Supporting Information for Manuscript Entitled:

Dynamics of Topological Network formed by Movable Crosslinks: Effect of Sliding Motion on Dielectric and Viscoelastic Relaxation Behavior

Yu Kashiwagi¹, Osamu Urakawa¹*, Sheng Zhao⁴, Yoshinori Takashima^{1,2}, Akira Harada³, Tadashi Inoue¹*

 Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

 Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan

3. The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan

Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee
37996, United States

Content

- 1. Rheological and dielectric spectra of PEA-Ac β CD(*x*)
- 2. Molar concentration and temperature dependences of the relaxation strength for the slow mode in PEA-AcyCD(x) and PEA-Ac β CD(x)
- 3. Arrhenius fittings of PEA-Ac γ CD(*x*) and PEA-Ac β CD(*x*)
- 4. Dielectric spectra of PEA / γ CD monomer and PBA/ β CD monomer mixtures

1. Rheological and dielectric spectra of PEA-Ac β CD(x)

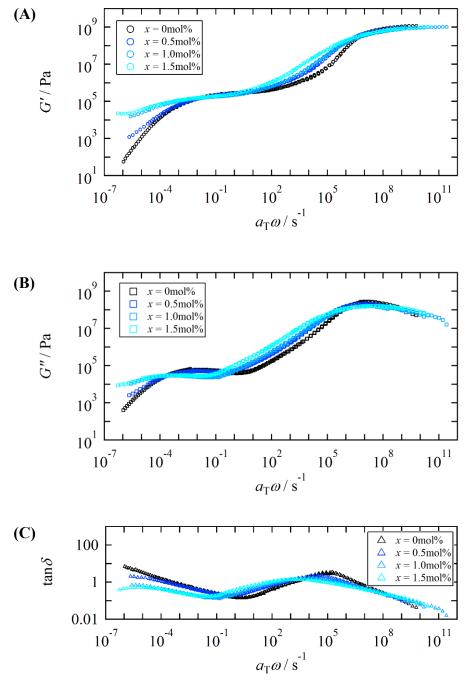


Figure S1. Composite curves of PEA-Ac β CD(*x*) at $T_r = T_g + 50$ °C. Circle, square, and triangle represent (A) storage modulus, (B) loss modulus, and (C) loss tangent, respectively.

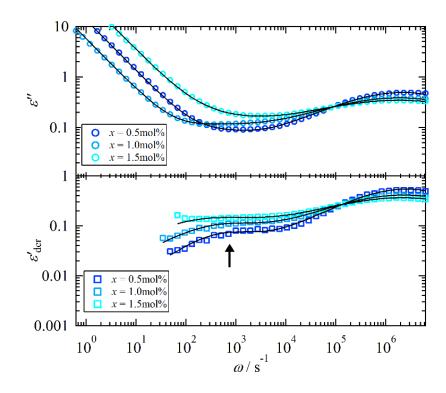


Figure S2. Frequency dependence of dielectric loss ε'' and derivative of permittivity ε'_{der} for PEA-Ac β CD(x) of $x_{ini} = 1.0 \text{ mol } \%$ at $T_g + 50^{\circ}$ C. Black lines represent the fitting results derived from Havriliak-Negami functions. Black arrows represent the new relaxation peak derived from the movable crosslink.

2. Molar concentration and temperature dependences of the relaxation strength for the slow mode in PEA-AcγCD(x) and PEA-AcβCD(x)

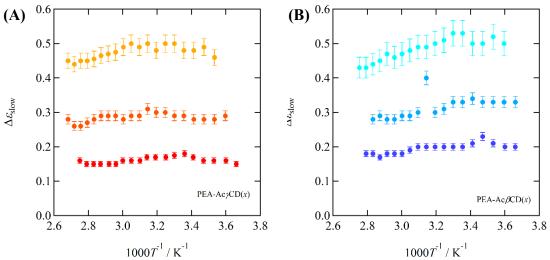


Figure S3. Temperature dependence of relaxation strength of the slow mode for (A) PEA-Ac γ CD(x) and (B) PEA-Ac β CD(x).

3. Arrhenius fittings of PEA-Ac γ CD(x) and PEA-Ac β CD(x)

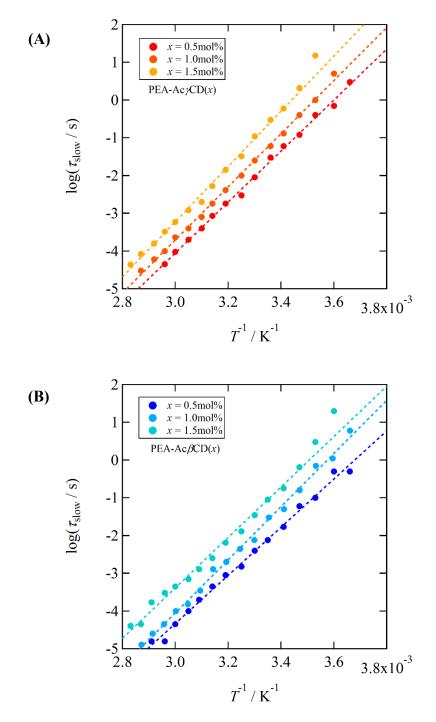


Figure S4. Arrhenius fittings of the slow mode of (A) PEA-Ac γ CD(x) and (B) PEA-Ac β CD(x).

	<i>x</i> / mol%	$\log (\tau_0 / s)$	$E_{\rm a}$ / kJ mol ⁻¹
PEA-Ac γ CD(x)	0.5	-24.3	129
	1.0	-24.8	135
	1.5	-25.2	140
PEA-Ac β CD(x)	0.5	-23.5	122
	1.0	-25.2	135
	1.5	-23.4	128

Table S1. Fitting parameters used in the Arrhenius equation in equation (4).

4. Dielectric results of PEA/γCD monomer and PBA/βCD monomer mixture

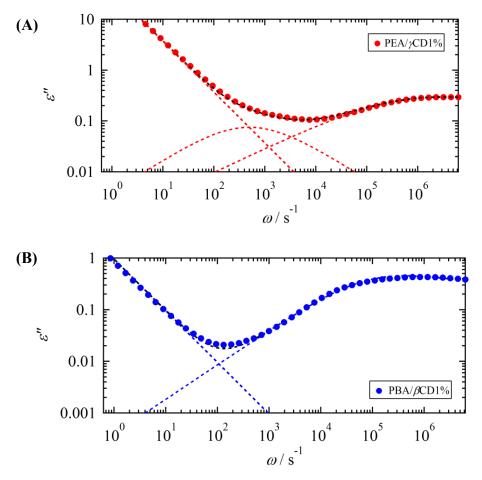


Figure S5. Frequency dependence of dielectric loss ε'' for (A) PEA / Ac γ CD monomer mixture and (B) PBA / Ac β CD monomer mixture with the molar concentration of the Ac γ CD monomer or Ac β CD monomer to be 1.0mol% at T = 313K. The dashed lines represent the fitting results with eq 1.