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S1 Generation of Virtual Compounds  
 

A physiological based pharmacokinetic (PBPK) model can be parameterized directly from ADME 

properties, making it the ideal tool to understand their impact on dose.  The parameters and 

ranges used for in silico PKPD experiments are defined in Table S1.  A single set of 30,000 virtual 

compounds was generated, each described by the list of parameters in Table S1.  Parameters 

were randomly sampled from either continuous uniform or log-uniform distributions.  Log-

uniform distributions were used in cases where the range spanned two or more log units to 

ensure representative sampling across the parameter space.  Refer to Figure S1 for more 

details. 

Parameter Units Distribution Type Lower Limit Upper Limit 

IC50/EC50* ng/mL log-uniform 0.01 20 

CLint mL/min/g Liver log-uniform 1 100 

fup dimensionless log-uniform 0.001 0.7 

B:P dimensionless uniform 0.5 5 
solubility mg/mL log-uniform 0.01 5 

Peff x10-4 cm/s log-uniform 0.01 5 

Deff x10-6 cm/s uniform 1.6 18 

logP dimensionless uniform 0 6 

AB class dimensionless discrete 1 6 
Table S1. Parameters and distributions used for in silico experiments.  *IC50 was used in direct response, indirect 

response, and precursor inhibition models while EC50 was used in the tumor cell death model. CL int is unbound 
intrinsic clearance; fup is fraction unbound in plasma; B:P is blood-to-plasma ratio; Peff is effective jejunal 

permeability; Deff is effective diffusion coefficient; AB class is the acid/base classification. 

The parameter “AB class” refers to the classification of the compound as a strong acid, strong 

base, weak acid, weak base, zwitterion, or neutral species at physiological pH.  Each compound 

was randomly assigned an integer between 1 and 6 that represents an acid/base classification.  

After the AB class of the compound was defined, the acidic and basic pKa’s of the compound 

were randomly sampled from a uniform distribution using the ranges listed in Table S2. 

AB Class 
Acidic pKa 

Lower Limt 

Acidic pKa 

Upper Limit 

Basic pKa 

Lower Limit 

Basic pKa 

Upper Limit 

strong acid 1 6.99 NA NA 

strong base NA NA 7 13 

weak acid 7 13 NA NA 

weak base NA NA 1 6.99 
neutral NA NA NA NA 

zwitterion 1 6.99 7 13 
Table S2. Acidic and basic pKa ranges for each compound class. 
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Figure S1 compares uniform and log-uniform distributions for a random variable ranging from 

0.01 to 5, similar to those used for solubility and permeability.  The median value for the 

uniform distribution is approximately 2.5, meaning 50% of the values are above 2.5.  When 

considering the typical ranges for parameters like solubility and permeability, this is an 

unrealistic representation of the expected values.  Alternatively, the median of the log-uniform 

distribution is a better representation of the expected range of values.  

Figure S1. Comparison of (A) uniform and (B) log-uniform distributions with a range between 0.01 and 5.  10,000 
random samples with 100 bins were used for each figure. 
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S2 Pharmacodynamic models 
 

The four pharmacodynamic models used in this manuscript to demonstrate the utility of Target 

Pharmacology Assessment are as follows: 

1. Indirect Response model (with fast turnover) – Drug inhibits the production of a 

biomolecule with a fat turnover time whose level is the intended pharmacological 

outcome.  For extremely fast turnover time (i.e. seconds) this mathematically 

approximates a direct response model in which drug directly agonizes/antagonizes 

biomolecule whose activity is the intended PD outcome. 

2. Indirect Response model (with slow turnover) - Drug Inhibits the production of a 

biomolecule with a slow turnover time whose level is the intended pharmacological 

outcome. 

3. Precursor Inhibition Model - Drug inhibits the activation of a precursor to form the 

active moiety, whose level is the intended pharmacological outcome. 

4. Cell Death Response Model - Drug promotes the death rate of tumor cells. 

The pharmacodynamic responses of models 1 through 3 were simulated using the same set of 

equations that describe the activation of precursor (model 3) as below 

𝑑𝑃

𝑑𝑡
= 𝑘𝑠𝑦𝑛 − 𝑘𝑎𝑐𝑡 ∙ (1 −

𝐼𝑚𝑎𝑥𝑓𝑢𝑇𝐶𝑇

𝐼𝐶50+𝑓𝑢𝑇𝐶𝑇

)∙ 𝑃 − 𝑘𝑑𝑒𝑔,𝑃 ∙ 𝑃                                     (𝑆2.1) 

𝑑𝐴

𝑑𝑡
= 𝑘𝑎𝑐𝑡 ∙ (1 −

𝐼𝑚𝑎𝑥𝑓𝑢𝑇𝐶𝑇

𝐼𝐶50+𝑓𝑢𝑇𝐶𝑇

) ∙ 𝑃 − 𝑘𝑑𝑒𝑔,𝐴 ∙ 𝐴                                                   (𝑆2.2) 

Where 𝑃 and 𝐴 are the level of precursor and active biomolecules, respectively, and the 

intended pharmacological outcome is represented by the level of 𝐴. The activation of the 

precursor to form the active biomolecule is inhibited by the unbound drug concentration in the 

target tissue, 𝑓𝑢𝑇𝐶𝑇 represented by a sigmodal inhibition function. 

