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Experimental

Materials. SPI (95% protein) was obtained from Yuwang Ecological Food Industry Co., 

Ltd. (Shandong, China). Hydrogen peroxide (30 wt%), glycerol (AR) and sodium 

hydroxide (NaOH, AR) were supplied by Nanjing Chemical Reagents Co., Ltd. (Nanjing, 

China). Trimethylolpropane triglycidyl ether (TTE, Epoxy value/100 g : 0.70), boron nitride 

(99.9% metals basis, 1-2 μm), and other chemicals were supplied by Aladdin Biochem 

Co., Ltd. (Shanghai, China). All chemicals were used without further purification. 

Deionized water was used for all experiments.

Preparation of BN-OH nanosheets. BN-OH nanosheets were prepared using a 

previously reported method.1 The BN nanosheets were dispersed in deionized water (0.5 

wt%) and stirred thoroughly for 24 h, followed by an ultrasonic treatment for 0.5 h. Finally, 

the suspension was filtered to remove the unabsorbed BN.

Preparation of SPI-based nanocomposite films. a) Preparation of SPI-GL. A mixture 

of SPI (5 g) and glycerol (GL, 2.5 g) was added to 95 mL of distilled water, and the 

resulting solution was stirred vigorously for 10 min at room temperature. The pH was then 
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adjusted to 10 with a NaOH solution (10% (w/w)) and the mixture was heated at 85 °C for 

30 min (with magnetic stirring). After 30 min of sonification and degassing, the resulting 

solution was poured into Teflon-coated plates and dried in a vacuum oven at 45 ℃ for 48 

h; b) Preparation of SPI-BN. SPI (5 g) was added to the above BN-OH solution (100 g) 

under vigorous mechanical stirring for 1 h. Subsequently, trimethylolpropane triglycidyl 

ether (TTE, 1 g) were added into the system (pH 9.0; water bath at 85 ℃) for 30 min until 

a homogeneous mixture solution was attained. After 30 min of sonification and degassing, 

the resulting solution was poured into Teflon-coated plates and dried in a vacuum oven 

at 45 ℃ for 48 h. 

The formulated SPI-GL and SPI-BN above were peeled off and stored in a desiccator 

(25 ℃ and 50% relative humidity) for subsequent testing. The synthesis process and 

enhancement mechanism for the SPI-BN is shown in Figure 1.

Characterization of SPI-BN and SPI-GL. The bonding characteristics in SPI, BN, and 

SPI-BN were examined using Fourier transform infrared spectroscopy (FTIR, Nicolet iS50 

Thermo Fisher Scientific Co., Ltd, USA). FTIR spectra were recorded from 500 to 4000 
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cm-1 with a resolution of 4 cm-1 at ambient temperature for 32 scans. Rheological test was 

carried out on an RST-CPS rheometer using a 50 mm parallel‐plate at room temperature. 

The elemental compositions and chemical structures of SPI-BN nanocomposite film were 

examined by X-ray photoelectron spectroscopy (XPS, AXIS UltraDLD, Britain) and X-ray 

diffraction patterns (XRD, Ultima IV analyzer, Rigaku, Japan). Thermogravimetric 

analysis (TGA) of the SPI-based nanocomposite film (around 5 mg) were performed on 

a TGA55 instrument (Waters, USA) in the temperature range of 25-800 °C at a heating 

rate of 10 °C min-1 under N2 with a flow rate of 100 mL min-1. The UV-vis absorption 

spectra were obtained for the 200-800 nm range using a UV lamp (PE Lambda950). The 

samples were cut into rectangles (5 cm × 2 cm). Morphology and structure of films were 

observed with scanning electron microscope (SEM, Quanta 200, USA). The thermal 

conductivity (K) was calculated by K=α ⋅ρ ⋅Cp, where α, ρ, and Cp were the thermal 

diffusivity, measured density and specific heat capacity of the sample, respectively, which 

could be measured by laser flash technique (LFA 467, Netzsch). The electromagnetic 

interference shielding property of the SPI-BN nanocomposite film in the frequency range 
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of 8.2-12.4 GHz (X band) was investigated by a vector network analyzer (E5071C) using 

a waveguide method. The SE was calculated by the following equations.

