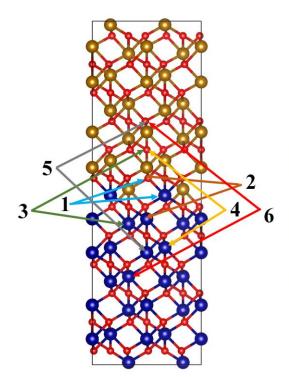
## The Synergistic Effect of Hydrogen and Strain on Electronic Properties of p-Cr<sub>2</sub>O<sub>3</sub>/n-Fe<sub>2</sub>O<sub>3</sub> Interface

Zhishan Mi,<sup>a,b</sup> Li Chen,<sup>\*a,c</sup> Hongmei Liu,<sup>c</sup> Changmin Shi,<sup>c</sup> Dongchao Wang,<sup>c</sup> Xiaolong Li,<sup>c</sup> Kefu Gao<sup>b,c</sup> and Lijie Qiao,<sup>\*\*b</sup>

<sup>a</sup> School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology, Jinan, 250353, PR China


<sup>b</sup> Beijing Advanced Innovation Center for Materials Genome Engineering, Corrosion and Protection Center, University of Science and Technology Beijing, Beijing, 100083, PR China

<sup>c</sup> Institute of Condensed Matter Physics, Linyi University, Shandong, 276000, PR China

## **Corresponding Authors**

\*E-mail: chenli@lyu.edu.cn (L.C.).

\*E-mail: lqiao@ustb.edu.cn (L.Q.).



| Position | Total energy (eV) |  |
|----------|-------------------|--|
| 1        | -1868.3168        |  |
| 2        | -1867.7502        |  |
| 3        | -1867.3200        |  |
| 4        | -1867.0925        |  |
| 5        | -1867.0567        |  |
| 6        | -1866.9508        |  |

Figure S1. The Cr vacancy and O vacancy for interface structure in different position.

When the Cr vacancy and O vacancy are at the interface, the  $p-Cr_2O_3/n-Fe_2O_3$  interface structure is the most stable with the lowest total energy.

| 2% tensile strain  |          | 2% compressive strain |  |
|--------------------|----------|-----------------------|--|
|                    | H-O bond | H charge tranfer      |  |
| tensile strain     | 1.01 Å   | 0.70                  |  |
| compressive strain | 1.03 Å   | 0.68                  |  |

Figure S2. The structural analysis and H charge transfer under 2% tensile and compressive strain.