These equations are used to approximate the pharmacodynamic behavior of model 1 and 

model 2 (no precursors) by setting a very high baseline precursor level so that precursor level 

remains essentially constant throughout the simulation.  So, for model 1 and 2, the above 

equations become 

𝑑𝐴

𝑑𝑡
→ 𝑘𝑑𝑒𝑔,𝐴 ∙ 𝐴0 ∙ (1 −

𝐼𝑚𝑎𝑥𝑓𝑢𝑇𝐶𝑇

𝐼𝐶50+𝑓𝑢𝑇𝐶𝑇

) − 𝑘𝑑𝑒𝑔,𝐴 ∙ 𝐴                                                 (𝑆2.3) 

 

 

The parameters for model 1-3 used in the simulations were tabulated in the table below 
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Parameter Description Unit Model 1 Model 2 Model 3 

𝑃𝑜 

Baseline level of 

the precursor 
biomolecule 

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 1000 1000 2 

𝐴𝑜  

Baseline level of 
the active 

biomolecule 
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 1 1 1 

𝑘𝑠𝑦𝑛 
Synthesis rate of 

the precursor 
biomolecule 

1 ℎ𝑜𝑢𝑟⁄  (𝑘𝑑𝑒𝑔,𝑃 + 𝑘𝑎𝑐𝑡) ∗ 𝑃0  

𝑘𝑎𝑐𝑡 
Activation rate 

constant 
1 ℎ𝑜𝑢𝑟⁄  

𝑘𝑑𝑒𝑔,𝐴 ∙ 𝐴0

𝑃0
 

𝑘𝑑𝑒𝑔,𝑃 ∙ 
Degradation rate of 

the precursor 
biomolecule 

1 ℎ𝑜𝑢𝑟⁄  1000 1000 0.01 

𝑘𝑑𝑒𝑔,𝐴 
Degradation rate of 

the active 
biomolecule 

1 ℎ𝑜𝑢𝑟⁄  10 0.01 0.1 

𝐼𝑚𝑎𝑥 

Maximal inhibition 

of the activation 
rate 

dimensionless 1 1 1 

𝐼𝐶50 

Unbound target 
concentration 

achieving 50% 
inhibition 

𝑛𝑔 𝑚𝐿⁄  variable variable variable 

Q Tissue Blood Flow mL/hour 140 140 140 

V Tissue Volume mL 95.2 95.2 95.2 
Table S3. Parameter for model 1-3. 

The pharmacodynamic response for model 4 is represented by the following differential 

equation 

𝑑𝑇

𝑑𝑡
= (𝑘𝑔𝑟𝑜 − 𝑘𝑑𝑒𝑎∙ (

𝐸𝑚𝑎𝑥𝑓𝑢𝑇𝐶𝑇

𝐸𝐶50+𝑓𝑢𝑇𝐶𝑇

)) ∙ 𝑇                                                (𝑆1.4) 

𝑑𝑍1

𝑑𝑡
= 𝑘𝑑𝑒𝑎 ∙ (𝑇 − 𝑍1) 

𝑑𝑍2

𝑑𝑡
= 𝑘𝑑𝑒𝑎 ∙ (𝑍1 − 𝑍2) 

𝑑𝑍3

𝑑𝑡
= 𝑘𝑑𝑒𝑎 ∙ (𝑍2 − 𝑍3) 
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𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇 + 𝑍1 + 𝑍2 + 𝑍3 

 

Where 𝑇 represents the mass of proliferating tumor cells (proportional to the number of tumor 

cells), Z1, Z2, and Z3 represent various stages of cell damage that ultimately lead to cell death. 

The rate of proliferating tumor cell damage is promoted by the unbound drug concentration in 

the target tissue, 𝑓𝑢𝑇𝐶𝑇 represented by the sigmodal stimulatory function. 

The parameters for model 4 used in the simulations are tabulated in the table below.  Note in 

this case the tumor tissue was assumed to be well perfused. 

Parameter Description Unit Parameter values 

𝑇𝑜 
Baseline level of 

the tumor cell mass 
𝑔𝑟𝑎𝑚  1.3 

𝑘𝑔𝑟𝑜 
First order growth 
rate of the tumor 

cells 
1 ℎ𝑜𝑢𝑟⁄  0.01 

𝑘𝑑𝑒𝑎 

First order death 
rate of the tumor 

cells 
1 ℎ𝑜𝑢𝑟⁄  0.05 

𝐸𝑚𝑎𝑥 Maximal death rate dimensionless 1 

𝐸𝐶50 

Unbound target 
concentration 

achieving 50% 
death rate 
promotion 

𝑛𝑔 𝑚𝐿⁄  variable 

Q Tumor blood flow mL/hour 35 

V Tumor volume mL 1.3 
Table S4. Parameters for model 4. 
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S3 Quantifying the distinction between fast and slow tissues in terms 

of physiological and ADME parameters 
 
As mentioned in the main text, several factors such as tissue partitioning, permeability, and the 

action of active uptake or efflux transporters can result in prolonging tissue MRT over blood 

MRT.  The impact of these factors can be estimated using the following equations (derived in 

Supplementary Materials 4),  

𝐴𝑈𝐶𝑢𝑇 = (
𝜙𝑏

𝜙𝑇

) (
𝑃𝑆𝐴𝑓

𝑃𝑆𝐴𝑟

) ∙ 𝐴𝑈𝐶𝑢𝑏                                                                                            (𝑆3.1)  

𝑀𝑅𝑇𝑇 = 𝑀𝑅𝑇𝑏 +
𝑉𝑣

𝑄𝑇
+ (

𝜙𝑏𝑓𝑢𝑏𝑃𝑆𝐴𝑓

𝜙𝑇𝑓𝑢𝑇𝑃𝑆𝐴𝑟

)
𝑉𝑇

𝑄𝑇
+

𝑉𝑇

𝜙𝑇𝑓𝑢𝑇 𝑃𝑆𝐴𝑟
,                                            (𝑆3.2) 

where 𝑉𝑣 is the tissue-associated vascular volume (including rapidly equilibrating interstitial 

spaces),  𝑉𝑇 is the tissue volume (intracellular and slowly equilibrating interstitial spaces), 𝑓𝑢𝑏 

and 𝑓𝑢𝑇 are the unbound fractions in blood and tissue, respectively, 𝜙𝑏  and 𝜙𝑇 are the fraction 

of unbound drug which is unionized in blood and tissue, respectively, 𝑄𝑇 is the tissue blood 

flow, and 𝑃𝑆𝐴𝑓 and 𝑃𝑆𝐴𝑟  are the influx and efflux permeability-surface area products, 

respectively. (Note that 𝜙𝑏 𝑓𝑢𝑏 is simply the fraction of blood compound, which is unbound and 

unionized, and similarly for tissue.) 

