Supporting Information

Enantioselective Conjugate Addition of Catalytically Generated Zinc Homoenolate

Yoshiya Sekiguchi and Naohiko Yoshikai*
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University

Singapore 637371, Singapore

Contents

Material and Methods S2
Early-Stage Optimization of Reaction Conditions S8
Zn-Catalyzed Enantioselective Ring-Opening Conjugate Addition of Cyclopropanols S10
Product Transformations S48
Mechanistic Experiments S52
References S59
NMR Spectra S61

Material and Methods

General. All reactions dealing with air- or moisture-sensitive compound were performed by standard Schlenk techniques in oven-dried reaction vessels under nitrogen atmosphere or in the argon-filled glove box. Analytical thin-layer chromatography (TLC) was performed on Merck 60 F254 silica gel plates. Flash chromatography was performed using 40-63 $\mu \mathrm{m}$ silica gel (Si 60, Merck). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ nuclear magnetic resonance (NMR) spectra were recorded on Bruker AV$400(400 \mathrm{MHz})$ NMR spectrometers. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are reported in parts per million (ppm) downfield from an internal standard, tetramethylsilane (0.00 ppm) and $\mathrm{CHCl}_{3}(77.0 \mathrm{ppm})$, respectively. ${ }^{19} \mathrm{~F}$ NMR spectra are referenced to external standard $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H},-76.6 \mathrm{ppm}\right)$. Gas chromatographic (GC) analysis was performed on a Shimadzu GC-2010 system equipped with an FID detector and a capillary column, DB-5 (Agilent J\&W, 0.25 mm i.d. x $30 \mathrm{~m}, 0.25 \mu \mathrm{~m}$ film thickness). Chiral HPLC analysis was performed on a Shimadzu LC-20AD instrument using Daicel Chiralpak columns at room temperature $\left(25-29^{\circ} \mathrm{C}\right)$. Optical rotations were recorded on an Anton Paar MCP 150 machine. High-resolution mass spectra (HRMS) were obtained with a Q-Tof Premier LC HR mass spectrometer.

Materials. Unless otherwise noted, commercial reagents were purchased from Aldrich, Alfa Aesar, and other commercial suppliers and were used as received. $\mathrm{Et}_{2} \mathrm{Zn}$ was purchased from TCI as a hexane solution $(1 \mathrm{M})$ and was used as received. Molecular sieves $4 \AA$ was purchased from Aldrich (powder, activated, -325 mesh particle size) and activated under vacuum ($<0.06 \mathrm{mbar}$) at $265^{\circ} \mathrm{C}$ for more than 10 h , every time before the reaction. DMPU was distilled over CaH_{2} and stored under Ar. Anhydrous DMSO (Aldrich) were used without further purification and stored under Ar. Figure S 1 summarizes the substrates and the ligands used in this study. The substrates $\mathbf{1 a},{ }^{1} \mathbf{1 b},{ }^{1}$ $\mathbf{1 c},{ }^{2} \mathbf{1 d},{ }^{1} \mathbf{1 e},{ }^{3} \mathbf{1 f},{ }^{1} \mathbf{1 g},{ }^{3} \mathbf{1 h},{ }^{3} \mathbf{1 i},{ }^{4} \mathbf{1} \mathbf{j},{ }^{5} \mathbf{1 k},{ }^{6} \mathbf{1 l},{ }^{1} \mathbf{1 m},{ }^{7} \mathbf{2 b},{ }^{8} \mathbf{2 c},{ }^{8} \mathbf{2 d},{ }^{9} \mathbf{2},{ }^{8} \mathbf{2 f},{ }^{10} \mathbf{2 g},{ }^{11} \mathbf{2 h},{ }^{\mathbf{1 2}} \mathbf{2} \mathbf{2},{ }^{13} \mathbf{2} \mathbf{j},{ }^{14} \mathbf{2 k},{ }^{15}$ $\mathbf{2 m},{ }^{16} \mathbf{2 n},{ }^{17} \mathbf{2 0},{ }^{18}$ and $\mathbf{2 q}{ }^{19}$ were prepared according to the literature procedure. The chiral ligands $\mathbf{L 5}-\mathbf{L} 7^{20}$ were prepared from $(1 S, 2 R)-(+)$-norephedrine. $(1 R, 2 S)$-L6 was purchased from Aldrich and used only for preparing racemic and scalemic $\mathbf{L 6}$ for nonlinear effect study. Additional chiral ligands L8, ${ }^{21} \mathbf{L 9},{ }^{22} \mathbf{L 1 0},{ }^{21} \mathbf{L} 11,{ }^{23} \mathbf{L 1 2},{ }^{24} \mathbf{L 1 3},{ }^{25}, \mathbf{L 1 4},{ }^{21} \mathbf{L 1 5},{ }^{21} \mathbf{L 1 6},{ }^{26} \mathbf{L} 17,{ }^{27} \mathbf{L 1 8},{ }^{28}$ and $\mathbf{L 1 9}{ }^{27}$ were prepared according to the literature procedure and used during the optimization study.

2a

2b

2c

2i

2h
2j

L8

L9

L11

L13

L15

L16

L17

L18

L19

Figure S1. Substrates and ligands used in this study.

(S)-2-(Dimethylamino)-3-methyl-1,1-diphenylbutan-1-ol (L2): ${ }^{29}$ Prepared according to the literature procedure. ${ }^{30}$ A $25-\mathrm{mL}$ round bottom flask equipped with a magnetic stir bar was charged with (S)-2-amino-3-methyl-1,1-diphenylbutan-1-ol ${ }^{31}$ ($255 \mathrm{mg}, 1.00 \mathrm{mmol}$), paraformaldehyde ($300 \mathrm{mg}, 10.0 \mathrm{mmol}$), methanol (6 mL), and acetic acid $(0.1 \mathrm{~mL})$, followed by the addition of $\mathrm{NaBH}_{3} \mathrm{CN}$ ($189 \mathrm{mg}, 3.00 \mathrm{mmol}$). The resultant black suspension was stirred at $23^{\circ} \mathrm{C}$ for 48 h and then filtered through a pad of Celite. The organic solution was concentrated under reduced pressure, and to the residue were added $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. After the aqueous phase was acidified (ca. pH 2) by adding 1 M hydrochloric acid, the layers were separated. The aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$, and then 1 M NaOH aq. was added until brown precipitates formed. The aqueous solution was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The organic solution was concentrated under reduced pressure, and the residue was purified by flash chromatography to afford the product as a pale yellow solid ($222 \mathrm{mg}, 78 \%$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-$ $7.64(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.10(\mathrm{brs}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J$ $=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 7 \mathrm{H}), 0.97(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.61(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.2,142.8,128.3$ 127.7, 127.7, 127.6, 126.9, 126.8, 80.1, 78.6, 43.2, 29.3, 23.4, 23.2; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$284.2014, found 284.2006; $[\alpha]^{25} \mathrm{D}=+129$ ($c=1.94$ in CHCl_{3}).

(S)-2-(Dimethylamino)-1,1-diphenylpropan-1-ol (L1): Prepared from (S)-2-amino-1,1-diphenylpropan-1-ol ${ }^{31}$ (227 mg 1.0 mmol), according to the synthetic procedure for $\mathbf{L 2}$. Pale yellow oil ($250 \mathrm{mg}, 98 \%$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 4 \mathrm{H})$, 7.24-7.18 (m, 2H), 6.10 (brs, 1H), $3.52(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 6 \mathrm{H}), 1.09(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.5,144.6,127.9,127.9,127.2,126.9,126.4,78.0,65.7,42.9$, 9.2; HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$256.1701, found 256.1694; $[\alpha]^{25} \mathrm{D}=-40.9(c=$ 2.25 in $\left.\mathrm{CHCl}_{3}\right)$.

(S)-2-(Azetidin-1-yl)-1,1-diphenylpropan-1-ol (L3): Prepared according to the literature procedure. ${ }^{20}$ A $25-\mathrm{mL}$ round bottom flask equipped with a magnetic stir bar was charged with (S) -2-amino-1,1-diphenylpropan-1-ol ${ }^{31}(1.00 \mathrm{~g}, 4.40 \mathrm{mmol}), \mathrm{NaHCO}_{3}(0.81 \mathrm{~g}, 9.68 \mathrm{mmol})$, and toluene (12 mL), followed by the addition of 1,3-dibromopropane ($0.98 \mathrm{~g}, 4.84 \mathrm{mmol}$). After 48 h of reflux, the mixture was filtered through a pad of Celite. The organic solution was concentrated under reduced pressure, and the residue was purified by flash chromatography to afford the product as a white solid ($859 \mathrm{mg}, 73 \%$); m.p. $63-65^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.69(\mathrm{~m}, 2 \mathrm{H})$, 7.54-7.52 (m, 2H), 7.26-7.22 (m, 4H), 7.13-7.09 (m, 2H), 4.81 (brs, 1H), $3.54(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.95(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.74$ (quint, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.82(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.1,145.8,127.9,127.7,126.3,126.0,125.7,125.3,77.1$, 67.5, 54.9, 17.6, 12.3; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$268.1701, found 268.1692; $[\alpha]^{25}{ }_{\mathrm{D}}=+12.5\left(c=1.69\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

(S)-1,1-Diphenyl-2-(pyrrolidin-1-yl)propan-1-ol (L4): Prepared from (S)-2-amino-1,1-diphenylpropan-1-ol ${ }^{31}$ (227 mg 1.0 mmol) and 1,4-dibromobutane ($237 \mathrm{mg}, 1.1 \mathrm{mmol}$), according to the synthetic procedure for $\mathbf{L 3}$. Pale yellow oil ($142 \mathrm{mg}, 50 \%$); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.57-7.55 (m, 2H), 7.48-7.46 (m, 2H), 7.29-7.24 (m, 4H), 7.20-7.15 (m, 2H), $3.74(\mathrm{q}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42-2.39(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 147.7,145.7,127.9,127.5,126.9,126.6,126.5,126.2,77.9,63.6,51.3,23.5,12.7$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$282.1858, found 282.1851; $[\alpha]^{25}{ }_{\mathrm{D}}=-51.2\left(c=1.64\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

(1S,2R)-2-(Azetidin-1-yl)-1-phenylpropan-1-ol (L5): Prepared from (1S, 2R)-(+)-norephedrine (1.89 g 12.5 mmol) and 1,3-dibromopropane ($2.78 \mathrm{~g}, 13.8 \mathrm{mmol}$), according to the literature procedure. ${ }^{20}$ Colorless oil ($1.57 \mathrm{~g}, 65 \%$); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.31(\mathrm{~m}, 4 \mathrm{H})$, 7.26$7.20(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{brs}, 1 \mathrm{H}), 3.31(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{q}, J=6.7 \mathrm{~Hz}$, 2 H), 2.40 (qd, $J=6.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.05 (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $0.63(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.3,128.0,126.8,125.8,70.9,68.5,53.4,16.8,8.9$; HRMS (ESI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$192.1388, found 192.1388; $[\alpha]^{25}{ }_{\mathrm{D}}=-32.9\left(c=2.07\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

(1S,2R)-1-Phenyl-2-(pyrrolidin-1-yl)propan-1-ol (L6): ${ }^{32}$ Prepared from (1S, 2R)-(+)norephedrine (2.27 g 15.0 mmol) and 1,4-dibromobutane ($3.56 \mathrm{~g}, 16.5 \mathrm{mmol}$) according to the literature procedure. ${ }^{20}$ Pale orange solid ($2.54 \mathrm{~g}, 82 \%$); m.p. $44-45{ }^{\circ} \mathrm{C}$, Lit $44-45{ }^{\circ} \mathrm{C}^{20} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (brs, $1 \mathrm{H}), 2.81-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{qd}, J=6.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 4 \mathrm{H}), 0.79$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.7,127.9,126.6,125.7,72.6,65.3,51.8$, 23.5, 12.0; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$206.1545, found 206.1549; [$\left.\alpha\right]^{25}{ }_{\mathrm{D}}=-12.5$ $\left(c=2.15\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. Lit $[\alpha]^{24} \mathrm{D}=-7.25\left(c=2.00\right.$ in $\left.\mathrm{CHCl}_{3}\right),{ }^{32}[\alpha]^{20} \mathrm{D}((\mathbf{1 R}, \mathbf{2 S})-\mathbf{L 6})=+15.2(c=$ 2.00 in CHCl_{3}). ${ }^{20}$

(1S,2R)-1-Phenyl-2-(piperidin-1-yl)propan-1-ol (L7): ${ }^{33}$ Prepared from (1S, 2R)-(+)norephedrine (756 mg 5.0 mmol) and 1,5-diiodopentane ($1.78 \mathrm{~g}, 5.5 \mathrm{mmol}$), according to the

[^0]literature procedure. ${ }^{20}$ White solid ($883 \mathrm{mg}, 81 \%$); m.p. $108-109{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{brs}, 1 \mathrm{H}), 2.69(\mathrm{qd}, J=6.9$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.3,127.8,126.6,126.0,72.2,64.6,51.7,26.6,24.6,10.2 ;$ HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$220.1701, found 220.1705; $[\alpha]^{25} \mathrm{D}=+0.471(c=2.55$ in CHCl_{3}).

