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Table S1: X-Ray Data Collection and Refinement Statistics 

     Data Collection 

Beamline     SBC19-ID (APS) 

Wavelength (Å)    0.9795 

Resolution range (Å)    40.00 – 1.30 (1.32 – 1.30) 

Space group     P212121 

Unit cell     74.767Å, 88.644Å, 133.402Å 

     90.0°, 90.0°, 90.0° 

Total no, of reflections   1603032 

No. of unique reflections   217263 

Multiplicity     7.4 (7.0) 

Completeness (%)    99.4 (99.1) 

Mean I/σI     21.70 (1.40) 

Wilson B factor    13.59 

Rmerge,      0.08000  

      

Refinement 

Rwork, Rfree    0.113 (0.200), 0.153 (0.213) 

RMSD for bonds (Å)   0.029 

RMSD for angles (°)   2.43 

No. of non-hydrogen atoms 

 Macromolecule   5894 

 Ligands    30 

 Solvent    1128 

 Protein residues   751 

Ramachandran favored/allowed (%)  98.0/2.0 

Ramachandran outliers (%)  0 

Rotamer outliers (%)   1.90 

Clashscore    5.40 

Average B factor (Å2)   20.28 

Molecule/ligands/solvent (Å)  17.35/26.08/35.44 
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Table S2. List of all 11 DapE structures in the PDB, and presence or absence of zinc(II) atoms, 

sulfate, and distance of sulfates from active site arginine residues  

PDB 

ID 

Bacterial 

Species 

Crystallization Conditions # of Zn(II) 

ions in 

Active Site 

# of 

Sulfates in 

Active Site 

Distance from Sulfates to 

Active-site Arginine 

Residues 

1VGY1 Neisseria 

Meningitidis 

Not reported 0 0 N/A 

3IC12 Haemophilus 

Influenzae 

1 M (NH4)2SO4, 0.2 M NaCl, 

and 0.1 M NaOAc, pH 4.4 

 

2 1 in Chain A 

 

 

 

2 in Chain B 

Chain A 

o 3.1 Å to Arg179 

o 3.0 Å to Arg258 

o 5.2 Å to Arg178 

Chain B Sulfate 1 

o 2.5 Å to Arg178 

o 4.5 Å to Arg179 

Chain B Sulfate 2 

o 3.0 Å to Arg329 

o 3.0 Å to Arg258  

3ISZ2 Haemophilus 

Influenzae 

1 M (NH4)2SO4, 0.2 M NaCl, 

and 0.1 M NaOAc, pH 4.4 

1 1 in Chain A 

 

 

 

 

1 in Chain B 

Chain A 

o 2.7 Å to Arg178 

o 2.9 Å to Arg179 

o 6.5 Å to Arg258 

o 6.5 Å to Arg329 

Chain B 

o 2.9 Å to Arg178 

o 2.8 Å to Arg179 

o 3.7 Å to Arg258 

o 4.5 Å to Arg329 

4O233 Neisseria 

Meningitidis 

20% (w/v) PEG 3350, 100 mM 

HEPES (pH 7.5); 0.1 M 

succinic acid 

1 in Chain A 

2 in Chain B 

1 in Chain A 

 

1 in Chain B 

Chain A 

o 3.25 Å to Arg259 

Chain B 

o 2.9 Å to Arg259 

4PPZ3 Neisseria 

Meningitidis 

15% (w/v) PEG 3350 and 100 

mM succinic acid (pH 7.0), 

0.2M Li2SO4, 0.1M HEPES 

2 in Chain A 1 in Chain A Chain A 

o 2.8 Å to Arg259 

 

4PQA3 Neisseria 

Meningitidis 

0.2 M NH4OAc,0.1 M TRIS 

(pH 8.5); 25% (w/v) PEG 3350 

2 in Chain A 1 in Chain A 

Captopril is 

also bound 

Chain A 

o 2.9 Å to Arg259 

4ONW4 Vibrio 

Cholerea 

20% (v/v) 1,4-butanediol:0.1 

M NaOAc, pH 4.5 

 

0 0 Only the Catalytic Domain is 

crystallized in this structure 

4OP44 Vibrio 

Cholerea 

20% (v/v) 1,4-butanediol: 0.1 

M NaOAc, pH 4.5 

2 in Chain A 

2 in Chain B 

0 Only the Catalytic Domain is 

crystallized in this structure 

4H2K4 Haemophilus 

Influenzae 

0.2 M NH4OAc, 0.1 M bis-

TRIS, 25% (w/v) PEG 3350, 

pH 5.5 

 

2 in Chain A 

2 in Chain B 

0 Only the Catalytic Domain is 

crystallized in this structure 

5UEJ Neisseria 

Meningitidis 

0.2 M Li2SO4, 0.1 M Tris:HCl, 

1.26 M (NH4)2SO4, 0.05 M 

DMSO, pH 8.5 

2 in Chain A 

2 in Chain B 

2 in Chain A 

 

 

 