Equation (S3.2) shows the extent that tissue MRT exceeds blood MRT depends on three terms.  

The first term, 𝑉𝑣 𝑄𝑇⁄ , is the time it takes for blood perfusion to a tissue to completely refresh 

the “vascular” volume of the tissue. The physiological interpretation of the ”vascular volume” 

must be made with caution, as it depends on which membrane - capillary wall or the cell 

membrane - is the rate-limiting step in the drug’s passage from capillary blood through the 

interstitial fluid to reach the intracellular fluid of the target tissue. In tissues such as muscle, fat, 

and CNS, whose endothelium cells form a continuous wall around the lumen of the capillary 

with tight junctions between cells, the capillary wall would be the rate limiting membrane, and 

in that case 𝑉𝑣 refers to the volume of capillary space (typically 2-4% of the total tissue volume).  

However, in tissues with fenestrated capillaries - such as intestinal villi, endocrine glands, and 

kidney glomerular - or sinusoidal capillaries - such as liver, bone marrow, and spleen sinusoidal - 

the capillary wall is porous to allow small molecules to pass with relative ease .  For these 

tissues, 𝑉𝑣 would encompass both capillary space and the interstitial fluid, where drug 

concentration can equilibrate quickly, with plasma membrane being the barrier rate -limiting 

the drug from reaching the intracellular space.   

The second term in the equation quantifies the contribution of blood perfusion to the tissue 

residence time. 𝑉𝑇 𝑄𝑇⁄  is the time it takes for blood flow to completely turn over the volume of 

tissue and is analogous to 𝑉𝑣 𝑄𝑇⁄  from the vascular space. The prefactors are just the blood-to-

tissue partition coefficient, 𝐾𝐵 = (𝜙𝑏𝑓𝑢𝑏 𝑃𝑆𝐴𝑓) (𝜙𝑇𝑓𝑢𝑇𝑃𝑆𝐴𝑟)⁄ , and amplify the contribution of 
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perfusion turnover time to the tissue resistant time.  For compounds with low tissue 

partitioning and without tissue uptake, 𝐾𝐵 ≈ 1, and the contribution from this term is minimal.  

Uptake transport increases, while efflux transport reduces, tissue resident time. 

The third term, 𝑉𝑇 (𝜙𝑇𝑓𝑢𝑇𝑃𝑆𝐴𝑟)⁄ , relates to the tissue residence time of a compound due to 

reverse permeability flux. For highly permeable compounds, this term’s contribution is minimal. 

Remember, the membrane in question depends on whether capillary wall or the cell membrane 

is rate limiting the compound’s crossing.  

Despite its apparent complexity, Eq. (S3.2) predicts changes which are in accord with our 

intuition: fast tissues are those with rapid blood flow (relative to tissue volume) and little tissue 

accumulation, while slow tissues have relatively slow blood flow and/or large tissue 

accumulation. 

The table below provides quantitative data on spleen, a prototypical fast tissue, and muscle, a 

prototypical slow tissue.  

 

Parameters Spleen Muscle 

Physiological and 
anatomical 

parameters 

Blood Flow (mL/min) 150 538 

Tissue Volume (mL) 142 16,946 

Volume of vascular space (% of tissue 
volume) 

23 3 

Surface area available for permeation 
𝑆𝐴 𝑉𝑇⁄  (cm2/g) 

250 70 

Contribution to 

tissue resident 
time (min) by 

various terms in 

Eqn 3.2 

by perfusion turnover of “vascular” 
space 𝑉𝑣 𝑄𝑇⁄  (1) 0.5 0.9 

by perfusion turnover 
of tissue volume 

𝑉𝑇 𝑄𝑇⁄  (2) 

(see note 2) 

𝐾𝐵=1 0.5 30.5 (≈0.5 hr) 

𝐾𝐵=3 1.4 91.6 (≈1.5 hr) 

𝐾𝐵=10 4.8 305.4 (≈5 hr) 

by membrane 
permeation, 

𝑉𝑇 (𝜙𝑇𝑓𝑢𝑇𝑃𝑆𝐴𝑟)⁄ , 
assuming  

 𝑓𝑢𝑇 = 𝑓𝑢𝑏 = 0.1,  

𝜙𝑇 = 𝜙𝑏 = 1,  
and  𝐾𝐵 = 1 (3) 

𝑃=100x10-6 
cm/s 

6.7 23.8 

𝑃=30x10-6 
cm/s 

22.2 79.4 (≈1 hr) 

𝑃=10x10-6 
cm/s 

66.7 (≈1 hr) 238.1 (≈4 hr) 

Table S5. Calculations of Mean Tissue Resident Time using spleen and muscle as examples of “fast” and “slow” 
tissues. 
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1. Unlike other terms, this delay is independent of the ADME properties of the drug, such as tissue 

partitioning. 