Early-Stage Optimization of Reaction Conditions

During initial attempts to render the racemic reaction between $\mathbf{1 a}$ and $\mathbf{2 a}$ (eq 1 in the paper) enantioselective, the proline-derived amino alcohol $\mathbf{L 8}$ was found to induce modest enantioselectivity to afford, after 3 h at $80^{\circ} \mathrm{C}$, the cyclopentene product $\mathbf{4 a a}$ in 68% yield with 67:33 er (Table S1, entry 1). Upon screening of solvents (entries 2-6), we observed improvement of the enantioselectivity up to 77:23 er in solvents such as DMA, NMP, NEt_{3}, and DMPU, albeit with diminished yields ($10-40 \%$). The reaction in DMPU at a lower temperature $\left(60{ }^{\circ} \mathrm{C}\right)$ for a prolonged time (12 h) did not improve the yield and the enantioselectivity (entry 7). Efforts to improve the yield at this stage led us to find a $\mathrm{NEt}_{3} / \mathrm{DMPU}(6: 1)$ mixed solvent. Though somewhat peculiar, the reaction in this mixed solvent afforded 4aa in 50% yield with 90:10 er, which was accompanied by uncyclized 3aa (26%, $69: 31 \mathrm{er}$; entry 8). The difference between ers of 4 an and 3aa indicates that the aldol condensation of 3aa to 4aa is promoted by the chiral zinc catalyst and thus involves kinetic resolution. With this observation, we modified the conditions to ensure full conversion of 3aa to 4aa (entries 9 and 10). By performing the conjugate addition at $30^{\circ} \mathrm{C}$ and the aldol condensation at $100^{\circ} \mathrm{C}$, 4aa was obtained in 79% yield with 83:17 er (entry 10).

Table S1. Initial Screening Experiments using L8 as Ligand ${ }^{a}$

	$+$ 2a	$\begin{gathered} \begin{array}{c} \mathrm{Et}_{2} \mathrm{Zn}(10 \mathrm{~mol} \%) \\ \mathrm{L8}(10 \mathrm{~mol} \%) \\ 4 \AA \mathrm{MS}(100 \mathrm{mg}) \end{array} \\ \text { solvent, temp, time } \end{gathered}$		 L8
entry	solvent	temp/time	yield(\%) ${ }^{\text {b }}$	er
1	DMSO	$80^{\circ} \mathrm{C} / 3 \mathrm{~h}$	68	67:33
2	DMF	$80^{\circ} \mathrm{C} / 3 \mathrm{~h}$	12	65:35
3	DMA	$80^{\circ} \mathrm{C} / 3 \mathrm{~h}$	10	74:26
4	NMP	$80^{\circ} \mathrm{C} / 3 \mathrm{~h}$	26	75:25
5	NEt_{3}	$80^{\circ} \mathrm{C} / 3 \mathrm{~h}$	16	74:26
6	DMPU	$80^{\circ} \mathrm{C} / 3 \mathrm{~h}$	40	77:23
7	DMPU	$60^{\circ} \mathrm{C} / 12 \mathrm{~h}$	33	79:21
8	$\mathrm{NEt}_{3} / \mathrm{DMPU}$ (6:1)	$60^{\circ} \mathrm{C} / 12 \mathrm{~h}$	50	90:10 ${ }^{\text {c }}$
9	$\mathrm{NEt}_{3} / \mathrm{DMPU}$ (6:1)	$60^{\circ} \mathrm{C} / 12 \mathrm{~h}$, then $100^{\circ} \mathrm{C} / 12 \mathrm{~h}$	75	81:19
10	$\mathrm{NEt}_{3} / \mathrm{DMPU}$ (6:1)	$30^{\circ} \mathrm{C} / 24 \mathrm{~h}$, then $100^{\circ} \mathrm{C} / 12 \mathrm{~h}$	79	83:17

${ }^{a}$ The reaction was performed using 0.15 mmol of $\mathbf{1 a}$ and 0.1 mmol of $\mathbf{2 a}(0.33 \mathrm{M}) .{ }^{b}$ Determined by GC using mesitylene as an internal standard. "3aa was obtained in 26\% yield with 69:31 er.

Given the best result using L8 in Table S1, entry 10, we screened a series of chiral β-amino alcohol ligands using the $\mathrm{NEt}_{3} / \mathrm{DMPU}$ solvent system (Table S2). Among the proline-derived ligands L9-L15, only L14 bearing p-methoxyphenyl groups displayed reaction efficiency and enantioselectivity comparable to that of $\mathbf{L 8}$ (entries 2-8). The aziridine-containing ligand $\mathbf{L 1 6}$ also gave a comparable result as L8 (entry 9). The aminoindanol-type ligands L17-L19 induced only modest enantioselectivities (entries 10-12). Finally, the alanine-derived ligands $\mathbf{L} 1$ and $\mathbf{L 3}$ were found to show similar or slightly better enantioselectivity compared with $\mathbf{L 8}$ (entries 13 and 14). With this finding, we decided to revisit the reaction in more convenient single solvent (DMSO or DMPU) using L1, L3 and their structurally related amino alcohols (i.e. $\mathbf{L} \mathbf{2}$ as a valinol analogue of L1, L4 as pyrrolidine analogue of $\mathbf{L 3}$, and $\mathbf{L 5}-\mathbf{L} 7$ as norephedrine analogues of $\mathbf{L 3}$; Table 1). As a result, L6 was found to not only display high enantioselectivity but also promote the reaction smoothly, in contrast to the poor performance of $\mathbf{L 8}$ in DMPU (Table S1, entries 6 and 7).

Table S2. Screening of Amino Alcohol Ligands ${ }^{a}$

Zn-Catalyzed Enantioselective Ring-Opening Conjugate Addition of Cyclopropanols

General procedure: In an argon-filled glove box, a 4-mL vial equipped with a magnetic stir bar was charged sequentially with $\mathbf{L 6}(9.2 \mathrm{mg}, 0.045 \mathrm{mmol})$, molecular sieves $4 \AA(300 \mathrm{mg})$, and DMPU (0.9 mL , stored in $-20^{\circ} \mathrm{C}$ fridge). To this mixture was added $\mathrm{Et}_{2} \mathrm{Zn}(1 \mathrm{M}$ in hexane, $45 \mu \mathrm{~L}$, $0.045 \mathrm{mmol})$, enone $2(0.30 \mathrm{mmol})$, and cyclopropanol $1(0.45 \mathrm{mmol})$ sequentially, without a particular break (longer than 15 seconds) between additions. The vial was closed and removed from the glove box, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 48 h . After confirmation of the full conversation of $\mathbf{2}$ by TLC or GC, the mixture was stirred at $100^{\circ} \mathrm{C}$ for 6 h . Upon cooling to room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and filtered through a pad of silica gel with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ as an eluent. The organic solution was concentrated under reduced pressure, and the residue was purified by flash chromatography on silica gel or preparative TLC on silica gel to afford the desired product.

(\boldsymbol{R})-(2,4-Diphenylcyclopent-1-en-1-yl)(phenyl)methanone (4aa): Pale yellow solid (78.3 mg, 80%); $R_{\mathrm{f}} 0.31$ (hexane/EtOAc $=19 / 1$); m.p. $79-80{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.76$ $(\mathrm{m}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 3 \mathrm{H}), 3.79$ (quint, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.08(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.6$, $145.3,145.0,136.5,136.3,135.6,132.8,129.3,128.6,128.2,128.0,127.9,127.9,126.9,126.3$, 45.7, 45.2, 42.4; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 325.1592$, found 325.1592; $[\alpha]^{25}{ }_{\mathrm{D}}=$ +14.4 ($c=1.31$ in $\mathrm{CHCl}_{3}, 95: 5$ er sample).
HPLC analysis: Daicel CHIRALPAK AS-H; hexane: $i-\operatorname{PrOH}=95: 5$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=6.8 \mathrm{~min}$ (minor) and 7.6 min (major), 95:5 er.

uV

1 Det.A Ch1 / 254 nm

Detector A Ch1 254nm PeakTable		
Peak\#	Ret. Time	Area \%
1	6.828	4.949
2	7.568	95.051
Total		100.000

3 mmol-scale reaction: In an argon-filled glove box, a $50-\mathrm{mL}$ Schlenk tube (pre-cooled in - $20^{\circ} \mathrm{C}$ fridge) equipped with a magnetic stir bar was charged sequentially with $\mathbf{L 6}(92.4 \mathrm{mg}, 0.45 \mathrm{mmol})$, molecular sieves $4 \AA(3.0 \mathrm{~g})$, and DMPU (9 mL , stored in $-20^{\circ} \mathrm{C}$ fridge). To the mixture was added $\mathrm{Et}_{2} \mathrm{Zn}$ (1 M in hexane, $450 \mu \mathrm{~L}, 0.45 \mathrm{mmol}$), 2a ($625 \mathrm{mg}, 3.0 \mathrm{mmol}$), and $\mathbf{1 a}$ ($604 \mathrm{mg}, 4.5$ mmol) sequentially. After stirring for 30 seconds, the Schlenk tube was closed and removed from the glove box, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 48 h and then at $100^{\circ} \mathrm{C}$ for 6 h . Upon cooling to room temperature, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ were added to the reaction mixture. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the product as a pale yellow solid ($683 \mathrm{mg}, 70 \%, 95: 5 \mathrm{er}$).

(S)-1,3,6-Triphenylhexane-1,6-dione (3aa): The reaction was performed at $0^{\circ} \mathrm{C}$ for 48 h . White solid ($88.1 \mathrm{mg}, 86 \%$); $R_{\mathrm{f}} 0.32$ (hexane $/ \mathrm{EtOAc}=9 / 1$); m.p. $146-148{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.90-7.88 (m, 2H), 7.83-7.81 (m, 2H), 7.55-7.48 (m, 2H), 7.44-7.37 (m, 4H), 7.32-7.25 $(\mathrm{m}, 4 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.28(\mathrm{~m}, 2 \mathrm{H}), 2.93$ (ddd, $J=17.1,10.2,5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.75(\mathrm{ddd}, J=17.1,10.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 199.9,198.6,143.8,137.1,136.8,133.0,132.9,128.7,128.5,128.5,128.0$, 127.9, 127.6, 126.6, 46.0, 40.7, 36.7, 30.5; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 343.1698$,
found 343.1695; $[\alpha]^{25}{ }_{\mathrm{D}}=-11.7\left(c=2.30\right.$ in $\mathrm{CHCl}_{3}, 95: 5$ er sample $)$.
HPLC analysis: Daicel CHIRALPAK ID; hexane: $i-\mathrm{PrOH}=90: 10$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=20.5 \mathrm{~min}$ (minor) and 22.0 min (major), 95:5 er.

1 Det.A Ch1 / 254 nm

Detector A Ch1 254nm
PeakTable
Peak\#
1

$u \mathrm{~V}$

1 Det.A Ch1 / 254nm

Detector A Ch1 254 nm
PeakTable
Peak\# Ret. Time Area $\%$ 1 20.526 4.687 2 21.976 95.313 Total 100.000

(R)-(2,4-Diphenylcyclopent-1-en-1-yl)(4-methoxyphenyl)methanone (4ba): Pale yellow oil ($71.1 \mathrm{mg}, 67 \%$); $R_{\mathrm{f}} 0.21$ (hexane $/ \mathrm{EtOAc}=19 / 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.78(\mathrm{~m}$, $2 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.78-6.74(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.74(\mathrm{~m}$, $4 \mathrm{H}), 3.47-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.21-3.05(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.5,163.5,145.4$, $142.7,136.6,135.6,131.7,129.3,128.5,128.1,127.8,127.7,126.9,126.3,113.6,55.3,45.5,45.3$, 42.4; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 355.1698$, found 355.1699; $[\alpha]^{25}{ }_{\mathrm{D}}=+13.1(c=$ 1.12 in $\mathrm{CHCl}_{3}, 95: 5$ er sample).

HPLC analysis: Daicel CHIRALPAK ID; hexane: $i-\mathrm{PrOH}=90: 10$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=12.3 \mathrm{~min}$ (minor) and 16.2 min (major), $95: 5 \mathrm{er}$.

1 Det.A Ch1 / 254nm
PeakTable
Detector A Ch1 254nm

Peak\#	Ret. Time	Area \%
1	12.320	5.265
2	16.242	94.735
Total		100.000

(R)-(2,4-Diphenylcyclopent-1-en-1-yl)(4-iodophenyl)methanone (4ca): White solid (115.4 mg, 85%); $R_{\mathrm{f}} 0.40$ (hexane/EtOAc $=19 / 1$); m.p. $131-133{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.58$ $(\mathrm{m}, 2 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 5 \mathrm{H}), 3.78$ (quint, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.06(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 196.7,146.0,145.2,137.5,135.9,135.8,135.4,130.7,128.6,128.2,128.2,127.9,126.9$, 126.4, 100.7, 45.8, 45.0, 42.3; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{OI}[\mathrm{M}+\mathrm{H}]^{+} 451.0559$, found $451.0558 ;[\alpha]^{25}{ }_{\mathrm{D}}=+14.5\left(c=1.84\right.$ in $\mathrm{CHCl}_{3}, 93: 7$ er sample $)$.

HPLC analysis: Daicel CHIRALPAK AS-H; hexane: $i-\mathrm{PrOH}=98: 2$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=8.1 \mathrm{~min}$ (minor) and 9.1 min (major), 93:7 er.

1 Det.A Ch1 / 254nm
1 Det.A Ch1 / 254 nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area $\%$
1	8.069	6.837
2	9.142	93.163
Total		100.000

(\boldsymbol{R})-(4-Bromophenyl)(2,4-diphenylcyclopent-1-en-1-yl)methanone (4da): The reaction was performed at $0{ }^{\circ} \mathrm{C}$ for 72 h , followed by further heating at $100^{\circ} \mathrm{C}$ for 6 h . White solid (109.6 mg , 91%); $R_{\mathrm{f}} 0.42$ (hexane/EtOAc $=19 / 1$); m.p. $99-101{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.58$ (m, 2H), 7.38-7.32 (m, 6H), 7.26-7.23 (m, 1H), 7.16-7.11 (m, 5H), 3.79 (quint, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49-3.43 (m, 1H), 3.39-3.32 (m, 1H), 3.22-3.07 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.4$, 146.1, 145.2, 135.8, 135.4, 135.4, 131.5, 130.8, 128.6, 128.2, 128.2, 127.9, 127.8, 126.9, 126.4, 45.8, 45.0, 42.3; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{OBr}[\mathrm{M}+\mathrm{H}]^{+}$403.0696, found 403.0698; [$\left.\alpha\right]^{25}{ }_{\mathrm{D}}$ $=+16.2\left(c=1.25\right.$ in $\mathrm{CHCl}_{3}, 93: 7$ er sample $)$.