SET= SER+SEA+SEM                                                           

SER= - 10lg(1-R)= - 10lg(1-(S11)2)                             

SEA= - 10lg(T/1-R)= - 10lg((S21)2/1-(S11)2)                      

The SET is the sum of reflection (SER), absorption (SEA), and multiple reflections (SEM).

Mechanical testing of SPI-BN and SPI-GL. The mechanical performance of the 

composites was evaluated using an electron universal testing machine (AGS-X, Japan). 

Film samples with dimensions of 10 × 80 mm (width × length) were tested at a tensile 

speed of 20 mm/min. All tests were conducted in quintuplicates. The dynamic mechanical 

behavior of the composites was analyzed on a dynamic thermomechanical analyzer 

(DMA, Q850, TA Instruments, USA) in tensile mode at a frequency of 1 Hz. The 

composites were tested from 20 to 180 °C at a heating rate of 5 °C min-1 under an air 

atmosphere.
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Characterization of the SPI-BN and SPI-GL

Figure S1. (a) FTIR spectra of BN and BN-OH. (b) Functionalization of BN to BN-OH.

Figure S2. (a) Total soluble matter of SPI-GL and SPI-BN (TSM1: in water at 30 ℃ for 1 

h; TSM2: in water at 63 ℃ for 3 h; TSM3: in water at 100 ℃ for 3 h). (b) Water 
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absorption (WA) at 95% relative humidity (30 ℃) and moisture content (MC) of SPI-GL 

and SPI-BN.

.

Figure S3. TG and DTG curves of SPI-GL and SPI-BN.
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Figure S4. (a) Photo of a transparency SPI-BN. (b and c) Folded into a paper airplane shape. 

(d) The folded film recovered to its original shape without observable damage. Permission to use 

the logo has been granted by college of Materials Science and Engineering, Nanjing Forestry 

University (Nanjing, Jiangsu, China).
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Figure S5. Comparison of SET, SER, and SEA of the SPI-BN in the transverse direction in the 

X band.

Figure S6. Appearance of SPI-BN under low temperature (-20 oC) for 7 days.
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Comparison of the SPI-BN with different materials in other studies  

Table S1. Mechanical properties of SPI-GL and SPI-BN

Samples strain at 
break (%)

tensile 
strength 
(MPa)

Young’s 
modulus 
(MPa)

tensile 
toughness 
(MJ/m3)

impact 
strength
(KJ/m2)

SPI-GL 100.5 2.64 82.1 2.42 -
SPI-BN 13.3 36.4 529.2 2.58 5

Table S2. Tensile strength of SPI-GL, SPI-BN and other nanocomposite materials.

Composites strain at break
(%)

tensile strength 
(MPa) Refs

TA@CNF 11.6 16 2
Rapeseed oil 4.2 1.9 3
Agar 38.89 13.62 4
Chitosan 30.8 5.0 5
GO/HPPy 85.6 12.3 6
HPPy@CNF 127.6 13.4 7
ZnO nanorod 12.64 14.74 8
SPI/MMT 5 8.5 9
SPI-CNPC 61.89 13.19 10
FBN 3.1 7 11
FBN/PVA 0.8 21.2 11
ASP/CMC 20 5.97 12
SPI-GL 100.5 2.64 This work
SPI-BN 13.3 36.4 This work
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Table S3. Comparison of the in-plane thermal conductivity (TC) of SPI-BN with different 

composites materials.

Filler Matrix
Filler loading

(wt %)
TC

(W⋅m-1⋅K-1) Refs

BN/Diamond Polyimide 40 0.98 13
BN/Al2O3 Epoxy 50 0.808 14
BN Polyimide 30 1.2 15
BNNS PI 5.1 1.47 16
RGO/BNNS PI 1 1.54 16
MBN PCL 5 0.55 17
3D graphene Polyimide 0.35 1.7 18
3D graphene PDMS 0.7 0.56 19
3D graphene PMMA 2.5 0.7 20
3D graphene Epoxy 0.92 2.13 21
BN SPI 0.5 2.40 This work
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Table S4. The specific thermal conductivity (STC, = TC/Filler loading (%)) of SPI-BN with 

different composites material.