2. Similar numbers can be obtained for fat, skin, or bone.  The contribution of this term to the 

tissue residence time is amplified by 𝐾𝐵.  For spleen, the amplification lead to negligible increase 

in tissue resident time.  However, for muscle, an increase in 𝐾𝐵 would significantly increase 

residence time (e.g. if 𝐾𝐵 = 10, then this term would lead to a 5-hour slowdown in the tissue 

residence time, which becomes significant) 

3. The surface area available for permeation is not available for all tissues.  However, available 

literature data (Gersh and Still 1945, Pappenheimer, Renkin et al. 1951, Crone 1963, Casley-

Smith, O'Donoghue et al. 1975) suggests that some tissues such as skin, muscle and fat all have 

small surface to tissue mass ratio (S/V) around 70 cm/g or less, while many other tissues, such as 

brain, kidney, liver, and lung all have large S/V ratio around 250 cm2/g, and intestine has a value 

of 125 cm2/g.  For highly permeable compounds (e.g. 100x10-6 cm/s), this term adds relatively 

little to the lengthening of tissue residence time.  The tissue residence time, however, is 

significantly prolonged for poorly permeable compounds (e.g. 10x10-6 cm/s), particularly for 

slow tissues such as muscle. 
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S4 Relationship between blood and tissue drug concentrations in 

terms of physiological and ADME parameters 

 
Figure S2. Schematic representation of the compartmental PK model investigated in this section. The model is a 
modified two-compartment model, where the peripheral compartment is divided into tissue-associated vascular 
space and tissue space (intracellular and slowly equilibrating interstitial spaces). 

 

Here we investigate the relationship between the drug concentrations in blood and tissue in 

terms of physiological and ADME properties, in order to quantify how this relationship depends 

on tissue type and tissue partitioning. The outputs of this analysis are equations (1), (2), and (3) 

in the main text, which relate unbound tissue AUC to unbound blood AUC, and tissue MRT to 

blood MRT, respectively. 

 

We consider a modified two-compartment model with a central compartment and a peripheral 

compartment (Figure S2), where the peripheral compartment is divided into two sub-

compartments representing vascular and tissue spaces (the latter representing intra-cellular 

space and slowly equilibrating interstitial spaces). The drug is dosed in the gut and a fraction, 𝐹, 

is absorbed via a first-order process, with rate 𝑘𝑎, into the central compartment. Let the drug 

concentration in the 𝑖th compartment be 𝑐𝑖 and the compartment volume be 𝑉𝑖 , where 𝑖 = 1 

for the central compartment, 𝑖 = 𝑣 for the vascular compartment,  𝑖 = 𝑇 for the tissue 

compartment, and 𝑖 = GI for the gut compartment. Let 𝑎𝑖 = 𝑉𝑖𝑐𝑖 be the amount of drug in the 

𝑖th compartment. Let the total peripheral volume be 𝑉2 = 𝑉𝑣 + 𝑉𝑇 , the total amount of drug in 

the peripheral compartment be 𝑎2 = 𝑎𝑣 + 𝑎 𝑇, and the peripheral concentration be 𝑐2 =

𝑎2/𝑉2. Then the kinetic equations are given by 

𝑑𝑎1

𝑑𝑡
= −𝐶𝐿 𝑐1 − 𝑄𝑇𝑐1 + 𝑄𝑇𝑐𝑣 + 𝐹𝑘𝑎𝑎𝐺𝐼                                                   (𝑆4.1) 

𝑑𝑎𝑣

𝑑𝑡
= 𝑄𝑇𝑐1 − 𝑄𝑇𝑐𝑣 − 𝜙𝑏𝑓𝑢𝑏 𝑃𝑆𝐴𝑓𝑐𝑣 + 𝜙𝑇𝑓𝑢𝑇𝑃𝑆𝐴𝑟𝑐𝑇                          (𝑆4.2) 

𝑑𝑎 𝑇

𝑑𝑡
= 𝜙𝑏𝑓𝑢𝑏𝑃𝑆𝐴𝑓𝑐𝑣 − 𝜙𝑇𝑓𝑢𝑇𝑃𝑆𝐴𝑟𝑐𝑇                                                         (𝑆4.3) 

𝑑𝑎𝐺𝐼

𝑑𝑡
= −𝑘𝑎𝑎𝐺𝐼                                                                                                   (𝑆4.4) 
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where 𝐶𝐿 is the blood clearance in the central compartment, 𝑄𝑇 is blood flow to the peripheral 

compartment, 𝑓𝑢𝑏 and 𝑓𝑢𝑇 are the fraction unbound in blood and tissue, respectively, 𝜙𝑏  and 

𝜙𝑇 are the fractions of unbound drug which are unionized in blood and tissue, respectively, and 

𝑃𝑆𝐴𝑓 and 𝑃𝑆𝐴𝑟  are the permeability-surface area products for tissue influx and efflux, 

respectively. Note that 𝜙𝑏𝑓𝑢𝑏 is simply the fraction of blood compound which is both unbound 

and unionized (and similarly for tissue), and we have assumed only this fraction can cross the 

cell membrane. 