HPLC analysis: Daicel CHIRALPAK ID; hexane: $i-\mathrm{PrOH}=90: 10$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=13.0 \mathrm{~min}$ (minor) and 15.5 min (major), $93: 7 \mathrm{er}$.

uV

1 Det.A Chl / 254nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area $\%$
1	12.988	7.159
2	15.451	92.841
Total		100.000

Recrystallization of 4da (sample of 93:7 er) from THF/pentane afforded single crystals of racemate first. The supernatant of this first recrystallization contained enantiopure 4da ($>99: 1 \mathrm{er}$, confirmed by HPLC). The second recrystallization of this enantiopure sample from THF/pentane afforded single crystals suitable for X-ray diffraction analysis, which unambiguously confirmed the molecular structure of 4da and its absolute stereochemistry (Figure S2). ${ }^{34}$

Figure S2. ORTEP drawing of 4da (thermal ellipsoids set at 50\% probability; CCDC 2056575).

Table S3. Crystal data and structure refinement for 4da

Identification code	yoshi108m_0m_5
Chemical formula	$\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrO}$
Formula weight	$403.30 \mathrm{~g} / \mathrm{mol}$
Temperature	100(2) K
Wavelength	0.71073 £
Crystal size	$0.060 \times 0.140 \times 0.200 \mathrm{~mm}$
Crystal habit	colorless plate
Crystal system	triclinic
Space group	P 1
Unit cell dimensions	$\mathrm{a}=7.6759(4) \AA \quad \alpha=87.9511(19)^{\circ}$
	$\mathrm{b}=9.4634(5) \AA \quad \beta=79.5409(19)^{\circ}$
	$\mathrm{c}=13.2999(8) \AA \quad \gamma=74.096(2)^{\circ}$
Volume	913.59(9) \AA^{3}
Z	2
Density (calculated)	$1.466 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$2.259 \mathrm{~mm}^{-1}$
F(000)	412
Theta range for data collection	2.24 to 33.73°
Index ranges	$-11<=\mathrm{h}<=11,-14<=\mathrm{k}<=14,-20<=1<=20$
Reflections collected	12460
Independent reflections	$12460[\mathrm{R}(\mathrm{int})=0.0410]$
Coverage independent reflections	99.7\%
Absorption correction	Multi-Scan
Max. and min. transmission	0.8760 and 0.6610
Structure solution technique	direct methods
Structure solution program	XT, VERSION 2018/2
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXL-2018/3 (Sheldrick, 2018)
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
Data / restraints / parameters	12460/3/470
Goodness-of-fit on F^{2}	1.052
Final R indices	9274 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \quad \mathrm{R} 1=0.0525, \mathrm{wR} 2=0.1137$
	all data $\quad \mathrm{R} 1=0.0781, \mathrm{wR} 2=0.1268$
Weighting scheme	$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+(0.0225 \mathrm{P})^{2}+0.1052 \mathrm{P}\right]$ where $\mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$
Absolute structure parameter	0.017(8)
Largest diff. peak and hole	0.827 and $-1.094 \mathrm{e}^{-3}{ }^{-3}$
R.M.S. deviation from mean	$0.098 \mathrm{e}^{\AA^{-3}}$

(R)-(2,4-Diphenylcyclopent-1-en-1-yl)(4-(trifluoromethyl)phenyl)methanone (4ea): The reaction was performed at $30^{\circ} \mathrm{C}$ for 12 h and then at $100^{\circ} \mathrm{C}$ for 6 h . White solid ($100.2 \mathrm{mg}, 85 \%$); $R_{\mathrm{f}} 0.43$ (hexane/EtOAc $=19 / 1$); m.p. $128-129{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.76(\mathrm{~m}$, $2 H$), 7.46-7.44 (m, 2H), 7.39-7.33 (m, 4H), 7.26-7.22 (m, 1H), 7.12-7.06 (m, 5H), 3.79 (quint, $J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.10(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 196.0,148.2$, $145.1,139.7,135.8,135.4,133.5\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.5 \mathrm{~Hz}\right), 129.5,128.6,128.4,128.1,128.0,126.9$, $126.4,125.0\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right), 123.5\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.6 \mathrm{~Hz}\right), 46.2,44.7,42.2 ;{ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-63.1$; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{OF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$393.1466, found 393.1463; $[\alpha]^{25} \mathrm{D}=$ +15.7 ($c=1.52$ in $\mathrm{CHCl}_{3}, 87: 13$ er sample).

HPLC analysis: Daicel CHIRALPAK ID; hexane: $i-\mathrm{PrOH}=90: 10$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=5.4 \mathrm{~min}($ minor $)$ and $6.2 \mathrm{~min}($ major $), 87: 13 \mathrm{er}$.

1 Det.A Ch1 / 254 nm

PeakTable						
Detector A Chl 254nm						
Peak\#						
1			$	$	Ret. Time	Area \%
---:	:---					
2	5.380					
Total	6.265					

1 Det.A Chl / 254nm
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area $\%$
1	5.366	12.745
2	6.249	87.255
Total		100.000

(R)-(2,4-Diphenylcyclopent-1-en-1-yl)(3-methoxyphenyl)methanone (4fa): The reaction was performed at $0{ }^{\circ} \mathrm{C}$ for 72 h and then at $100{ }^{\circ} \mathrm{C}$ for 6 h . Pale yellow oil ($82.0 \mathrm{mg}, 77 \%$); $R_{\mathrm{f}} 0.26$ (hexane/EtOAc = 19/1); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.11(\mathrm{~m}, 7 \mathrm{H})$,
6.95-6.92 (m, 1H), 3.83-3.72(m, 4H), 3.48-3.33(m, 2H), 3.22-3.07(m, 2H); ${ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.4,159.5,145.3,144.7,137.8,136.3,135.6,129.2,128.6,128.0,127.9,127.8,126.9$, 126.3, 122.3, 119.7, 113.1, 55.3, 45.6, 45.3, 42.3; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 355.1698, found $355.1695 ;[\alpha]^{25}{ }_{\mathrm{D}}=+6.8\left(c=0.38\right.$ in $\mathrm{CHCl}_{3}, 94: 6$ er sample $)$.

HPLC analysis: Daicel CHIRALPAK AS-H; hexane: $i-\mathrm{PrOH}=95: 5$; detection wavelength $=254$ nm ; flow rate $=0.5 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=17.1 \mathrm{~min}$ (minor) and 20.1 min (major), 94:6 er.

1 Det.A Ch1 / 254nm
Petector A Ch1 254 nm

Peak\# Table		
1	Ret. Time	Area $\%$
2	17.262	49.959
Total	20.261	50.041

(R)-(2,4-Diphenylcyclopent-1-en-1-yl)(2-methoxyphenyl)methanone (4ga): The reaction was performed at $30^{\circ} \mathrm{C}$ for 48 h and then at $100^{\circ} \mathrm{C}$ for 6 h . Pale yellow oil ($73.7 \mathrm{mg}, 69 \%$); $R_{\mathrm{f}} 0.15$ (hexane/EtOAc $=19 / 1$); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H})$, 7.18-7.14 (m, 1H), 7.10-7.07 (m, 2H), 7.06-7.02 (m, 3H), 6.78-6.75 (m, 1H), 6.58-6.55 (m, 1H), 3.72-3.64 (m, 4H), 3.42-3.31 (m, 2H), 3.12-3.04 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 195.6, $157.4,149.0,145.9,138.1,136.1,132.2,130.1,129.3,128.5,127.8,127.6,127.4,126.8,126.2$, 120.0, 110.7, 55.4, 47.6, 43.5, 41.7; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 355.1698$, found 355.1697; $[\alpha]^{25}{ }_{\mathrm{D}}=-4.3\left(c=0.35\right.$ in $\mathrm{CHCl}_{3}, 91: 9$ er sample $)$.

HPLC analysis: Daicel CHIRALPAK ID; hexane: $i-\mathrm{PrOH}=80: 20$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=9.6 \mathrm{~min}($ minor $)$ and $14.7 \mathrm{~min}($ major $), 91: 9 \mathrm{er}$.

PeakTable		
Detector A	1254 nm	
Peak\#	Ret. Time	Area \%
1	9.634	48.120
2	14.773	51.880
Total		100.000

uV

1 Det.A Ch1 / 254 nm

(R)-(2,4-Diphenylcyclopent-1-en-1-yl)(naphthalen-2-yl)methanone (4ha): The reaction was performed at $0{ }^{\circ} \mathrm{C}$ for 72 h and then at $100^{\circ} \mathrm{C}$ for 6 h . Colorless oil ($105.0 \mathrm{mg}, 93 \%$); $R_{\mathrm{f}} 0.31$ (hexane/EtOAc = 19/1); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.70$ $(\mathrm{m}, 3 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.06-6.96(\mathrm{~m}, 3 \mathrm{H}), 3.82$ (quint, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.26-3.12(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 197.6$, $145.3,144.5,136.5,135.5,135.4,133.7,132.3,131.6,129.4,128.6,128.2,128.2,128.0,127.8$, 127.7, 127.6, 126.9, 126.4, 126.3, 124.5, 45.5, 45.4, 42.4; HRMS (ESI) Calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{O}[\mathrm{M}+$ $\mathrm{H}]^{+} 375.1749$, found $375.1747 ;[\alpha]^{25}{ }_{\mathrm{D}}=+18.7\left(c=3.00\right.$ in $\mathrm{CHCl}_{3}, 95: 5$ er sample $)$.

HPLC analysis: Daicel CHIRALPAK AD-H; hexane: $i-\mathrm{PrOH}=90: 10$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=13.5 \mathrm{~min}$ (minor) and 14.9 min (major), $95: 5 \mathrm{er}$.

$\boldsymbol{(R)}$-(2,4-Diphenylcyclopent-1-en-1-yl)(thiophen-2-yl)methanone (4ia): Pale yellow oil (81.2 $\mathrm{mg}, 82 \%$); $R_{\mathrm{f}} 0.28$ (hexane/EtOAc $=19 / 1$); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.49(\mathrm{~m}, 1 \mathrm{H})$, 7.41-7.32 (m, 5H), 7.29-7.13 (m, 6H), 6.88-6.86 (m, 1H), 3.77 (quint, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47-3.35 (m, 2H), 3.20-3.08 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.6,145.3,144.1,143.6,136.3$, 135.6, 134.1, 134.0, 128.6, 128.2, 128.0, 127.9, 127.8, 126.9, 126.3 45.5, 45.3, 42.3; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 331.1157$, found 331.1155; $[\alpha]^{25}{ }_{\mathrm{D}}=+9.23\left(c=2.15\right.$ in $\mathrm{CHCl}_{3}, 96: 4$ er sample).

HPLC analysis: Daicel CHIRALPAK ID; hexane: $i-\mathrm{PrOH}=80: 20$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=10.7 \mathrm{~min}$ (minor) and 11.5 min (major), 96:4 er.

uV

1 Det.A Ch1 / 254 nm
Detector A Ch1 254 nm

Peak\# PeakTable		
1	Ret. Time	Area $\%$
2	10.738	4.270
Total	11.499	95.730

(R)-Cyclohex-1-en-1-yl(2,4-diphenylcyclopent-1-en-1-yl)methanone (4ja): White solid (53.4 $\mathrm{mg}, 54 \%$); $R_{\mathrm{f}} 0.31$ (hexane/EtOAc $=19 / 1$); m.p. $73-75^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-$ $7.17(\mathrm{~m}, 10 \mathrm{H}), 6.65-6.63(\mathrm{~m}, 1 \mathrm{H}), 3.71$ (quint, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.21(\mathrm{~m}$, $1 \mathrm{H}), 3.12-3.05(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.48(\mathrm{~m}$, 2H), 1.44-1.38 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.5,145.5,143.8,142.8,138.4,136.9$, 136.4, 128.5, 128.1, 127.6, 127.5, 126.9, 126.2, 45.3, 45.2, 42.3, 26.0, 23.0, 21.7, 21.4; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$329.1903, found 329.1905; $[\alpha]^{25}{ }_{\mathrm{D}}=+10.12\left(c=2.10\right.$ in CHCl_{3}, 96:4 er sample).

HPLC analysis: Daicel CHIRALPAK OJ-H; hexane: $i-\mathrm{PrOH}=95: 5$; detection wavelength $=254$ nm ; flow rate $=0.5 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=15.2 \mathrm{~min}$ (major) and 16.2 min (minor), 96:4 er.

(R)-1-(2,4-Diphenylcyclopent-1-en-1-yl)-2-methylpropan-1-one (4ka): The reaction was performed at $30^{\circ} \mathrm{C}$ for 48 h and then at $100^{\circ} \mathrm{C}$ for 6 h . Pale yellow oil ($41.8 \mathrm{mg}, 48 \%$); $R_{\mathrm{f}} 0.41$ (hexane/EtOAc = 39/1); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.21(\mathrm{~m}, 10 \mathrm{H}), 3.65$ (quint, $J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.35-3.23 (m, 2H), 3.09-2.94 (m, 2H), 2.63 (sept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 0.98-0.96 (m, 6H); ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 208.5,147.1,145.5,137.7,136.9,128.6,128.3,128.3,127.6,126.8$, 126.3, 47.3, 44.2, 41.9, 38.9, 18.6, 18.3; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$291.1749, found 291.1743; $[\alpha]^{25}{ }_{\mathrm{D}}=-9.59\left(c=0.61\right.$ in $\mathrm{CHCl}_{3}, 97: 3$ er sample $)$.

