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1. Proof of the inexistence of structure-induced TE SSP

We derive the field distribution under the same configuration with Fig. 1(a) in the 

manuscript. The corresponding Borgnis potential functions U = 0 and V has the form
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where k1y and k2y represent the normal wave vector components in the region of y > 0 

and y < 0, respectively. A1 and A2 are their corresponding amplitude. The definitions of 

all the other parameters are the same as the TM counterpart in the original manuscript. 

The boundary conditions between the two regions can be expressed as
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                          (S2b)2 1 0| .x x e z yH H E  

Substituting Equations S1 into Equation S2, 
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By simplifying Equation S3, the dispersion relation finally arrives at

                                (S4a)1 2 ,y yk k

                                 (S4b)1 2.A A

Equation S4 tells that the electric and magnetic fields are completely continuous at the 

interface of y = 0, which indicates that TE mode structure-induced SSP cannot exist in 

the two-parallel-plate waveguides.

2. Derivation of Meander-line PMs Dispersion 

In this work, we use the meander line as a practical realization of the PM whose 

structure schematic is illustrated in Figure S1b. Before solving the mode characteristics 

and dispersion relation of the meander line, firstly, we analyze an infinite array of 

parallel strips with period p and width w. The EMWs propagating on the infinite 

periodic strips are TEM with respect to the direction of the strips (x direction).1 

Therefore, the potential function  satisfies the Helmholtz equation ( , , )x y z

                              (S5)2 2 0k     ，

represents the wave vector of the Eigen electromagnetic modes, where εr is 0rk k

the permittivity of the dielectric surrounding the infinite periodic strips and k0 is the 

wave vector in free space. Considering the periodicity in y direction, the general 

solutions of Equation S5 can be written as
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where , ζ represents the order of the harmonics, p represents spatial period 2
p

  


and φ represents the phase between the adjacent spatial units. As indicated in Figure 

S1b, the meander line can be viewed as a part of the array of parallel strips, with the 

ends of the adjacent strips shorted alternatively at the specified position. In this work, 

we only analyze the fundamental mode with ζ equals zero. Therefore, considering the 

multiple reflections on each strip, the voltage and current in the m-th spatial period have 

the form
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in which  is the wave impedance of the infinite periodic strips and is the function ( )Z 

of φ. If each spatial period consists of N conductors, then, the corresponding voltage 

and current can be further expressed as
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In this case, the spatial period of the strips , so the phase difference between the pps
N



adjacent strips is . Considering the alternative 0
2 0,1,2, 1n

np n N
N
     ，

shorted endpoints of the periodic strips, the boundary conditions of the meander line 

can be expressed as
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                      (S9a)1 | ,m m x endpointU U 

                      (S9b)1 | .m m x endpointI I  

Substituting Equation S8 into Equation S9, we get the system of equations
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(S10)

By solving Equation S10, the dispersion of the meander line can be obtained
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In this work, the wave impedance of the TEM mode equals that of the dielectric. 

Therefore, the dispersion relation Equation S11 can be further simplified as

                               (S12)= .kh 

Equation S12 indicates that the phase difference between the adjacent unit cells is 

mainly determined by the length of the strips. This equation can also be interpreted that 

the EMW or the current is propagation along the strip uniformly at the speed of light in 

the dielectric. The effective conductance of the meander line can therefore be 

determined as
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Under this circumstance, arbitrary effective conductance σ can be obtained by adjusting 

the length and period of the strips. 



5

3. Numerical Method to Obtain the Effective Conductance 

It should be noted that Equation S12 is not strictly accurate because the Equation S9 is 

only a set of approximate boundary conditions in which the precondition p << b must 

be met. Besides, the finite specific thickness of the HMMs also limits the length of the 

strips, which further restricts the realizable upper limit of the effective conductance. 

Therefore, in this work, we use the numerical method to accurately obtain the relation 

between the effective conductance and structure parameters. The dispersion of the PMs 
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tell us the effective conductance is determined by the corresponding propagation 

constant kz, which can be calculated by the Eigenvalue solver of COMSOL 

Multiphysics 5.4. 

In order to obtain a larger range of effective conductance with specified strip width b, 

we turn eyes to the width w and period ps of the strips. It’s evident that w and ps are a 

negative correlation with effective conductance. By confirming p = 4w, we calculate

Figure S1. Schematic of the (a) multi-conductor transmission lines and (b) meander lines. 

(c) The effective conductance of the meander lines versus strip width b. At each specified 

b, the red line represents the dynamic range of the effective conductance when p changes 
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from 2 mm to 2b.

the practical range of the effective conductance at each specified strip width b when p 

changes from 2 mm to 2b. Figure S1c illustrates the corresponding results with strip 

width b ranging from 5 mm to 32 mm, from which we can find that a large range of the 

effective conductance can also be obtained by only changing the period p.
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