 

Equation (S4.4) for the gut compartment is easy to solve and gives 𝑎𝐺𝐼(𝑡) = 𝑎0𝑒−𝑘𝑎𝑡, where 𝑎0 

is the total dose. The notation will be simpler if we work with amounts, 𝑎𝑖, instead of 

concentrations, and define the following five rates: 

𝑤1 =
𝜙𝑏𝑓𝑢𝑏 𝑃𝑆𝐴𝑓

𝑉𝑣
,  𝑤2 =

𝜙𝑇𝑓𝑢𝑇𝑃𝑆𝐴𝑟

𝑉𝑇
,  𝑝1 =

𝑄𝑇

𝑉1
,  𝑝2 =

𝑄𝑇

𝑉𝑣
,  and 𝑘10 =

𝐶𝐿

𝑉1
 .        (𝑆4.5) 

Then the kinetic equations can be written as 

𝑑𝑎1

𝑑𝑡
= −(𝑘10 + 𝑝1 )𝑎1 + 𝑝2𝑎𝑣 + 𝐹𝑘𝑎𝑎0𝑒−𝑘𝑎𝑡                                 (𝑆4.6) 

𝑑𝑎𝑣

𝑑𝑡
= 𝑝1𝑎1 − (𝑝2 + 𝑤1)𝑎𝑣 + 𝑤2𝑎𝑇                                                 (𝑆4.7) 

𝑑𝑎 𝑇

𝑑𝑡
= 𝑤1𝑎𝑣 − 𝑤2𝑎𝑇 ,                                                                           (𝑆4.8) 

with initial conditions 𝑎1(0) = 0,  𝑎𝑣(0) = 0, and 𝑎𝑇(0) = 0. 

 

Before going further, it is helpful to solve this system in the two extreme limits of a 

permeability limited tissue and a perfusion limited tissue. 

 

Permeability Limited Tissue 

In the permeability limited case the influx and efflux rates are much slower than the blood flow 

rate, that is, 𝑃𝑆𝐴𝑓 , 𝑃𝑆𝐴𝑟 ≪ 𝑄𝑇. In this case we expect 𝑐𝑣 ≈ 𝑐1  (this will be confirmed from the 

exact solution below), and the solution in the central compartment is simply 

𝑐1(𝑡) =
𝐹𝑎0

(𝑉1 + 𝑉𝑣)

𝑘𝑎

𝑘𝑎 − 𝑘10
′ (𝑒−𝑘10

′ 𝑡 − 𝑒−𝑘𝑎𝑡), 

 where 𝑘10
′ = 𝐶𝐿/(𝑉1 + 𝑉𝑣) and we use 𝑉1 + 𝑉𝑣 because the central and vascular compartments 

equilibrate so rapidly they should be treated as a single compartment (which gives rise to the 

condition 𝑐𝑣 ≈ 𝑐1). In this approximation the equation for 𝑐𝑇(𝑡) is  

 

𝑑𝑐𝑇

𝑑𝑡
=

𝜙𝑏𝑓𝑢𝑏 𝑃𝑆𝐴𝑓

𝑉𝑇

𝐹𝑎0

(𝑉1 + 𝑉𝑣)

𝑘𝑎

𝑘𝑎 − 𝑘10
′ (𝑒−𝑘10

′ 𝑡 − 𝑒−𝑘𝑎𝑡) −
𝜙𝑇𝑓𝑢𝑇𝑃𝑆𝐴𝑟

𝑉𝑇
𝑐𝑇 

 

which can be directly integrated after rewriting as 
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𝑑

𝑑𝑡
[𝑐𝑇(𝑡) exp (

𝜙𝑇𝑓𝑢𝑇𝑃𝑆𝐴𝑟

𝑉𝑇
𝑡)]

=
𝜙𝑏𝑓𝑢𝑏𝑃𝑆𝐴𝑓

𝑉𝑇

𝐹𝑎0

(𝑉1 + 𝑉𝑣)

𝑘𝑎

𝑘𝑎 − 𝑘10
′ [𝑒

(
𝜙𝑇𝑓𝑢𝑇𝑃𝑆𝐴𝑟

𝑉𝑇
−𝑘10

′ )𝑡
− 𝑒

(
𝜙𝑇𝑓𝑢𝑇𝑃𝑆𝐴𝑟

𝑉𝑇
−𝑘𝑎)𝑡

] 

 

giving 

 

𝑐𝑇 (𝑡) =
𝜙𝑏𝑓𝑢𝑏𝑃𝑆𝐴𝑓

𝑉𝑇

𝐹𝑎0

(𝑉1 + 𝑉𝑣 )

𝑘𝑎

𝑘𝑎 − 𝑘10
′

{
1

𝑘𝑎 −
𝜙𝑇𝑓𝑢𝑇 𝑃𝑆𝐴𝑟

𝑉𝑇

[𝑒−𝑘𝑎𝑡 − 𝑒
− 

𝜙𝑇𝑓𝑢𝑇𝑃𝑆 𝐴𝑟
𝑉𝑇

𝑡
 ]

+
1

𝑘10
′ −

𝜙𝑇𝑓𝑢𝑇 𝑃𝑆𝐴𝑟

𝑉𝑇

[𝑒
− 

𝜙𝑇𝑓𝑢𝑇 𝑃𝑆𝐴𝑟
𝑉𝑇

𝑡
− 𝑒−𝑘10

′ 𝑡]}. 