HPLC analysis: Daicel CHIRALPAK AD-H; hexane: $i-\mathrm{PrOH}=99: 1$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=7.4 \mathrm{~min}$ (minor) and 8.0 min (major), 97:3 er.

1 Det.A Ch1 / 254nm
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area $\%$
1	7.413	50.667
2	8.044	49.333
Total		100.000

(R)-Cyclohexyl(2,4-diphenylcyclopent-1-en-1-yl)methanone (4la): The reaction was performed at $30^{\circ} \mathrm{C}$ for 48 h and then at $100^{\circ} \mathrm{C}$ for 6 h . Colorless oil ($73.3 \mathrm{mg}, 74 \%$); $R_{\mathrm{f}} 0.19$ (hexane/EtOAc $=39 / 1$); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.19(\mathrm{~m}, 10 \mathrm{H}), 3.63$ (quint, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.33$3.21(\mathrm{~m}, 2 \mathrm{H}), 3.08-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{tt}, J=11.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.50(\mathrm{~m}$, $1 \mathrm{H}), 1.35-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.97-0.84(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $207.2,147.5,145.4,137.8,137.0,128.5,128.3,128.1,127.5,126.8,126.2,48.8,47.7,43.8,41.9$, 28.9, 28.6, 25.7, 25.6, 25.5; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 331.2062$, found 331.2065; $[\alpha]^{25} \mathrm{D}=-5.28\left(c=2.35\right.$ in $\mathrm{CHCl}_{3}, 97: 3$ er sample $)$.

HPLC analysis: Daicel CHIRALPAK AS-H; hexane: $i-\mathrm{PrOH}=99: 1$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=6.4 \mathrm{~min}$ (minor) and 7.0 min (major), 97:3 er.

1 Det.A Ch1 / 254nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area $\%$
1	6.373	49.574
2	6.951	50.426
Total		100.000

2-(4-Oxo-2,4-diphenylbutyl)-3,4-dihydronaphthalen-1(2H)-one (3ma): The reaction was
conducted using 2 equiv of $\mathbf{1 m}$ at $0^{\circ} \mathrm{C}$ for 48 h . A mixture of the unreacted cyclopropanol ($\mathbf{1 m}$) and the product (3ma) was obtained by silica gel chromatography. For the separation of these compounds and detection of $\mathbf{1 m}$ by the UV detector in HPLC, the unreacted $\mathbf{1 m}$ was transformed to the corresponding benzoyl derivative ($\mathbf{1 m}$ ') by the following procedure: To a solution of a mixture of $\mathbf{1 m}$ and $\mathbf{3 m a}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added benzoyl chloride ($63.3 \mathrm{mg}, 0.45 \mathrm{mmol}$) and triethylamine ($84 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$), and DMAP ($3.7 \mathrm{mg}, 0.03 \mathrm{mmol}$). The reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 16 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times), and the combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified with silica gel chromatography to afford the title compound as a white solid ($105.9 \mathrm{mg}, 96 \%, 78: 22 \mathrm{dr}$) along with $\mathbf{1 m}$ ' ($38.4 \mathrm{mg}, 0.145 \mathrm{mmol}, 24 \%$). Pure samples of both the diastereomers of 3ma could be obtained by partial separation of the diastereomer mixture on silica gel using toluene as an eluent; $R_{\mathrm{f}} 0.31$ (single spot, hexane/EtOAc $=19 / 1$), 0.26 (major diastereomer, toluene), 0.18 (minor diastereomer, toluene); m.p. $152-153{ }^{\circ} \mathrm{C}$ (major diastereomer); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) major diastereomer: $\delta 7.97-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.89$ $7.87(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.14(\mathrm{~m}, 7 \mathrm{H}), 3.61-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.32$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{dt}, J=16.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-3.79(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.42-$ $2.35(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 1 \mathrm{H})$; minor diastereomer: 8.00$7.98(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.18-$ $7.14(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=16.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=16.5,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.91-2.87 (m, 2H), 2.52-2.46 (m, 1H), 2.43-2.35 (m, 1H), 2.13-2.06 (m, 1H), 1.88-1.78 (m, 1H), 1.72-1.65 (m, 1H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) major diastereomer: δ 200.1, 198.7, 143.9, 143.4, $137.1,133.1,133.0,132.3,128.7,128.6,128.5,127.9,127.7,127.3,126.6,126.4,46.6,45.1,37.8$, 34.7, 28.4, 27.4; minor diastereomer: $\delta 200.1,198.8,144.8,143.7,137.1,133.1,132.9,132.5$, 128.6, 128.5, 128.5, 128.1, 127.7, 127.4, 126.5, 126.4, 46.0, 45.6, 39.4, 37.2, 29.6, 28.4; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 369.1855$, found 369.1852 (major diastereomer), 369.1857 (minor diastereomer); $[\alpha]^{25}{ }_{\mathrm{D}}=+7.48\left(c=0.99\right.$ in $\mathrm{CHCl}_{3}, 78: 22 \mathrm{dr}, 98: 2 \mathrm{er}$ (major), 90:10 er (minor) sample of $\mathbf{3 m a}) ;[\alpha]^{25}{ }_{\mathrm{D}}=-151\left(c=1.79\right.$ in $\mathrm{CHCl}_{3}, 96: 4$ er sample of $\mathbf{1 m}$ ').

HPLC analysis (major diastereomer of 3ma): Daicel CHIRALPAK AS-H; hexane: $i-\mathrm{PrOH}=70: 30$; detection wavelength $=254 \mathrm{~nm}$; flow rate $=0.5 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=10.9 \mathrm{~min}$ (major) and 16.2 min (minor), 98:2 er.

1 Det.A Ch1 / 254nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area \%
1	11.026	50.849
2	16.427	49.151
Total		100.000

uV

1 Det.A Ch1/254nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area $\%$
1	10.889	97.534
2	16.246	2.466
Total		100.000

HPLC analysis (minor diastereomer of 3ma): Daicel CHIRALPAK OD; hexane: $i-\mathrm{PrOH}=98: 2$; detection wavelength $=254 \mathrm{~nm}$; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=12.7 \mathrm{~min}$ (major) and 15.9 min (minor), 90:10 er.

1 Det.A Ch1 / 254 nm

PeakTable		
Detector A Ch1 254nm		
Peak\#	Ret. Time	Area \%
1	12.684	50.243
2	15.931	49.757
Total		100.000

uV

1 Det.A Ch1/254nm

HPLC analysis (1m'): Daicel CHIRALPAK ID; hexane: $i-\mathrm{PrOH}=95: 5$; detection wavelength $=$ 254 nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=5.1 \mathrm{~min}($ minor $)$ and $5.4 \mathrm{~min}($ major $), 96: 4 \mathrm{er}$.

Based on the observed dr and ers of 3ma, one can formulate the pathways for the formation of the diastereomers/enantiomers as shown in Scheme S1, which involve enantioselective ring-opening (kinetic resolution) of $\mathbf{1 m}$ and enantioselective conjugate addition (ECA) of each of the resulting zinc homoenolate to 2a (the absolute configurations shown are only provisional, assigning (R, S) as the dominant enantiomer of the major diastereomer). Here, two possible cases (Cases 1 and 2) can be conceived for the origin of the minor diastereomer, where (R, R) and (S, S) are assumed as the dominant enantiomer of the minor diastereomer, respectively. For Cases 1 and $2, \%$ excess of $[(R, S)+(R, R)]$ over $[(S, R)+(S, S)]($ ee' $)$, which should reflect the kinetic resolution step, is calculated to be 92.5% and 56.9%, respectively. In light of near quantitative yield of $\mathbf{3 m a}$ and these ee' values, the selectivity factor (s) of the kinetic resolution can be approximated to be 85.6 and 6.3 for Cases 1 and 2, respectively. On the basis of the isolation of benzoyl ester ($\mathbf{1 m}^{\prime}$) in a substantial yield $(24 \%)^{\text {ii }}$ with high enantiomeric excess ($96: 4 \mathrm{er} ; 92 \%$ ee), we conclude that Case 1 is the more likely scenario (see the simulated graph in Scheme S1), which corresponds to highly selective kinetic resolution and moderately selective ECA.

[^1]Scheme S1. Kinetic resolution/ECA process in the reaction between $\mathbf{1 m}$ and $\mathbf{2 a}$

Case 1: (R, R) is the major enantiomer of the minor diastereomer ee' $=\left(0.78^{*} 0.98+0.22^{\star} 0.90\right)-\left(0.78^{*} 0.02+0.22^{*} 0.10\right)=92.5 \%$ assuming 50% conversion of 1 m and simple first-order kinetics, $\mathbf{s} \fallingdotseq \ln \left[1-0.5^{\star}(1+0.925)\right] / \ln \left[1-0.5^{\star}(1-0.925)\right] \fallingdotseq 85.6$

Case 2: (S, S) is the major enantiomer of the minor diastereomer ee' $=\left(0.78^{*} 0.98+0.22^{*} 0.10\right)-\left(0.78^{*} 0.02+0.22^{*} 0.90\right)=56.9 \%$ assuming 50% conversion of 1 m and simple first-order kinetics, $\mathbf{s} \fallingdotseq \ln \left[1-0.5^{*}(1+0.569)\right] / \ln \left[1-0.5^{*}(1-0.569)\right] \fallingdotseq 6.3$

1,1a,2,3-Tetrahydro-7b H-cyclopropa[a]naphthalen-7b-yl benzoate ($\mathbf{1 m}$ '): To a solution of $\mathbf{1 m}$ ($48.1 \mathrm{mg}, 0.30 \mathrm{mmol}$), benzoyl chloride ($63.3 \mathrm{mg}, 0.45 \mathrm{mmol}$) and triethylamine ($84 \mu \mathrm{~L}, 0.60$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ was added DMAP ($3.7 \mathrm{mg}, 0.030 \mathrm{mmol}$), and the reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 16 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$,
and the combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified with silica gel chromatography to afford the product as a colorless oil ($61.0 \mathrm{mg}, 77 \%$); $R_{\mathrm{f}} 0.59$ (hexane/EtOAc $=19 / 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13-$ 8.11 (m, 2H), 7.58-7.55 (m, 1H), 7.47-7.43 (m, 2H), 7.33-7.31 (m, 1H), 7.14-7.07 (m, 3H), 2.73 (dt, $J=16.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{dd}, J=$ $10.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,136.8,133.1$, $132.5,130.1,129.7,128.5,128.4,126.2,125.8,123.5,58.2,25.8,23.5,18.3,15.2$; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$265.1229, found 265.1227.

(R)-(4-(4-Methoxyphenyl)-2-phenylcyclopent-1-en-1-yl)(phenyl)methanone (4ab): White solid ($72.7 \mathrm{mg}, 68 \%$); $R_{\mathrm{f}} 0.24$ (hexane/EtOAc $=19 / 1$); m.p. $119-120{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.78-7.75 (m, 2H), 7.40-7.35 (m, 1H), 7.31-7.23 (m, 4H), 7.19-7.15 (m, 2H), 7.11-7.08 $(\mathrm{m}, 3 \mathrm{H}), ~ 6.90-6.87(\mathrm{~m}, 2 \mathrm{H}), 3.79-7.70(\mathrm{~m}, 4 \mathrm{H}), 3.46-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.03(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 197.7,158.1,145.0,137.4,136.5,136.4,135.6,132.8,129.3,128.2,128.0$, 127.9, 127.8, 113.9, 55.3, 45.9, 45.4, 41.7; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 355.1698$, found 355.1693; $[\alpha]^{25}{ }_{\mathrm{D}}=+12.3\left(c=1.11\right.$ in $\mathrm{CHCl}_{3}, 96: 4$ er sample $)$.

HPLC analysis: Daicel CHIRALPAK ID; hexane: $i-\mathrm{PrOH}=90: 10$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=10.6 \mathrm{~min}$ (minor) and 12.6 min (major), 96:4 er.

1 Det.A Ch1 / 254nm
Detector A Chl 254nm

Peak\#	Ret. Time	Area $\%$
1	10.610	50.267
2	12.623	49.733
Total		100.000

1 Det.A Ch1 / 254nm
PeakTable
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area $\%$
1	10.602	4.340
2	12.610	95.660
Total		100.000

(R)-4-(3-Benzoyl-4-phenylcyclopent-3-en-1-yl)benzonitrile (4ac): Pale yellow oil (73.2 mg, 70%); $R_{\mathrm{f}} 0.12$ (hexane/EtOAc = 19/1); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.65-$ $7.62(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 5 \mathrm{H}), 3.87-$ $3.79(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.06(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.2,151.0,144.7,136.3,135.9,135.1,133.0,132.5,129.3,128.3,128.2,128.1,127.9$, 127.8, 118.9, 110.3, 45.4, 44.8, 42.3; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 350.1545$, found 350.1545; $[\alpha]^{25} \mathrm{D}=+6.4\left(c=0.64\right.$ in $\mathrm{CHCl}_{3}, 92: 8$ er sample $)$.

HPLC analysis: Daicel CHIRALPAK ID; hexane: $i-\operatorname{PrOH}=70: 30$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=11.9 \mathrm{~min}$ (minor) and 13.2 min (major), $92: 8 \mathrm{er}$.

