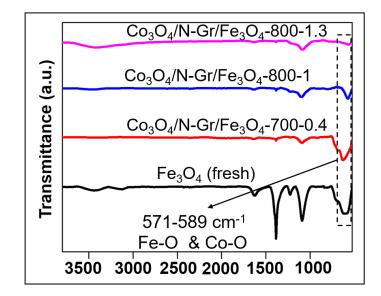



Figure S4. FTIR data of prepared catalysts and fresh Fe<sub>3</sub>O<sub>4</sub>.

Table S1. ICP-OES data for  $Co_3O_4/N$ -Gr/Fe<sub>3</sub>O<sub>4</sub>-700-0.4,  $Co_3O_4/N$ -Gr/Fe<sub>3</sub>O<sub>4</sub>-800-1 and  $Co_3O_4/N$ -Gr/Fe<sub>3</sub>O<sub>4</sub>-800-1.3 catalysts

| Catalyst                                                                     | Iron | Cobalt | %Cobalt |
|------------------------------------------------------------------------------|------|--------|---------|
| Co <sub>3</sub> O <sub>4</sub> /N-Gr/Fe <sub>3</sub> O <sub>4</sub> -700-0.4 | 3737 | 388.2  | 9.41    |
| Co <sub>3</sub> O <sub>4</sub> /N-Gr/Fe <sub>3</sub> O <sub>4</sub> -800-1   | 3585 | 924.7  | 20.49   |
| Co <sub>3</sub> O <sub>4</sub> /N-Gr/Fe <sub>3</sub> O <sub>4</sub> -800-1.3 | 1930 | 794.7  | 29.20   |

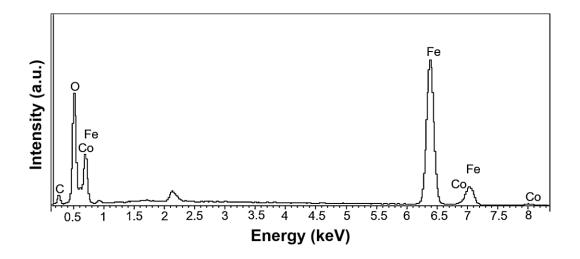



Figure S5. SEM-EDX of Co<sub>3</sub>O<sub>4</sub>/N-Gr/Fe<sub>3</sub>O<sub>4</sub>-800-1.

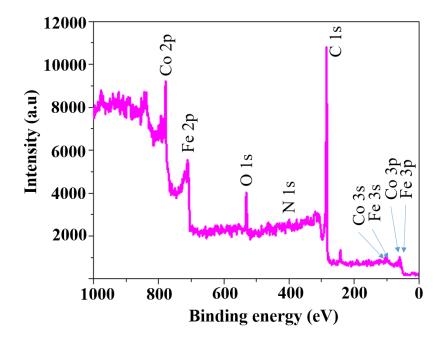
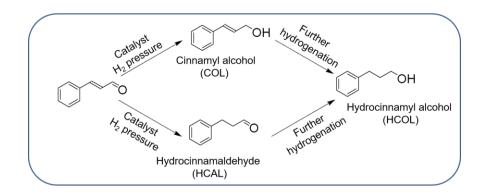
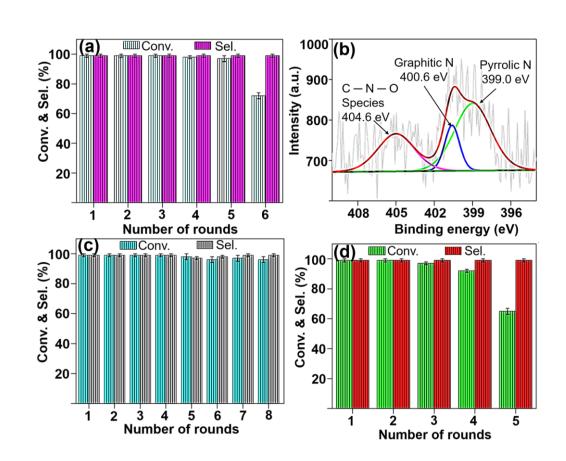





Figure S6. XPS survey of the Co<sub>3</sub>O<sub>4</sub>/N-Gr/Fe<sub>3</sub>O<sub>4</sub>-800-1 nanocomposite as catalyst.

Scheme S1. Possible reaction pathways for hydrogenation of cinnamaldehyde





**Figure S7.** Reusability of the catalyst,  $Co_3O_4/N$ -Gr/Fe<sub>3</sub>O<sub>4</sub>-800-1 nanocomposite, for the hydrogenation of (a) quinolone (b) N1s XPS of the reused catalyst (c) cinnamaldehyde and (d) nitrobenzene.