Filler Matrix Filler loading 
(wt %)

STC
(W⋅m-1⋅K-1) Refs

BN/Diamond Polyimide 40 2.5 13
BN Polyimide 60 11.7 22
BN/Al2O3 Epoxy 50 1.6 14
BN Polyimide 30 4.0 15
BN PVA 30 14.7 23
BN PMMA 24 13.2 24
BN Epoxy 40 14.7 25
Graphene/BN Epoxy 44 25.0 26
3D BN Epoxy 24.4 21.3 27
BNNS PI 5.1 28.8 16
RGO/BNNS PI 1 154.0 16
MBN PCL 5 11.0 17
BN PDMS 16 69.1 28
ANF/BNNS ANF 30 155.7 29
3D graphene PDMS 0.7 80.0 19
3D graphene PMMA 2.5 28.0 20
3D graphene Epoxy 0.92 231.5 21
SiC/graphene Polyimide 11 23.9 13
BN SPI 0.5 480.0 This work
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Table S5. Comparison of thermal conductivity (TC) of SPI-BN with typical polymers from 

previous studies.30-34

Typical polymers TC (W⋅m-1⋅K-1)
Polystyrene (PS) 0.12 ± 0.005
Polypropylene (PP) 0.13 ± 0.03
Polyester 0.135 ± 0.005
Polyethylene terephthalate (PET) 0.14 ± 0.005
Acrylic (PMMA) 0.16 ± 0.08
Polycarbonate (PC) 0.21 ± 0.015
Teflon (PTFE) 0.21 ± 0.07
Polyvinyl Chloride (PVC) 0.22 ± 0.005
Nylons (PA) 0.23 ± 0.01
Polyetherether ketone (PEEK) 0.25 ± 0.01
Epoxies 0.25 ± 0.01
Acrylonitrile butadiene styrene (ABS) 0.26 ± 0.08
Acetal (POM) 0.28 ± 0.06
Polyurethane thermoplastics (TPU) 0.29 ± 0.01
Phenolics 0.32 ± 0.18
Polyethylene (PE) 0.42 ± 0.02
SPI-BN (This work) 2.4 ± 0.1
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Table S6. Comparison of thermal conductivity (TC) of SPI-BN with different mobile phone 

shell materials.32-34

Materials TC (W⋅m-1⋅K-1)
Flannelette 0.05 ± 0.01
Wood 0.12 ± 0.03
Polyurethane thermoplastics (TPU) 0.13 ± 0.01
Acrylic (PMMA) 0.18 ± 0.01
Leather 0.18 ± 0.015
Polycarbonate (PC) 0.2 ± 0.012
Polypropylene (PP) 0.23 ± 0.01
Silica gel 0.5 ± 0.008
Glass 1 ± 0.02
SPI-BN (This work) 2.4 ± 0.1

Table S7. Comparison of mechanical of SPI-BN with different mobile phone shell materials.32-34

Materials Young’s modulus 
(GPa)

tensile strength 
(MPa)

Leather 0.1-0.5 20-26
Wood, typical (transverse) 0.5-3 4-9
Cork 0.013-0.05 0.5-2.5
Acrylonitrile butadiene styrene (ABS) 1.1-2.9 27.6-55.2
Polyethylene (PE) 0.621-0.896 20.7-44.8
Polypropylene (PP) 0.896-1.55 27.6-41.4
Polystyrene (PS) 2.28-3.34 35.9-56.5
Polyurethane thermoplastics (TPU) 1.31-2.07 31-62
Teflon (PTFE) 0.4-0.552 20-30
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Rigid polymer foam (HD) 0.2-0.48 1.2-12.4
Borosilicate glass 61-64 22-32
Soda-lime glass 68-72 31-35
SPI-BN (This work) 0.53 36.4
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