(\boldsymbol{R})-(4-(Naphthalen-1-yl)-2-phenylcyclopent-1-en-1-yl)(phenyl)methanone (4ad): The reaction was performed at $0^{\circ} \mathrm{C}$ for 48 h and then at $50^{\circ} \mathrm{C}$ for 16 h . Pale yellow oil ($89.7 \mathrm{mg}, 80 \%$); $R_{\mathrm{f}} 0.29$ (hexane/EtOAc $\left.=19 / 1\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.85(\mathrm{~m}$,
$1 \mathrm{H}), 7.79-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.06(\mathrm{~m}$, $3 \mathrm{H}), 4.54-4.46(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.21(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $197.6,145.0,140.8,136.5,136.4,135.5,134.1,132.8,131.5,129.3,129.0,128.2,128.0,127.9$, 127.9, 127.0, 125.9, 125.5, 125.5, 123.4, 122.8, 45.0, 44.4, 37.8; HRMS (ESI) Calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 375.1749$, found 375.1751; $[\alpha]^{25} \mathrm{D}=-16.7\left(c=1.50\right.$ in $\mathrm{CHCl}_{3}, 96: 4$ er sample $)$.

HPLC analysis: Daicel CHIRALPAK AS-H; hexane: $i-\operatorname{PrOH}=95: 5$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=15.0 \mathrm{~min}$ (minor) and 19.8 min (major), 96:4 er.

1 Det.A Ch1 / 254nm

Detector A Chl 254 nm PeakTable		
Peak\#	Ret. Time	Area \%
1	15.036	49.805
2	19.858	50.195
Total		100.000

1 Det.A Ch1 / 254nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area $\%$
1	15.027	4.154
2	19.834	95.846
Total		100.000

(R)-(4-(Furan-2-yl)-2-phenylcyclopent-1-en-1-yl)(phenyl)methanone (4ae): Colorless oil ($72.4 \mathrm{mg}, 77 \%$); $R_{\mathrm{f}} 0.31$ (hexane/EtOAc $=19 / 1$); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.73$ (m, 2 H), 7.38-7.34 (m, 2H), 7.25-7.21 (m, 2H), 7.17-7.13 (m, 2H), 7.10-7.07 (m, 3H), 6.33-6.31 (m, $1 \mathrm{H}), ~ 6.14-6.14(\mathrm{~m}, 1 \mathrm{H}), 3.81$ (quint, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.39-3.21(m,3H), 3.17-3.11(m, 1H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.5,158.0,144.7,141.3,136.5,136.0,135.4,132.8,129.3,128.2$, 128.0, 127.9, 127.9, 110.1, 104.2, 43.0, 42.5, 35.7; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 315.1385, found $315.1383 ;[\alpha]^{25} \mathrm{D}=+23.3\left(c=2.63\right.$ in $\mathrm{CHCl}_{3}, 97: 3$ er $)$.

HPLC analysis: Daicel CHIRALPAK ID; hexane: $i-\mathrm{PrOH}=98: 2$; detection wavelength $=254 \mathrm{~nm}$; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=10.1 \mathrm{~min}$ (minor) and 12.7 min (major), $97: 3 \mathrm{er}$.

(R)-(2-(4-(Methylthio)phenyl)-4-phenylcyclopent-1-en-1-yl)(phenyl)methanone (4af): Pale yellow oil ($89.5 \mathrm{mg}, 81 \%$); $R_{\mathrm{f}} 0.26$ (hexane/EtOAc $=19 / 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-$ $7.77(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.98(\mathrm{~m}, 2 \mathrm{H}), 3.78$ (quint, $J=8.2 \mathrm{~Hz}$, 1H), 3.46-3.31 (m, 2H), 3.19-3.06 (m, 2H), $2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.8$, $145.3,144.0,138.6,136.5,136.0,132.9,132.2,129.3,128.6,128.4,128.3,126.9,126.4,125.8$, 45.5, 45.3, 42.4, 15.4; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$371.1470, found 371.1465; $[\alpha]^{25}{ }_{\mathrm{D}}=+21.5\left(c=0.60\right.$ in $\mathrm{CHCl}_{3}, 97: 3$ er sample $)$.
HPLC analysis: Daicel CHIRALPAK ID; hexane: $i-\mathrm{PrOH}=95: 5$; detection wavelength $=254 \mathrm{~nm}$; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=14.4 \mathrm{~min}$ (minor) and 15.8 min (major), 97:3 er.

$u V$

1 Det.A Ch1 / 254nm
PeakTable
Detector A Ch1 254nm

Peak\#	Ret. Time	Area $\%$
1	14.484	50.114
2	15.883	49.886
Total		100.000

1 Det.A Ch1 / 254nm
PeakTable
Detector A Ch1 254nm

Peak\#	Ret. Time	Area $\%$
1	14.400	3.207
2	15.788	96.793
Total		100.000

(R)-(2-(Benzo[d][1,3]dioxol-5-yl)-4-phenylcyclopent-1-en-1-yl)(phenyl)methanone (4ag): Pale yellow oil ($92.7 \mathrm{mg}, 84 \%$); $R_{\mathrm{f}} 0.33$ (hexane $/ \mathrm{EtOAc}=9 / 1$); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.79-7.77 (m, 2H), 7.43-7.21 (m, 8H), 6.69-6.67 (m, 2H), 6.55-6.53 (m, 1H), $5.82(\mathrm{~s}, 2 \mathrm{H}), 3.75$ (quint, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.42-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.04(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 197.7, 147.3, 147.3, 145.3, 144.5, 136.6, 135.4, 132.8, 129.7, 129.3, 128.6, 128.3, 126.9, 126.3, 122.1, 108.1, 107.9, 101.0, 45.8, 45.1, 42.3; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$369.1491, found 369.1493; $[\alpha]^{25} \mathrm{D}=+7.18$ ($c=3.39$ in CHCl_{3}, 95:5 er sample).
HPLC analysis: Daicel CHIRALPAK AS-H; hexane: $i-\mathrm{PrOH}=98: 2$; detection wavelength $=254$ nm ; flow rate $=0.5 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=32.7 \mathrm{~min}$ (minor) and 36.3 min (major), $95: 5 \mathrm{er}$.

1 Det.A Ch1 / 254nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area $\%$
1	35.087	49.416
2	39.145	50.584
Total		100.000

uV

(R)-(2-(4-Iodophenyl)-4-phenylcyclopent-1-en-1-yl)(phenyl)methanone (4ah): Pale yellow oil ($114.5 \mathrm{mg}, 85 \%$); $R_{\mathrm{f}} 0.29$ (hexane/EtOAc $=19 / 1$); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.76(\mathrm{~m}$, 2 H), 7.47-7.43 (m, 3H), 7.37-7.23 (m, 7H), 6.94-6.91 (m, 2H), 3.79 (quint, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.44$3.30(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.05(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.5,145.1,143.2,137.4,137.2$, 136.2, 135.0, 133.2, 129.5, 129.3, 128.6, 128.5, 126.9, 126.4, 93.7, 45.4, 42.4; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{OI}[\mathrm{M}+\mathrm{H}]^{+} 451.0559$, found 451.0557; $[\alpha]^{25} \mathrm{D}=+7.0\left(c=0.46\right.$ in $\mathrm{CHCl}_{3}, 96: 4$ er sample).

HPLC analysis: Daicel CHIRALPAK OD; hexane $i-\mathrm{PrOH}=99: 1$; detection wavelength $=254 \mathrm{~nm}$; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=30.0 \mathrm{~min}$ (minor) and 32.4 min (major), 96:4 er.
uV

1 Det.A Ch1 / 254 nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area $\%$
1	29.847	50.257
2	32.294	49.743
Total		100.000

uV

1 Det.A Ch1 / 254nm

(R)-Phenyl(4-phenyl-2-(4-(trifluoromethyl)phenyl)cyclopent-1-en-1-yl)methanone (4ai): The reaction was performed at $0^{\circ} \mathrm{C}$ for 48 h and then at $50^{\circ} \mathrm{C}$ for 16 h . White solid ($109.8 \mathrm{mg}, 93 \%$); $R_{\mathrm{f}} 0.35$ (hexane/toluene $=1 / 1$); m.p. $82-84^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78-7.76(\mathrm{~m}, 2 \mathrm{H})$, 7.46-7.42 (m, 1H), 7.39-7.23 (m, 11H), 3.83 (quint, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49-3.35 (m, 2H), 3.24-3.10 $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.3,144.9,142.8,139.1,138.8,136.2,133.3,129.7(\mathrm{q}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.7 \mathrm{~Hz}\right), 129.2,128.7,128.5,128.0,126.9,126.5,125.1\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 123.9\left(\mathrm{q},{ }^{1} J_{\mathrm{C}}\right.$ $\mathrm{F}=271.9 \mathrm{~Hz}), 45.5,45.4,42.5 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.2$; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{OF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$393.1466, found 393.1461; $[\alpha]^{25} \mathrm{D}=+13\left(c=0.29\right.$ in $\mathrm{CHCl}_{3}, 93: 7$ er sample $)$. HPLC analysis: Daicel CHIRALPAK OD; hexane: $i-\mathrm{PrOH}=99: 1$; detection wavelength $=254 \mathrm{~nm}$; flow rate $=0.5 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=25.7 \mathrm{~min}$ (minor) and 27.4 min (major), $93: 7 \mathrm{er}$.
uV

1 Det.A Ch1/254nm

PeakTable		
Detector A Ch1 254nm		
Peak\#	Ret. Time	Area $\%$
1	33.954	48.674
2	36.678	51.326
Total		100.000

uV

1 Det.A Ch1 / 254 nm

Detector A Ch1 254nm
PeakTable
Peak\#
1
---:
2
2.963
Total
93.037

(S)-Phenyl(4-phenyl-2-(thiophen-2-yl)cyclopent-1-en-1-yl)methanone (4aj): Pale yellow oil ($82.2 \mathrm{mg}, 83 \%$); $R_{\mathrm{f}} 0.49$ (hexane $/ \mathrm{EtOAc}=9 / 1$); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.86(\mathrm{~m}, 2 \mathrm{H})$, 7.50-7.45 (m, 1H), 7.37-7.31 (m, 6H), 7.25-7.20 (m, 1H), 7.16-7.15 (m, 1H), 7.06-7.04 (m, 1H), 6.90-6.88 (m, 1H), 3.76 (quint, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.46-3.39 (m, 1H), 3.33-3.27 (m, 1H), 3.18-3.02 $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.9,145.3,138.1,136.4,136.4,135.1,133.2,129.3$, 128.6, 128.5, 127.2, 126.9, 126.3, 125.4, 124.1, 45.4, 45.3, 42.3; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{OS}$ $[\mathrm{M}+\mathrm{H}]^{+} 331.1157$, found $331.1159 ;[\alpha]^{25}{ }_{\mathrm{D}}=+14\left(c=0.61\right.$ in $\mathrm{CHCl}_{3}, 95: 5$ er sample $)$.

HPLC analysis: Daicel CHIRALPAK ID; hexane: $i-\mathrm{PrOH}=90: 10$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=18.1 \mathrm{~min}$ (minor) and $21.3 \mathrm{~min}($ major $), 95: 5 \mathrm{er}$.

PeakTable		
Detector A Chl 254 nm		
Peak\#	Ret. Time	Area \%
1	18.015	49.026
2	21.110	50.974
Total		100.000

$u V$

1 Det.A Ch1 / 254nm

($\boldsymbol{R}, \boldsymbol{E}$)-Phenyl(2-phenyl-4-styrylcyclopent-1-en-1-yl)methanone (4ak): Yellow oil (79.0 mg, 75%); $R_{\mathrm{f}} 0.32$ (hexane/EtOAc $=19 / 1$); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77-7.75$ (m, 2H), 7.39$7.07(\mathrm{~m}, 13 \mathrm{H}), 6.52-6.38(\mathrm{~m}, 2 \mathrm{H}), 3.41-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.87(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.6,145.0,137.3,136.5,136.3,135.6,133.3,132.7,129.4,129.3$, 128.5, 128.2, 128.0, 127.8, 127.8, 127.1, 126.0, 44.1, 43.7, 40.7; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 351.1749$, found 351.1744; $[\alpha]^{25}{ }_{\mathrm{D}}=+14.7\left(c=0.985\right.$ in $\mathrm{CHCl}_{3}, 97: 3$ er sample $)$.
HPLC analysis: Daicel CHIRALPAK ID; hexane: $i-\operatorname{PrOH}=95: 5$; detection wavelength $=254 \mathrm{~nm}$; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=14.3 \mathrm{~min}$ (major) and 17.0 min (minor), 97:3 er.

1 Det.A Ch1/254nm
$\left.\begin{array}{l}\text { Detector A Ch1 254nm } \\ \text { PeakTable } \\ \hline \text { Peak\# } \\ \hline 1\end{array}\right)$ Ret. Time
2

uV

1 Det.A Ch1 / 254nm

($\boldsymbol{R}, \boldsymbol{E}$)-Phenyl(4-phenyl-2-styrylcyclopent-1-en-1-yl)methanone (4al): Pale yellow oil (63.1 mg , 60%); $R_{\mathrm{f}} 0.28$ (hexane/EtOAc $=19 / 1$); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.81(\mathrm{~m}, 2 \mathrm{H})$, $7.57-$ $7.54(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.66(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ (quint, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.38-3.23 (m, 2H), 3.11-2.96(m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 195.9,147.3,145.3,139.3,138.1,136.7,134.1,132.6,129.1,128.7$, 128.7, 128.6, 128.4, 127.0, 126.9, 126.4, 123.3, 44.3, 42.1, 42.0; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 351.1749$, found 351.1748; $[\alpha]^{25} \mathrm{D}=+79.9\left(c=2.10\right.$ in $\mathrm{CHCl}_{3}, 96: 4$ er sample $)$.

HPLC analysis: Daicel CHIRALPAK IA; hexane: $i-\mathrm{PrOH}=95: 5$; detection wavelength $=254 \mathrm{~nm}$; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=13.5 \mathrm{~min}$ (minor) and 14.3 min (major), 96:4 er.