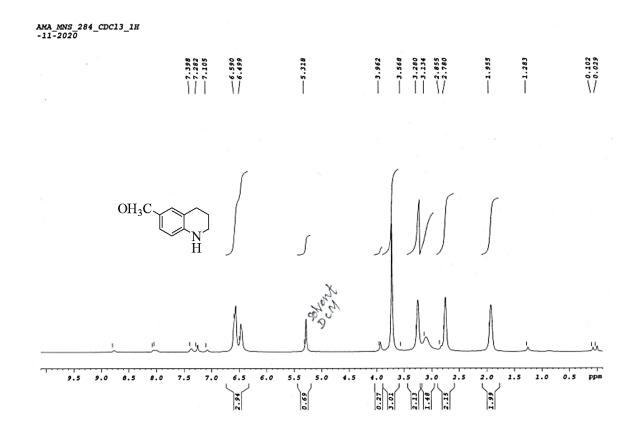
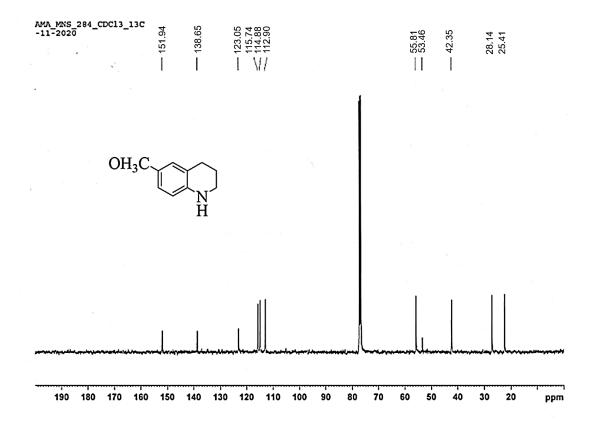
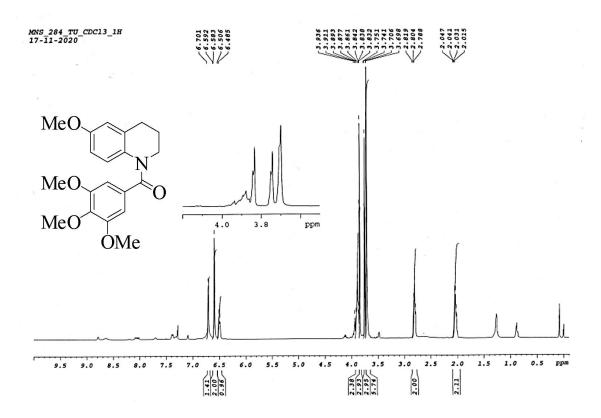
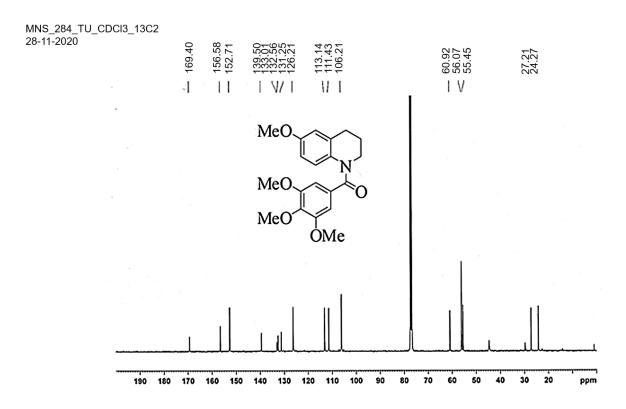
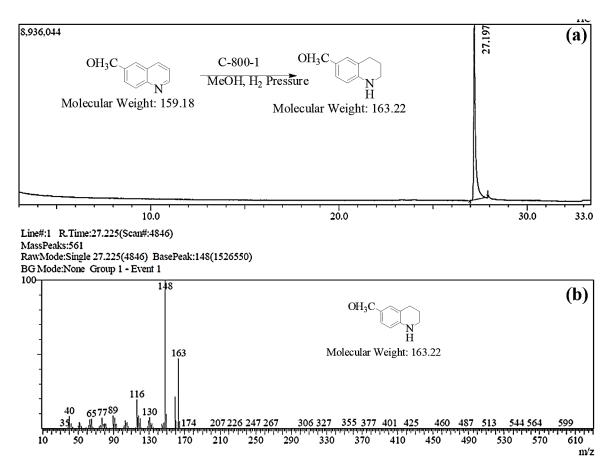
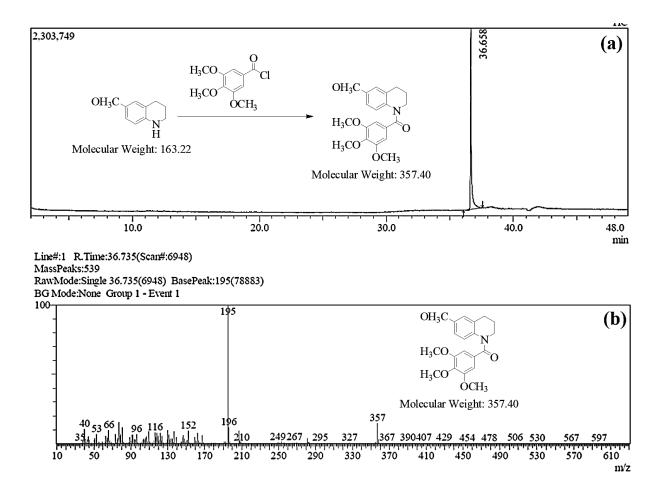



Figure S8. <sup>1</sup>H NMR of 6-methoxy-1,2,3,4-tetrahydroquinoline in CDCl<sub>3</sub> as solvent.



Figure S9. <sup>13</sup>C NMR of 6-methoxy-1,2,3,4-tetrahydroquinoline in CDCl<sub>3</sub> as solvent.




**Figure S10.** <sup>1</sup>H NMR of tubulin polymerization inhibitor in CDCl<sub>3</sub> as solvent.



**Figure S11.** <sup>13</sup>C NMR of tubulin polymerization inhibitor in CDCl<sub>3</sub> as solvent.



**Figure S12.** Hydrogenation of 6-methoxy-1,2,3,4-quinoline in methanol (a) GC and (b) MS spectra.



**Figure S13.** Synthesis of Tubulin polymerization inhibitor from 6-methoxy-1,2,3,4-terahydroquinoline (a) GC and (b) MS spectra.

## (END)