 

Perfusion Limited Tissue 

In this case the blood flow rate is much slower than the tissue influx and efflux rates 

(𝑃𝑆𝐴𝑓 , 𝑃𝑆𝐴𝑟 ≫ 𝑄𝑇), and we expect the system to reduce to the conventional two-

compartment PK model. We assume that the vascular and tissue spaces rapidly equilibrate, 

giving 𝜙𝑏𝑓𝑢𝑏 𝑃𝑆𝐴𝑓𝑐𝑣 = 𝜙𝑇𝑓𝑢𝑇𝑃𝑆𝐴𝑟𝑐𝑇. We are interested in the total peripheral concentration, 

𝑐2(𝑡) =
𝑉𝑣𝑐𝑣(𝑡)+𝑉𝑇 𝑐𝑇(𝑡)

𝑉2
=

1

𝑉2
(𝑉𝑣 + 𝑉𝑇

𝜙𝑏𝑓𝑢𝑏 𝑃𝑆𝐴𝑓

𝜙𝑇𝑓𝑢𝑇 𝑃𝑆𝐴𝑟
) 𝑐𝑣(𝑡). We define the tissue-to-blood partition 

coefficient to be 

                                                                𝐾𝐵 =
𝜙𝑏𝑓𝑢𝑏𝑃𝑆𝐴𝑓

𝜙𝑇𝑓𝑢𝑇 𝑃𝑆𝐴𝑟
                                                                        (𝑆4.9) 

and a related coefficient 𝐾𝐵
′ = (𝑉𝑣 + 𝑉𝑇𝐾𝐵) 𝑉2⁄ , giving 𝑐𝑣(𝑡) = 𝑐𝑇(𝑡)/𝐾𝐵

′ . Note that in the usual 

two-compartment model the vascular space is assumed to take up a negligible fraction of the 

peripheral compartment, which means we are interested in the limit 𝑉𝑣 → 0, in which case 

𝐾𝐵
′ → 𝐾𝐵 . 

 
Returning to our kinetic equations, we add together the kinetic equations for 𝑎𝑣 and 𝑎𝑇 to get two 

equations describing the system in terms of 𝑎2 and 𝑎1, 
𝑑𝑎1

𝑑𝑡
= −𝐶𝐿 𝑐1 − 𝑄𝑇 𝑐1 + 𝑄𝑇 𝑐𝑣 + 𝐹𝑘𝑎𝑎0𝑒−𝑘𝑎𝑡 

𝑑𝑎2

𝑑𝑡
= 𝑄𝑇 𝑐1 − 𝑄𝑇𝑐𝑣     . 

Substituting 𝑐2 for 𝑐𝑣 gives 

 
𝑑𝑎1

𝑑𝑡
= −(𝐶𝐿 + 𝑄𝑇)𝑐1 + 𝑄𝑇𝑐2/𝐾𝐵

′ + 𝐹𝑘𝑎𝑎0𝑒−𝑘𝑎𝑡 

𝑑𝑎2

𝑑𝑡
= 𝑄𝑇𝑐1 − 𝑄𝑇 𝑐2/𝐾𝐵

′     . 
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Note that the vascular concentration no longer appears in the kinetic equations, so we are free to take 

𝑉𝑣 → 0, giving 𝐾𝐵
′ → 𝐾𝐵 and 𝑐2 → 𝑐𝑇 , and we can now write 

 
𝑑𝑎1

𝑑𝑡
= −(𝐶𝐿 + 𝑄𝑇 )𝑐1 +

𝑄𝑇𝑐𝑇

𝐾𝐵
+ 𝐹𝑘𝑎𝑎0𝑒−𝑘𝑎𝑡                                       (S4.10) 

𝑑𝑎𝑇

𝑑𝑡
= 𝑄𝑇𝑐1 − 𝑄𝑇 𝑐𝑇/𝐾𝐵 .                                                                            (𝑆4.11) 

 

Equations (S4.10) and (S4.11) are the kinetic equations for the conventional two-compartment PK 

model, where the peripheral compartment volume is identified as 𝑉2 = 𝐾𝐵𝑉𝑇 . The solution of these 

equations is well-known and will not be repeated here. 

 

General Solution 

We now solve the kinetic equations for the complete system. Let 𝑎 𝑖(𝑠) be the Laplace tranform of 

𝑎𝑖(𝑡), and take the Laplace transforms of equations (S4.6) -(S4.8) to get 

𝑎̃1 = −(𝑘10 + 𝑝1)𝑎̃1 + 𝑝2 𝑎̃𝑣 +
𝐹𝑘𝑎𝑎0

𝑠 + 𝑘𝑎
                                                     (𝑆4.12) 

𝑎̃𝑣 = 𝑝1 𝑎̃1 − (𝑝2 + 𝑤1)𝑎̃𝑣 + 𝑤2 𝑎̃𝑇                                                            (𝑆4.13) 
𝑎̃𝑇 = 𝑤1 𝑎̃𝑣 − 𝑤2 𝑎̃𝑇 .                                                                                       (𝑆4.14) 

 
Equation (S4.14) gives 

𝑎̃𝑇(𝑠) =
𝑤1

𝑠 + 𝑤2
𝑎̃𝑣 (𝑠),                                                                                 (𝑆4.15) 

and plugging (S4.15) into (S4.13) allows us to write 𝑎̃𝑣 in terms of 𝑎̃1, giving 

𝑎̃𝑣 (𝑠) =
𝑝1(𝑠 + 𝑤2)

𝑠2 + (𝑤1 + 𝑤2 + 𝑝2)𝑠 + 𝑝2𝑤2
𝑎̃1(𝑠).                                     (𝑆4.16) 

Finally, using (S4.16) in (S4.12) allows us to solve for 𝑎̃1, giving 

𝑎̃1(𝑠) = (
𝐹𝑎0𝑘𝑎

𝑠 + 𝑘𝑎

) (
𝑠2 + 𝜆𝑠 + 𝜅

𝑠3 + 𝛽𝑠2 + 𝛾𝑠 + 𝛿
),                                              (𝑆4.17) 

where 

𝜆 = 𝑤1 + 𝑤2 + 𝑝2 
𝜅 = 𝑝2𝑤2 
𝛽 = 𝑘10 + 𝑝1 + 𝑝2 + 𝑤1 + 𝑤2                                                                  (S4.18) 

𝛾 = 𝑘10(𝑝2 + 𝑤1) + 𝑤2(𝑘10 + 𝑝1) + 𝑝1𝑤1 + 𝑝2𝑤2 
𝛿 = 𝑘10𝑝2𝑤2  . 