(\boldsymbol{R})-(4-Cyclohexyl-2-phenylcyclopent-1-en-1-yl)(phenyl)methanone (4am): The reaction was performed using L3 as the ligand in DMSO at $40^{\circ} \mathrm{C}$ for 48 h and then at $100^{\circ} \mathrm{C}$ for 6 h . Colorless oil ($82.4 \mathrm{mg}, 83 \%$); $R_{\mathrm{f}} 0.39$ (hexane $/ \mathrm{EtOAc}=19 / 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.71(\mathrm{~m}$, $2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 5 \mathrm{H}), 3.07-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.65(\mathrm{~m}$, $2 \mathrm{H}), 2.29(\mathrm{sext}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.66(\mathrm{~m}, 5 \mathrm{H}), 1.41-1.13(\mathrm{~m}, 4 \mathrm{H}), 1.07-0.96(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.1, 145.7, 136.9, 136.6, 136.1, 132.6, 129.3, 128.1, 127.9, 127.8, 127.6, 43.6, 43.2, 42.0, 41.6, 31.5, 31.3, 26.5, 26.3, 26.2; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}[\mathrm{M}+$ $\mathrm{H}]^{+} 331.2062$, found $331.2066 ;[\alpha]^{25} \mathrm{D}=+13.2\left(c=2.17\right.$ in $\mathrm{CHCl}_{3}, 78: 22$ er sample $)$. The absolute configuration was deduced as (R) based on the result that $\mathbf{L} \mathbf{3}$ gave $(R)-\mathbf{4 a a}$ as the major enantiomer in the reaction between $\mathbf{1 a}$ and $\mathbf{2 a}$.

HPLC analysis: Daicel CHIRALPAK IA; hexane: $i-\mathrm{PrOH}=99: 1$; detection wavelength $=254 \mathrm{~nm}$; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=14.6 \mathrm{~min}$ (major) and 16.8 min (minor), 78:22 er.

PeakTable		
Detector A	1254 nm	
Peak\#	Ret. Time	Area \%
1	13.974	50.111
2	16.180	49.889
Total		100.000

uV

(\boldsymbol{R})-(2-Ethyl-4-phenylcyclopent-1-en-1-yl)(phenyl)methanone (4an): The reaction was performed using $\mathbf{L 3}$ as the ligand at $30^{\circ} \mathrm{C}$ for 48 h and then at $100^{\circ} \mathrm{C}$ for 6 h . Colorless oil (47.9 $\mathrm{mg}, 58 \%$); $R_{\mathrm{f}} 0.40$ (hexane/EtOAc = 19/1); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.79$ (m, 2H), 7.56-7.52 (m, 1H), 7.46-7.43 (m, 2H), 7.35-7.29 (m, 4H), 7.24-7.19 (m, 1H), 3.58 (quint, $J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.19-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.99$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.8,153.3,145.6,139.0,134.5,132.5,128.8$, 128.5, 128.4, 126.9, 126.2, 44.6, 43.6, 42.2, 23.5, 12.4; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 277.1592, found 277.1590; $[\alpha]^{25}{ }_{\mathrm{D}}=-7.17\left(c=0.600\right.$ in $\mathrm{CHCl}_{3}, 79: 21$ er sample $)$.

HPLC analysis: Daicel CHIRALPAK AS-H; hexane: $i-\operatorname{PrOH}=99: 1$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=6.6 \mathrm{~min}($ minor $)$ and 7.6 min (major), 79:21 er.

Phenyl(2-phenyl-4-(trifluoromethyl)cyclopent-1-en-1-yl)methanone (4ao): The reaction was performed using L3 as the ligand at $30^{\circ} \mathrm{C}$ for 24 h and then at $100^{\circ} \mathrm{C}$ for 6 h . Pale yellow oil (36.8 $\mathrm{mg}, 39 \%$); $R_{\mathrm{f}} 0.27$ (hexane/EtOAc = 19/1); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.70(\mathrm{~m}, 2 \mathrm{H})$, 7.40-7.37 (m, 1H), 7.27-7.23 (m, 2H), 7.14-7.09 (m, 5H), 3.28-3.08 (m, 5H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 196.6,143.7,136.1,134.8,134.6,133.0,129.3,128.4,128.3,128.1,127.9\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ $277.1 \mathrm{~Hz}), 127.9,39.5\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=28.3 \mathrm{~Hz}\right), 37.7\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.7 \mathrm{~Hz}\right), 37.1\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.6 \mathrm{~Hz}\right) ;{ }^{19} \mathbf{F}$ NMR (376 MHz, CDCl_{3}) $\delta-73.2$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{OF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$317.1153, found 317.1154; $[\alpha]^{25}{ }_{\mathrm{D}}=+2.2\left(c=0.49\right.$ in $\mathrm{CHCl}_{3}, 77: 23$ er sample $)$.

HPLC analysis: Daicel CHIRALPAK AS-H; hexane: $i-\mathrm{PrOH}=95: 5$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=5.4 \mathrm{~min}($ minor $)$ and 8.0 min (major), 77:23 er.

1 Det.A Ch1 / 254 nm

Detector A Chl 254 nm PeakTable		
Peak\#	Ret. Time	Area \%
1	5.451	50.299
2	7.973	49.701
Total		100.000

uV

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm PeakTable		
Peak\#	Ret. Time	Area \%
1	5.417	22.781
2	7.952	77.219
Total		100.000

(\boldsymbol{R})-Phenyl(4-phenylcyclopent-1-en-1-yl)methanone (4ap): The reaction was performed at $60{ }^{\circ} \mathrm{C}$ for 12 h . Pale yellow oil ($25.5 \mathrm{mg}, 34 \%$); $R_{\mathrm{f}} 0.16$ (hexane $/ \mathrm{EtOAc}=19 / 1$); ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.79-7.76 (m, 2H), 7.56-7.52 (m, 1H), 7.47-7.43 (m, 2H), 7.34-7.28 (m, 4H), 7.25$7.20(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.56(\mathrm{~m}, 1 \mathrm{H}), 3.66(q u i n t, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.07(\mathrm{~m}$, 1H), 2.96-2.88 (m, 1H), 2.78-2.70 (m, 1H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.8,145.5,145.1$, 143.5 138.7, 131.9, 128.9, 128.5, 128.2, 126.9, 126.2, 42.9, 42.5, 39.8; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$249.1279, found 249.1278; $[\alpha]^{25}{ }_{\mathrm{D}}=-3.07\left(c=1.76\right.$ in CHCl_{3}, 62:38 er sample $)$. HPLC analysis: Daicel CHIRALPAK OJ-H; hexane: $i-\mathrm{PrOH}=95: 5$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=12.1 \mathrm{~min}$ (major) and 12.8 min (minor), 62:38 er.

1 Det.A Ch1 / 254nm

uV

1 Det.A Ch1 / 254nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area \%
1	12.091	62.305
2	12.843	37.695
Total		100.000

The reaction between 1 a and $\mathbf{2 q}$

The reaction was performed using $\mathbf{L 3}$ as the ligand at $30^{\circ} \mathrm{C}$ for 48 h and then at $100^{\circ} \mathrm{C}$. The time profile of the aldol condensation step showed that $\mathbf{4 a q}$ gradually transformed to 4aq', presumably via zinc dienolate intermediate (Scheme S2 and Figure S3). As the minor diastereomer of 4aq had a higher rate of conversion than the major diastereomer, the de of $\mathbf{4 a q}$ increased as the reaction proceeded. When the reaction was quenched after 3 h at $100^{\circ} \mathrm{C}, 4 \mathrm{aq}$ was obtained as a colorless oil ($57.0 \mathrm{mg}, 63 \%, 80: 20 \mathrm{dr}$; The relative stereochemistry of the major diastereomer was determined by X-ray crystallographic analysis of its anilide derivative 5aq (vide infra)). When the reaction was quenched after 6 h at $100^{\circ} \mathrm{C}$, $\mathbf{4 a q}$ was obtained in 51% yield (46.6 mg , as a single diastereomer). When the reaction was quenched after 144 h at $100^{\circ} \mathrm{C}, 4 \mathbf{a q}$, was obtained as a colorless oil (0.6 mmol scale, $120.5 \mathrm{mg}, 66 \%, 50: 50 \mathrm{dr}$).

Scheme S2. Conversion of 4aq to 4aq,

4aq (minor diastereomer)

Figure S3. Time profile of the aldol condensation-isomerization step at $100^{\circ} \mathrm{C}$.

Phenyl(1-phenyl-2,4,5,6,7,7a-hexahydro- $\mathbf{1 H}$-inden-3-yl)methanone (4aq): $\quad R_{\mathrm{f}} 0.34$ (hexane/EtOAc = 19/1); ${ }^{1} \mathbf{H}$ NMR (major diastereomer, $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83-7.81(\mathrm{~m}, 2 \mathrm{H})$, 7.55-7.52 (m, 1H), 7.47-7.44 (m, 2H), 7.34-7.29 (m, 4H), 7.24-7.20 (m, 1H), 3.17-3.12 (m, 1H), 3.07 ($\mathrm{q}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99-2.93 (m, 1H), 2.73-2.68 (m, 1H), 2.47-2.44 (m, 1H), 2.13-2.10 (m, $1 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 2 \mathrm{H})$, 1.72-1.69 (m, 1H), 1.36-1.19 (m, 3H); ${ }^{13} \mathbf{C}$ NMR (major diastereomer, $\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.5,153.5,144.7,139.2,132.4,131.8,128.8,128.5,128.4,127.3,126.2$, 56.3, 50.6, 42.6, 34.4, 28.6, 26.1, 25.2; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 303.1749$, found 303.1746; $[\alpha]^{25} \mathrm{D}=-14.0\left(c=2.36\right.$ in $\mathrm{CHCl}_{3}, 80: 20 \mathrm{dr}$, 84:16 er (major), 70:30 er (minor) sample). HPLC analysis (the sample obtained after 3 h at $100^{\circ} \mathrm{C}, 80: 20 \mathrm{dr}$): Daicel CHIRALPAK ID; hexane: $i-\operatorname{PrOH}=80: 20$; detection wavelength $=254 \mathrm{~nm}$; flow rate $=0.2 \mathrm{~mL} / \mathrm{min}$. Major diastereomer $t_{\mathrm{R}}=25.6 \mathrm{~min}$ (minor) and 27.7 min (major), $84: 16$ er. Minor diastereomer $t_{\mathrm{R}}=29.0$ \min (minor) and 30.8 min (major), 70:30 er.

1 Det.A Ch1 / 254nm

PeakTable		
Detector A Ch1 254nm		
Peak\#	Ret. Time	Area \%
1	27.269	40.587
2	29.671	40.811
3	30.987	9.573
4	32.996	9.029
Total		100.000

uV

1 Det.A Ch1 / 254 nm

Detector A Ch1 254nm PeakTable		
Peak\#	Ret. Time	Area \%
1	25.560	12.588
2	27.723	66.789
3	28.986	6.131
4	30.770	14.492
Total		100.000

HPLC analysis (the sample obtained after 6 h at $100{ }^{\circ} \mathrm{C}$, single diastereomer): Daicel CHIRALPAK ID; hexane: i - $\mathrm{PrOH}=80: 20$; detection wavelength $=254 \mathrm{~nm}$; flow rate $=0.2$ $\mathrm{mL} / \mathrm{min} . t_{\mathrm{R}}=27.3 \mathrm{~min}$ (minor) and 29.7 min (major), 82:18 er.
uV

1 Det.A Ch1 / 254nm

uV

1 Det.A Ch1 / 254nm

PeakTable		
Detector A Ch1 254nm		
Peak\#		
Ret. Time		
1		

Phenyl(3-phenyl-2,3,4,5,6,7-hexahydro-1H-inden-1-yl)methanone (4aq'): Colorless oil (120.5 $\mathrm{mg}, 66 \%, 50: 50 \mathrm{dr}$); $R_{\mathrm{f}} 0.49,0.44$ (hexane/EtOAc $=19 / 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ the diastereomer of $R_{\mathrm{f}} 0.49: \delta 8.02-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}$, 4H), 7.19-7.14 (m, 1H), 4.51-4.47 (m, 1H), 3.76 (brs, 1H), 2.80 (dt, $J=13.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-$
$2.13(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{brs}, 2 \mathrm{H}), 1.72-1.54(\mathrm{~m}, 4 \mathrm{H})$; the diastereomer of $R_{\mathrm{f}} 0.44: \delta 8.02-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29$ $(\mathrm{m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 2 \mathrm{H}), 4.61-4.58(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{brs}, 1 \mathrm{H}), 2.60$ (ddd, $J=$ $13.3,8.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{ddd}, J=13.3,9.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{brs}, 2 \mathrm{H}), 1.89-1.85(\mathrm{~m}, 1 \mathrm{H})$, 1.77-1.55 (m, 5H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) the diastereomer of $R_{\mathrm{f}} 0.49: \delta 202.3,145.0,140.7$, $137.3,134.9,132.9,128.5,128.5,128.4,128.0,126.1,55.0,54.3,38.0,25.2,24.5,22.8,22.6$; the diastereomer of $R_{\mathrm{f}} 0.44$: $\delta 202.5,145.3,141.2,137.3,135.0,132.9,128.6,128.5,127.6,126.2$, 55.1, 53.9, 38.5, 25.4, 24.5, 22.9, 22.6; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 303.1749$, found 303.1739; $[\alpha]^{25} \mathrm{D}=-56.9\left(c=1.80\right.$ in $\mathrm{CHCl}_{3}, 80: 20$ er sample of the diastereomer of $\left.R_{\mathrm{f}} 0.49\right),-111$ ($c=1.52$ in $\mathrm{CHCl}_{3}, 80: 20$ er sample of the diastereomer of $R_{\mathrm{f}} 0.44$).