2 in Chain B 

Chain A: Sulfate 1 

o 3.5 Å to Arg179 

Chain A Sulfate 2 

o 4 Å to Arg259 

Chain B: Sulfate 1 

o 3 Å to Arg179 
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Chain B Sulfate 2 

o 3 Å o Arg259 

5VO35 Haemophilus 

Influenzae 

0.05 M HEPES (pH 7.3), 

10.7% (w/v) PEG MME 2000, 

8.6% (w/v) PEG 2000, 0.15M 

HEPES, 0.06 M sodium 

potassium tartrate 

 

2 in Chain A 

2 in Chain B 

0 Products-bound closed 

conformation structure 
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Figure S1: Definition of two angles and one dihedral angle to define conformational flexibility 

of DapE and used in the preparation of Figure S2.  A. Angle X is the plane angle formed by the α 

carbons of residues A299 (designated as an orange sphere in the Figure), A294 (red) and B152 

(cyan).  This measures the shift in the X direction.  B. Angle Y is the plane angle formed by the 

α carbons of residues A299 (orange), A294 (red) and B376 (purple).  This measures the shift in 

the Y direction.  C.  Angle Z is the dihedral angle formed by the α carbons of residues A299 

(orange), A294 (red), B152 (cyan) and B376 (purple.  This measures the shift in the Z direction.   
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Figure S2. 3D plot of angles X, Y and Z plotted for 8 DapE structures, showing the flexibility of 

the protein when different crystallographic structures are compared.  The PDBids are (1) 3ISZ, 

(2) 3TX8, (3) 5UEJ, (4) 1VGY, (5) 3IC1, (6) 4PPZ, (7) 3PFE and (8) 5VO3.  The only closed 

structure in 5VO3, which is also the only structure to show a significant shift in the Z direction. 

 

Figure S3. IC50 curve for lithium sulfate versus DapE. IC50 = 13.8 ± 2.81.  
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Figure S4. HiDapE saturation curves with varying substrate and sulfate concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. HiDapE saturation curve with varying substrate concentration in the absence of 

sulfate.  
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Figure S6. HiDapE saturation curve with 10 mM Li2SO4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure S7. HiDapE saturation curve with 20 mM Li2SO4. 
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 Figure S8. HiDapE saturation curve with 30 mM Li2SO4. 
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Figure S9. (A) Average RMSD from initial to target structure for the simulations with force on 

(1) both subunits, (2) subunit A, and (3) subunit B. The blue line represents the RMSD for 

subunit A and the green line represents the RMSD for subunit B.  (B) Distances between the 

amide oxygen in L,L-SDAP and the proximal zinc atom in the active site in the simulations with 

force on: (1) both subunits, (2) subunit A, and (3) subunit B. The blue lines show the distance in 

subunit A over time while the green lines show the distance in subunit B over time. (C) 

Distances between His195 in the communications domain and the proximal zinc atom in the 
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active site in the simulations with the force on: (1) both subunits, (2) subunit A and (3) subunit 

B. The blue lines show the distance between His195B and the zinc in subunit A over time while 

the green lines show the distance between His195A and the zinc in subunit B over time. (D) 

Distances between Arg179 and L,L-SDAP with the force on: (1) both subunits, (2) subunit A, 

and (3) subunit B. The blue lines show the distance between Arg179 and the substrate in subunit  

A over time and the green lines show the distance between Arg179 and the substrate in subunit B 

over time. (E) Distances between Arg259 and L,L-SDAP with the force on: (1) both subunits, (2) 

subunit A, and (3) subunit B. The blue lines show the distance between Arg259 and the substrate 

in subunit A over time while the green lines show the distance between Arg259 and the substrate 

in subunit B over time. (F) Calculated total interaction energy between the bound substrate and 

the enzyme in the simulations with force on: (1) both subunits, (2) subunit A and (3) subunit B. 

The blue lines show the interaction energy between the substrate bound to subunit A and the 

enzyme and the green lines show the interaction energy between the substrate bound to subunit B 

and the enzyme. (G) Calculated total interaction energy between the bound substrate and 

residues Arg179 and Arg259 in the simulations with force on: (1) both subunits, (2) subunit A 

and (3) subunit B. The blue lines show the interaction energy between the substrate bound to 

subunit A and the residues and the green lines show the interaction energy between the substrate 

bound to subunit B and the residues.  
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Figure S10. Active site of DapE at the end of the TMD simulation in a subunit with force 

applied. The distance from the active site water molecule to the carbonyl carbon whose amide 

bond is cleaved by the enzyme is 3.39Å 
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Figure S11. Image of the zinc atoms (shown as spheres) in the active site and its coordinated 

residues at (A) t = 0 and (B) t = 50 ns. 

 

Figure S12. Image of a subunit of DapE overlaid at the communications domain at t = 0 (in red) 

and t = 50 ns (in blue) with the force applied to that subunit. 
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Figure S13. Image of the substrate from a subunit with the force applied at (A) t = 0 and (B) t = 

50 ns overlaid with the products from the target structure. The substrate moves about 7 Å closer 

to the position of the products over the simulation as measured from the amide nitrogen in the 

substrate to the corresponding nitrogen in the product. 
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