 

Let 𝑠1, 𝑠2, and 𝑠3 be the roots of the cubic in the denominator of Eq. (S4.17), and define 𝑟𝑖 = −𝑠𝑖 for 𝑖 =

1,2,3. Now factor the denominator and use partial fraction decomposition to get 

 

𝑎̃1(𝑠)

𝐹𝑎0𝑘𝑎
=

1

𝑠 + 𝑘𝑎
[

𝑠2 + 𝜆𝑠 + 𝜅

(𝑠 + 𝑟1)(𝑠 + 𝑟2)(𝑠 + 𝑟3)
] 

=
1

𝑠 + 𝑘𝑎
[

𝑟1
2 − 𝜆𝑟1 + 𝜅

(𝑟2 − 𝑟1)(𝑟3 − 𝑟1)

1

𝑠 + 𝑟1
 −  

𝑟2
2 − 𝜆𝑟2 + 𝜅

(𝑟2 − 𝑟1)(𝑟3 − 𝑟2)

1

𝑠 + 𝑟2
 +  

𝑟3
2 − 𝜆𝑟3 + 𝜅

(𝑟3 − 𝑟1)(𝑟3 − 𝑟2)

1

𝑠 + 𝑟3
]  
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=  
𝑟1

2 − 𝜆𝑟1 + 𝜅

(𝑟2 − 𝑟1)(𝑟3 − 𝑟1)(𝑘𝑎 − 𝑟1)
(

1

𝑠 + 𝑟1
−

1

𝑠 + 𝑘𝑎

) 

− 
𝑟2

2 − 𝜆𝑟2 + 𝜅

(𝑟2 − 𝑟1)(𝑟3 − 𝑟2)(𝑘𝑎 − 𝑟2)
(

1

𝑠 + 𝑟2
−

1

𝑠 + 𝑘𝑎

) 

+ 
𝑟3

2 − 𝜆𝑟3 + 𝜅

(𝑟3 − 𝑟1)(𝑟3 − 𝑟2)(𝑘𝑎 − 𝑟3)
(

1

𝑠 + 𝑟3
−

1

𝑠 + 𝑘𝑎

) 

 

and take the inverse Laplace transform to get 

 

𝑎1(𝑡) = 𝐹𝑎0𝑘𝑎 [
𝑟1

2 − 𝜆𝑟1 + 𝜅

(𝑟2 − 𝑟1)(𝑟3 − 𝑟1)(𝑘𝑎 − 𝑟1)
(𝑒−𝑟1 𝑡 − 𝑒−𝑘𝑎𝑡)  

−   
𝑟2

2 − 𝜆𝑟2 + 𝜅

(𝑟2 − 𝑟1)(𝑟3 − 𝑟2)(𝑘𝑎 − 𝑟2)
(𝑒−𝑟2𝑡 − 𝑒−𝑘𝑎𝑡)  

+  
𝑟3

2 − 𝜆𝑟3 + 𝜅

(𝑟3 − 𝑟1)(𝑟3 − 𝑟2)(𝑘𝑎 − 𝑟3)
(𝑒−𝑟3𝑡 − 𝑒−𝑘𝑎𝑡)].                                 (𝑆4.19) 

 

To solve for 𝑎𝑣 (𝑡), use the unfactored form of 𝑎̃1(𝑠) to write 

 

𝑎̃𝑣 (𝑠) = [
𝑝1(𝑠 + 𝑤2)

𝑠2 + 𝜆𝑠 + 𝜅
] (

𝐹𝑎0𝑘𝑎

𝑠 + 𝑘𝑎

) [
𝑠2 + 𝜆𝑠 + 𝜅

(𝑠 + 𝑟1)(𝑠 + 𝑟2)(𝑠 + 𝑟3)
] 

=
𝐹𝑎0𝑘𝑎𝑝1

𝑠 + 𝑘𝑎

[
𝑠 + 𝑤2

(𝑠 + 𝑟1)(𝑠 + 𝑟2)(𝑠 + 𝑟3)
] 

= 𝐹𝑎0𝑘𝑎𝑝1 {
𝑤2 − 𝑟1

(𝑟2 − 𝑟1)(𝑟3 − 𝑟1)

1

(𝑠 + 𝑘𝑎)(𝑠 + 𝑟1)
+

𝑟2 − 𝑤2

(𝑟2 − 𝑟1)(𝑟3 − 𝑟2)

1

(𝑠 + 𝑘𝑎)(𝑠 + 𝑟2)

+
𝑤2 − 𝑟3

(𝑟3 − 𝑟1)(𝑟3 − 𝑟2)

1

(𝑠 + 𝑘𝑎)(𝑠 + 𝑟3)
} 

= 𝐹𝑎0𝑘𝑎𝑝1 {
𝑤2 − 𝑟1

(𝑟2 − 𝑟1)(𝑟3 − 𝑟1)

1

(𝑘𝑎 − 𝑟1)
[

1

𝑠 + 𝑟1
−

1

𝑠 + 𝑘𝑎

]

+
𝑟2 − 𝑤2

(𝑟2 − 𝑟1)(𝑟3 − 𝑟2)

1

(𝑘𝑎 − 𝑟2)
[

1

𝑠 + 𝑟2
−

1

𝑠 + 𝑘𝑎

]

+
𝑤2 − 𝑟3

(𝑟3 − 𝑟1)(𝑟3 − 𝑟2)