HPLC analysis (the diastereomer of $R_{\mathrm{f}} 0.49$): Daicel CHIRALPAK IA; hexane: i - $\mathrm{PrOH}=90: 10$; detection wavelength $=254 \mathrm{~nm}$; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=5.0 \mathrm{~min}($ minor $)$ and 6.1 min (major), 80:20 er.

1 Det.A Ch1 / 254nm

Detector A Chl 254 nm PeakTable		
Peak\#	Ret. Time	Area \%
1	4.963	49.289
2	6.095	50.711
Total		100.000

Detector A Ch1 254nm
Peak\# Table Peak. Time Area \% 2 4.966 19.560 Total 6.098 80.440Ret

HPLC analysis (the diastereomer of $R_{\mathrm{f}} 0.44$): Daicel CHIRALPAK ID; hexane: i - $\mathrm{PrOH}=90: 10$; detection wavelength $=254 \mathrm{~nm}$; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=5.0 \mathrm{~min}$ (minor) and 5.3 min (major), 80:20 er.

(1S,7aR)-N,1-Diphenyl-2,4,5,6,7,7a-hexahydro- \mathbf{H}-indene-3-carboxamide (5aq): Prepared according to the synthetic procedure for 5 (vide infra). Pale yellow solid ($59.2 \mathrm{mg}, 62 \%$); $R_{\mathrm{f}} 0.18$ (hexane/EtOAc $=19 / 1$); m.p. $148-150{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.33-$ $7.20(\mathrm{~m}, 8 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.09-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.67-$ $2.61(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.13(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 164.6,155.5,144.5,137.9,128.9,128.5,127.3,126.3,125.5,124.1,120.0,55.9,50.4$, 41.3, 34.1, 27.6, 26.0, 25.2; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 318.1858$, found 318.1857; $[\alpha]^{25}{ }_{\mathrm{D}}=-20.8\left(c=2.86\right.$ in $\mathrm{CHCl}_{3}, 84: 16$ er sample $)$.

HPLC analysis: Daicel CHIRALPAK ID; hexane: $i-\mathrm{PrOH}=80: 20$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=14.8 \mathrm{~min}$ (minor) and 17.2min (major), 84:16 er.

$u V$

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm
PeakTable
Peak\# Ret. Time Area \% 1 14.771 16.495 2 17.158 83.505 Total 100.000

Recrystallization of $\mathbf{5 a q}$ from THF/pentane afforded single crystals suitable for X-ray diffraction analysis, which unambiguously confirmed the molecular structure of 5aq (major diastereomer) and its relative configuration (Figure S4). ${ }^{31}$

Figure S4. ORTEP drawing of 5aq (thermal ellipsoids set at 50\% probability; CCDC 2056576).

Table S4. Crystal data and structure refinement for 5aq

Identification code	yoshi107s
Chemical formula	$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}$
Formula weight	$317.41 \mathrm{~g} / \mathrm{mol}$
Temperature	296(2) K
Wavelength	1.54178 A
Crystal size	$0.010 \times 0.040 \times 0.240 \mathrm{~mm}$
Crystal habit	colorless needle
Crystal system	monoclinic
Space group	C 121
Unit cell dimensions	$a=24.6438(8) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=5.1210(2) \AA \quad \beta=123.8273(17)^{\circ}$
	$\mathrm{c}=16.5702(6) \AA \quad \gamma=90^{\circ}$
Volume	1737.18(11) \AA^{3}
Z	4
Density (calculated)	$1.214 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$0.569 \mathrm{~mm}^{-1}$
F(000)	680
Theta range for data collection	3.21 to $68.04{ }^{\circ}$
Index ranges	$-29<=\mathrm{h}<=29,-5<=\mathrm{k}<=5,-19<=1<=19$
Reflections collected	24610
Independent reflections	$3078[\mathrm{R}(\mathrm{int})=0.0648]$
Coverage independent reflections	98.8\%
Absorption correction	Multi-Scan
Max. and min. transmission	0.9940 and 0.8760
Structure solution technique	direct methods
Structure solution program	XT, VERSION 2014/5
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXL-2018/3 (Sheldrick, 2018)
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$
Data / restraints / parameters	3078/1/193
Goodness-of-fit on F^{2}	1.045
Final R indices	2832 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \quad \mathrm{R} 1=0.0429, \mathrm{wR} 2=0.1154$
	all data $\quad \mathrm{R} 1=0.0470, \mathrm{wR} 2=0.1203$
Weighting scheme	$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+(0.0783 \mathrm{P})^{2}+0.3359 \mathrm{P}\right]$ where $\mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$
Absolute structure parameter	0.0(2)
Largest diff. peak and hole	0.183 and $-0.165 \mathrm{e}^{\AA^{-3}}$
R.M.S. deviation from mean	$0.036 \mathrm{e}^{\text {¢ }}$ -

Product Transformations

(R)-N,2,4-Triphenylcyclopent-1-ene-1-carboxamide (5): A 4-mL vial equipped with a magnetic stir bar was charged with $\mathbf{4 a a}$ ($97.3 \mathrm{mg}, 0.30 \mathrm{mmol}$, $95: 5 \mathrm{er}$), hydroxylammonium chloride (62.6 $\mathrm{mg}, 0.90 \mathrm{mmol}, 3$ equiv) and sodium acetate $(49.2 \mathrm{mg}, 0.6 \mathrm{mmol}, 2$ equiv), followed by the addition of ethanol $(0.9 \mathrm{~mL})$. The mixture was stirred at $70^{\circ} \mathrm{C}$ for 11 h . After the reaction mixture was concentrated under the reduced pressure, the residue was diluted with $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 2 mL). The combined organic layers were dried $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give the crude oxime intermediate as a colorless oil. The crude oxime product was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and the solution was stirred at $0{ }^{\circ} \mathrm{C}$. To the mixture was added triflic anhydride solution (84.3 mg in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$) dropwise over 15 min , and the resulting mixture was stirred and allowed to warm to room temperature. After 6 h , the reaction mixture was washed with sat. $\mathrm{NaHCO}_{3} \mathrm{aq}(2 \mathrm{~mL})$ and the organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash column chromatography to afford the product as a pale yellow solid ($88.0 \mathrm{mg}, 86 \%$); $R_{\mathrm{f}} 0.23$ (hexane/EtOAc $=9 / 1$); m.p. $126-127{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.41-7.32 (m, 9H), 7.24-7.15 (m, 6H), 7.04-7.00 (m, 1H), 3.66 (quint, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.43-3.28 (m, 2H), 3.12-3.02 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.3,145.3,145.2,137.7$, $135.9,133.3,128.9,128.8,128.6,128.5,127.8,126.8,126.3,124.0,119.4,47.8,43.0,41.6 ;$ HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 340.1701$, found 340.1703; $[\alpha]^{25} \mathrm{D}=+8.18(c=2.29$ in CHCl_{3}, 95:5 er sample).

HPLC analysis: Daicel CHIRALPAK ID; hexane: $i-\mathrm{PrOH}=90: 10$; detection wavelength $=254$ nm ; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=19.3 \mathrm{~min}$ (minor) and 21.0 min (major), $95: 5 \mathrm{er}$.
uV
 uV

1 Det.A Ch1/254nm
1 Det.A Ch1 / 254nm
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area $\%$
1	19.332	5.248
2	20.995	94.752
Total		100.000

$4 a \mathrm{a}$
$0.3 \mathrm{mmol}, 95: 5 \mathrm{er}$

6
36\%, 95:5 er
((1S,3R,5S)-3,5-Diphenyl-6-oxabicyclo[3.1.0]hexan-1-yl)(phenyl)methanone (6): A 25 mL round bottom flask equipped with a magnetic stir bar was charged with $\mathbf{4 a a}(97.3 \mathrm{mg}, 0.30 \mathrm{mmol}$, 95:5 er), m-chloroperoxybenzoic acid ($50-55 \mathrm{wt} \%, 414 \mathrm{mg}$, ca. $1.2 \mathrm{mmol}, 4$ equiv) and sodium bicarbonate ($100.8 \mathrm{mg}, 1.20 \mathrm{mmol}$, 4 equiv), followed by the addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$. The mixture was stirred at rt for 48 h . The reaction progress was monitored by GC-MS as R_{f} of the product was very close to that of the starting material. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and washed with sat. $\mathrm{NaHCO}_{3} \mathrm{aq}(2 \times 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash column chromatography to afford the product as a colorless oil ($36.9 \mathrm{mg}, 36 \%$); $R_{\mathrm{f}} 0.31$ (hexane/EtOAc $=19 / 1$); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H})$, 7.41-7.31 (m, 8H), 7.27-7.17 (m, 4H), 3.41-3.32 (m, 1H), 2.80-2.64 (m, 4H); ${ }^{13}$ C NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 195.8,142.2,135.8,134.5,133.3,129.0,128.6,128.4,128.2,128.1,127.4,126.7,126.0$, 75.9, 72.5, 39.5, 38.9, 38.7; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 341.1542$, found 341.1544; $[\alpha]^{25} \mathrm{D}=-7.80\left(c=1.30\right.$ in $\mathrm{CHCl}_{3}, 95: 5$ er sample $)$.

HPLC analysis: Daicel CHIRALPAK ID; hexane: $i-\mathrm{PrOH}=98: 2$; detection wavelength $=254 \mathrm{~nm}$; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=9.9 \mathrm{~min}$ (minor) and 12.0 min (major), 95:5 er.

1 Det.A Ch1 / 254nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area $\%$
1	9.883	49.464
2	12.075	50.536
Total		100.000

$u V$

1 Det.A Ch1 / 254nm

Detector A Chl 254nm PeakTable		
Peak\#	Ret. Time	Area \%
1	9.856	5.122
2	12.041	94.878
Total		100.000

4aa
$0.3 \mathrm{mmol}, 95: 5 \mathrm{er}$

7
75%, $95: 5$ er
((1S,4S)-1-Benzyl-2,4-diphenylcyclopent-2-en-1-yl)(phenyl)methanone (7): A 10 mL schlenk flask equipped with a magnetic stir bar was charged with $\mathbf{4 a a}(97.3 \mathrm{mg}, 0.30 \mathrm{mmol}, 95: 5 \mathrm{er}$) and anhydrous THF (3 mL) under nitrogen atmosphere. The mixture was cooled to $-78^{\circ} \mathrm{C}$, and lithium bis(trimethylsilyl)amide (1.3 M in THF, $0.23 \mathrm{~mL}, 0.30 \mathrm{mmol}$) was added slowly. The resulting pale yellow mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The mixture was cooled again to $-78^{\circ} \mathrm{C}$, followed by dropwise addition of benzyl bromide (1.25 equiv, $64.4 \mathrm{mg}, 0.375 \mathrm{mmol}$). The reaction mixture was gradually warmed to room temperature. After 5 h , the reaction mixture was concentrated in vacuo. The crude product was purified by flash column chromatography to afford the product as a colorless oil ($93.5 \mathrm{mg}, 75 \%$); $R_{\mathrm{f}} 0.15$ (hexane/EtOAc $=39 / 1$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-$ 8.06 (m, 2H), 7.53-7.51 (m, 2H), 7.42-7.38 (m, 1H), 7.33-7.28 (m, 4H), 7.27-7.10 (m, 9H), 6.97$6.95(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-$ $2.84(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=13.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, J=13.5,9.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$; peaks showing positive and negative DEPT 135 signals are indicated with + and - , respectively) $\delta 204.2,145.0,144.2,138.0,137.5,135.2(+), 134.6,131.9(+), 131.0(+), 129.5(+)$, $128.9(+), 128.5(+), 128.1(+), 127.8(+), 127.6(+), 127.2(+), 126.7(+), 126.4(+), 126.4(+)$, 66.7, 49.9 (+), $45.2(-), 40.7(-)$; HRMS (ESI) Calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 415.2062$, found
415.2067; $[\alpha]^{25} \mathrm{D}=-62.7\left(c=1.10\right.$ in $\mathrm{CHCl}_{3}, 95: 5$ er sample $)$.

HPLC analysis: Daicel CHIRALPAK IA; hexane: $i-\mathrm{PrOH}=98: 2$; detection wavelength $=254 \mathrm{~nm}$; flow rate $=1.0 \mathrm{~mL} / \mathrm{min} . t_{\mathrm{R}}=8.2 \mathrm{~min}$ (minor) and 11.4 min (major), 95:5 er.

1 Det.A Ch1 / 254 nm

PeakTable		
Detector A Ch1 254 nm		
Peak\# Ret. Time Area \% 1 8.192 50.007 2 11.677 49.993 Total 100.000		

uV

1 Det.A Ch1 / 254nm
Detector A Chl 254nm

Peak\#	Ret. Time	Area \%
1	8.211	4.874
2	11.359	95.126
Total		100.000

Mechanistic Experiments

Nonlinear effect (Figures 1a and S5-S7). The model reaction between 1a and 2a was performed using ligand $\mathbf{L 6}$ of different ees $(25 \%, 50 \%, 75 \%$, and 100%) with variation of other reaction parameters including the catalyst loading (10% (33 mM), $15 \%(50 \mathrm{mM}$), or $20 \%(67 \mathrm{mM})$; Figure 1a), the order of reagent addition (Figure S5), the temperature for the ECA step $\left(0^{\circ} \mathrm{C}\right.$ or $30{ }^{\circ} \mathrm{C}$; Figure S6), and the solvent composition (DMPU or DMPU/THF (1:1); Figure S7), and the ee of the product determined by chiral HPLC.

Figure S5. Nonlinear effects depending on the procedure for the reaction setup: Procedure 1, sequential addition of $\mathrm{Et}_{2} \mathrm{Zn}$, 2a, and $\mathbf{1 a}$ (in this order) to a mixture of $\mathbf{L 6}$ and $4 \AA$ MS in DMPU (standard procedure); Procedure 2, addition of $E t_{2} \mathrm{Zn}$ to a mixture of L6, 1a, 2a, and $4 \AA$ MS in DMPU; Procedure 3, a mixture of L6, $4 \AA \mathrm{MS}$, and $\mathrm{Et}_{2} \mathrm{Zn}$ stirred at room temperature for 10 min , followed by addition of $\mathbf{2 a}$ and $\mathbf{1 a}$. The reactions were conducted with $20 \mathrm{~mol} \%$ catalyst loading at $30^{\circ} \mathrm{C}$ for 30 h , then $100^{\circ} \mathrm{C}$ for 6 h .

Figure S6. Nonlinear effects with the different reaction temperature ($30{ }^{\circ} \mathrm{C}$ and $0{ }^{\circ} \mathrm{C}$). The reactions were conducted with $20 \mathrm{~mol} \%$ catalyst loading. Ee of 3aa was determined for the reaction conducted at $0^{\circ} \mathrm{C}$.

Figure S7. Nonlinear effects with different solvent composition (DMPU and DMPU/THF (1:1)). The reactions were conducted with $15 \mathrm{~mol} \%$ catalyst loading at $30^{\circ} \mathrm{C}$ for 30 h , then $100^{\circ} \mathrm{C}$ for 6 h.

Initial rate study (Figure 1b). The model reaction between 1a and 2a was performed according to the standard procedure ($15 \mathrm{~mol} \%$ catalyst loading, $0^{\circ} \mathrm{C}$) using racemic, scalemic ($50 \% \mathrm{ee}$), or enantiopure L6. Each reaction was tracked by GC analysis of periodically taken aliquots using mesitylene as an internal standard.

Control reaction of 1a (Figure 1c). The cyclopropanol 1a was subjected to the standard conditions in the absence of an enone reaction partner. The conversion of $\mathbf{1 a}$ to propiophenone was tracked by GC analysis of periodically taken aliquots using mesitylene as an internal standard. Full and clean conversion was observed after 48 h . Analogous experiments were also performed using DABCO instead of $\mathbf{L 6}$ or simply omitting $\mathbf{L 6}$.

Solvent effect (Figure 1d). The model reaction between 1a and 2a was performed according to the standard procedure (15% catalyst, $0{ }^{\circ} \mathrm{C}$ for 48 h ; without aldol condensation step) using THF/DMPU mixed solvents with different ratios ($\%$ THF $=0,25 \%, 50 \%, 75 \%$, and 100%). The crude reaction mixture was analyzed by GC to determine the yield of 3aa. The ee of 3aa was determined using a pure sample obtained by preparative TLC of the crude mixture. When the reaction was performed in pure THF, we observed the formation of a substantial amount of 2-methyl-1,3,5-triphenylpentane-1,5-dione (21% GC yield) as a result of Michael addition of propiophenone enolate to 2a. ${ }^{35}$

${ }^{1} H$ NMR analysis of zinc species.

Typical procedure for sample preparation: To a solution of $\mathbf{L 6}(205 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ (5 mL) was added $\mathrm{Et}_{2} \mathrm{Zn}(1 \mathrm{M}$ in hexane, $1.0 \mathrm{~mL}, 1.0 \mathrm{mmol})$ at room temperature. After stirring for $1 \mathrm{~min}, t \mathrm{BuOH}(95 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ was added, and the resulting solution was stirred for 1 h . The solution was then concentrated into dryness under vacuum. Inside a glove box, the resulting solid material was dissolved in benzene- d_{6} and the solution was transferred to a J. Young NMR tube. ${ }^{1} \mathrm{H}$ NMR spectrum of the solution was recorded at room temperature.

As shown in Figures S 8 and S 9 , the samples prepared using $t \mathrm{BuOH}$ or $i \mathrm{PrOH}$ displayed wellresolved quartet ($\sim 0.6 \mathrm{ppm}$) and triplet ($\sim 1.6 \mathrm{ppm}$) that could be assigned to an ethyl group on zinc. In accordance with this signal, we observed gas evolution when adding $\mathrm{Et}_{2} \mathrm{Zn}$ to $\mathbf{L 6}$ but did not do
so upon the following addition of the alcohol. The former spectrum was particularly clean and allowed assignment of other signals to the respective protons with reasonable integrations, while the latter spectrum was more complex and suggested the generation of multiple aggregate species. Note that the reaction using $i \mathrm{PrOH}$ was also conducted in DMSO, which gave a spectrum identical to the one shown in Figure S9. The sample prepared using MeOH gave a much more complicated spectrum with no sign of a $\mathrm{Zn}-\mathrm{Et}$ bond (Figure S10), which implied that both the ethyl groups of $\mathrm{Et}_{2} \mathrm{Zn}$ had been mostly lost by protonation and a mixture of zinc alkoxide aggregates had formed. In addition, ${ }^{1} \mathrm{H}$ NMR spectrum of the sample prepared by swapping L 6 and $t \mathrm{BuOH}$ in the above procedure (Figure S11) turned out to be close to the one shown in Figure S8, suggesting the formation of the same zinc species. Similar to the observation made in the standard sample preparation, we observed gas evolution when adding $\mathrm{Et}_{2} \mathrm{Zn}$ to $t \mathrm{BuOH}$ but did not do so upon the following addition of $\mathbf{L 6}$.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right)$ of zinc species prepared from $\mathbf{L 6}, \mathrm{Et}_{2} \mathrm{Zn}$, and $t \mathrm{BuOH}$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right)$ of zinc species prepared from $\mathbf{L 6}, \mathrm{Et}_{2} \mathrm{Zn}$, and i PrOH.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right)$ of zinc species prepared from $\mathbf{L 6}, \mathrm{Et}_{2} \mathrm{Zn}$, and MeOH .

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right)$ of zinc species prepared from $t \mathrm{BuOH}, \mathrm{Et}_{2} \mathrm{Zn}$, and $\mathbf{L 6}$ (the order of reagent addition: $t \mathrm{BuOH}, \mathrm{Et}_{2} \mathrm{Zn}$, and then $\mathbf{L 6}$).

References

(1) Jia, K.; Zhang, F.; Huang, H.; Chen, Y. J. Am. Chem. Soc. 2016, 138, 1514.
(2) Ye, Z.; Cai, X.; Li, J.; Dai, M. ACS Catal. 2018, 8, 5907.
(3) He, X.-P.; Shu, Y.-J.; Dai, J.-J.; Zhang, W.-M.; Feng, Y.-S.; Xu, H.-J. Org. Biomol. Chem. 2015, 13, 7159.
(4) Mills, L. R.; Zhou, C.; Fung, E.; Rousseaux, S. A. L. Org. Lett. 2019, 21, 8805.
(5) Quan, L. G.; Lee, H. G.; Cha, J. K. Org. Lett. 2007, 9, 4439.
(6) Li, J.; Zheng, Y.; Huang, M.; Li, W. Org. Lett. 2020, 22, 5020.
(7) Mills, L. R.; Monteith, J. J.; dos Passos Gomes, G.; Aspuru-Guzik, A.; Rousseaux, S. A. L. J. Am. Chem. Soc. 2020, 142, 13246.
(8) Mazzanti, S.; Kurpil, B.; Pieber, B.; Antonietti, M.; Savateev, A. Nat. Commun. 2020, 11, 1.
(9) Chong, J. M.; Shen, L.; Taylor, N. J. J. Am. Chem. Soc. 2000, 122, 1822.
(10) Wang, S.-K.; You, X.; Zhao, D.-Y.; Mou, N.-J.; Luo, Q.-L. Chem. Eur. J. 2017, 23, 11757.
(11) Parambi, D. G. T.; Oh, J. M.; Baek, S. C.; Lee, J. P.; Tondo, A. R.; Nicolotti, O.; Kim, H.; Mathew, B. Bioorg. Chem. 2019, 93, 103335.
(12) Ono, M.; Hori, M.; Haratake, M.; Tomiyama, T.; Mori, H.; Nakayama, M. Bioorg. Med. Chem. 2007, 15, 6388.
(13) Martelli, L. S. R.; Vieira, L. C. C.; Paixão, M. W.; Zukerman-Schpector, J.; de Souza, J. O.; Aguiar, A. C. C.; Oliva, G.; Guido, R. V. C.; Corrêa, A. G. Tetrahedron 2019, 75, 3530.
(14) Lator, A.; Gaillard, S.; Poater, A.; Renaud, J.-L. Chem. Eur. J. 2018, 24, 5770.
(15) Yang, X.-Y.; Tay, W. S.; Li, Y.; Pullarkat, S. A.; Leung, P.-H. Organometallics 2015, 34, 5196.
(16) Thomson, C. J.; Barber, D. M.; Dixon, D. J. Angew. Chem. Int. Ed. 2019, 58, 2469.
(17) Arisawa, M.; Torisawa, Y.; Kawahara, M.; Yamanaka, M.; Nishida, A.; Nakagawa, M. J. Org. Chem. 1997, 62, 4327.
(18) Xiong, H.-Y.; Yang, Z.-Y.; Chen, Z.; Zeng, J.-L.; Nie, J.; Ma, J.-A. Chem. Eur. J. 2014, 20, 8325.
(19) Qiu, R.; Qiu, Y.; Yin, S.; Xu, X.; Luo, S.; Au, C.-T.; Wong, W.-Y.; Shimada, S. Adv. Synth. Catal. 2010, 352, 153.
(20) Zhao, D.; Chen, C.-Y.; Xu, F.; Tan, L.; Tillyer, R.; Pierce, M. E.; Moore, J. R. Org. Synth. 2000, 77, 12.
(21) Haraguchi, R.; Matsubara, S. Org. Lett. 2013, 15, 3378.
(22) Kessar, S. V.; Singh, P.; Singh, K. N.; Venugopalan, P.; Kaur, A.; Bharatam, P. V.; Sharma, A. K. J. Am. Chem. Soc. 2007, 129, 4506.
(23) Putatunda, S.; Alegre-Requena, J. V.; Meazza, M.; Franc, M.; Rohal'ová, D.; Vemuri, P.; Císařová, I.; Herrera, R. P.; Rios, R.; Veselý, J. Chem. Sci. 2019, 10, 4107.
(24) Wommack, A. J.; Kingsbury, J. S. J. Org. Chem. 2013, 78, 10573.
(25) Wu, X.; Liu, X.; Zhao, G. Tetrahedron: Asymmetry 2005, 16, 2299.
(26) Bulman Page, P. C.; Allin, S. M.; Maddocks, S. J.; Elsegood, M. R. J. J. Chem. Soc. Perkin Trans. 1 2002, 2827.
(27) Qin, D.-D.; Lai, W.-H.; Hu, D.; Chen, Z.; Wu, A.-A.; Ruan, Y.-P.; Zhou, Z.-H.; Chen, H.-B. Chem. Eur. J. 2012, 18, 10515.
(28) Rodríguez-Escrich, S.; Solà, L.; Jimeno, C.; Rodríguez-Escrich, C.; Pericàs, M. A. Adv. Synth. Catal. 2008, 350, 2250.
(29) Delair, P.; Einhorn, C.; Einhorn, J.; Luche, J. L. Tetrahedron 1995, 51, 165.
(30) García-Delgado, N.; Fontes, M.; Pericàs, M. A.; Riera, A.; Verdaguer, X. Tetrahedron: Asymmetry 2004, 15, 2085.
(31) Zhang, W.; Tang, R.; Yu, H.; Gao, S. Appl. Organomet. Chem. 2014, 28, 545.
(32) Soai, K.; Yokoyama, S.; Hayasaka, T. J. Org. Chem. 1991, 56, 4264.
(33) Mlynarski, J.; Rakiel, B.; Stodulski, M.; Syszczynska, A.; Frelek, J. Chem. Eur. J. 2006, 12, 8158.
(34) CCDC 2056575 and 2056576 contain the supplementary crystallographic data of this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre. (35) Nakagawa, T.; Fujisawa, H.; Nagata, Y.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 2005, 78, 236.

NMR Spectra

$\begin{array}{lllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

L2

4aa

$\begin{array}{lllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

 N

N

$\left.\right|_{\text {in }} ^{\substack{0 \\ i} \stackrel{\sim}{\sim}} \underset{\sim}{\sim}$

4ha

4ha

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

$\stackrel{\stackrel{\infty}{+}}{\stackrel{\infty}{\infty}} \stackrel{+}{\infty}$

รัํํํ
Vivij

In

$\begin{array}{lllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
 (M) H M M N H N N N

3ma (major diastereomer)

3ma (major diastereomer)

$\left.\begin{array}{llllllllllllllllll} & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60\end{array}\right)$

3ma (minor diastereomer)

3ma (minor diastereomer)

4ab

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30

4ad

お

4ag

4ai

4aj

${ }_{6}^{+}{ }_{6}^{\text {® }}$	Nّ000
V/1	

$\begin{array}{lllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

| | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | ppm |
| :--- |

Nom

$4 a q$

| 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | ppm |
| :--- |

バ
$\left.\left.\right|^{\substack{m \infty \\ i n}}\right|_{\substack{\infty \\ \sim}} ^{\substack{\infty \\ \sim}}$

4aq'
(diastereomer of $R_{\mathrm{f}} 0.44$)

| 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | ppm |
| :--- |

DEPT 135

[^0]: ${ }^{i}$ This compound was not stable at room temperature for long-time storage. It should be stored in a fridge, and its purity should be checked by ${ }^{1} \mathrm{H}$ NMR before use.

[^1]: ${ }^{\text {ii }}$ The isolated yield should be lower than the actual recovery of $\mathbf{1 m}$ because of the loss during the benzoylation step and the purification process.