1

(𝑘𝑎 − 𝑟3)
[

1

𝑠 + 𝑟3
−

1

𝑠 + 𝑘𝑎

]}, 

 

and invert the Laplace transform to get 

 

𝑎𝑣 (𝑡) = 𝐹𝑎0𝑝1 {
𝑤2 − 𝑟1

(𝑟2 − 𝑟1)(𝑟3 − 𝑟1)

𝑘𝑎

(𝑘𝑎 − 𝑟1)
[𝑒−𝑟1𝑡 − 𝑒−𝑘𝑎𝑡]

+
𝑟2 − 𝑤2

(𝑟2 − 𝑟1)(𝑟3 − 𝑟2)

𝑘𝑎

(𝑘𝑎 − 𝑟2)
[𝑒−𝑟2𝑡 − 𝑒−𝑘𝑎𝑡]

+
𝑤2 − 𝑟3

(𝑟3 − 𝑟1)(𝑟3 − 𝑟2)

𝑘𝑎

(𝑘𝑎 − 𝑟3)
[𝑒−𝑟3𝑡 − 𝑒−𝑘𝑎𝑡]}.                            (𝑆4.20) 

 

To solve for 𝑎𝑇 (𝑡), use the unfactored form of 𝑎̃𝑣 (𝑠) to write 
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𝑎̃𝑇(𝑠) = (
𝑤1

𝑠 + 𝑤2

) (
𝐹𝑎0𝑘𝑎𝑝1

𝑠 + 𝑘𝑎

)[
𝑠 + 𝑤2

(𝑠 + 𝑟1)(𝑠 + 𝑟2)(𝑠 + 𝑟3)
] 

=
𝐹𝑎0𝑘𝑎𝑝1𝑤1

𝑠 + 𝑘𝑎

[
1

(𝑠 + 𝑟1)(𝑠 + 𝑟2)(𝑠 + 𝑟3)
] 

= 𝐹𝑎0𝑘𝑎𝑝1𝑤1 [
1

(𝑟2 − 𝑟1)(𝑟3 − 𝑟1)

1

(𝑠 + 𝑘𝑎)(𝑠 + 𝑟1)
−

1

(𝑟2 − 𝑟1)(𝑟3 − 𝑟2)

1

(𝑠 + 𝑘𝑎)(𝑠 + 𝑟2)

+
1

(𝑟3 − 𝑟1)(𝑟3 − 𝑟2)

1

(𝑠 + 𝑘𝑎)(𝑠 + 𝑟3)
] 

=  𝐹𝑎0𝑘𝑎𝑝1𝑤1 {
1

(𝑟2 − 𝑟1)(𝑟3 − 𝑟1)

1

(𝑘𝑎 − 𝑟1)
[

1

𝑠 + 𝑟1
−

1

𝑠 + 𝑘𝑎

]

−
1

(𝑟2 − 𝑟1)(𝑟3 − 𝑟2)

1

(𝑘𝑎 − 𝑟2)
[

1

𝑠 + 𝑟2
−

1

𝑠 + 𝑘𝑎

]

+
1

(𝑟3 − 𝑟1)(𝑟3 − 𝑟2)

1

(𝑘𝑎 − 𝑟3)
[

1

𝑠 + 𝑟3
−

1

𝑠 + 𝑘𝑎

]}, 

 

and invert the Laplace transform to get 

 

𝑎𝑇(𝑡) = 𝐹𝑎0𝑝1𝑤1 {
1

(𝑟2 − 𝑟1)(𝑟3 − 𝑟1)

𝑘𝑎

(𝑘𝑎 − 𝑟1)
[𝑒−𝑟1𝑡 − 𝑒−𝑘𝑎𝑡 ]

−
1

(𝑟2 − 𝑟1)(𝑟3 − 𝑟2)

𝑘𝑎

(𝑘𝑎 − 𝑟2)
[𝑒−𝑟2𝑡 − 𝑒−𝑘𝑎𝑡 ]

+
1

(𝑟3 − 𝑟1)(𝑟3 − 𝑟2)

𝑘𝑎

(𝑘𝑎 − 𝑟3)
[𝑒−𝑟3𝑡 − 𝑒−𝑘𝑎𝑡 ]}.                                                (𝑆4.21) 

 

 

Finally, let’s write down expressions for 𝑟𝑖. Let 𝜎 = 𝛽2 − 3𝛾 and 𝜏 = (9𝛽𝛾 − 2𝛽3 − 27𝛿)/2, then 

𝑟1 =
𝛽

3
+ (

1 − 𝑖√3

2
)

𝜎

3 (𝜏 + √𝜏2 − 𝜎3)
1 3⁄

+  (
1 + 𝑖√3

2
) 

(𝜏 + √𝜏2 − 𝜎3)
1 3⁄

3
 

𝑟2 =
𝛽

3
−

𝜎

3 (𝜏 + √𝜏2 − 𝜎3)
1 3⁄

−
(𝜏 + √𝜏2 − 𝜎3)

1 3⁄

3
                                                                         (𝑆4.22) 

𝑟3 =
𝛽

3
+ (

1 + 𝑖√3

2
)

𝜎

3 (𝜏 + √𝜏2 − 𝜎3)
1 3⁄ +  (

1 − 𝑖√3

2
)

(𝜏 + √𝜏2 − 𝜎3)
1 3⁄

3
 

 

and note that these rates are real and non-negative despite the presence of the imaginary unit.  

 

Lastly, convert our solutions from amounts to concentrations to obtain 

 



S16 
 

𝑐1(𝑡) =
𝐹𝑎0

𝑉1
[

𝑟1
2 − 𝜆𝑟1 + 𝜅

(𝑟2 − 𝑟1)(𝑟3 − 𝑟1)

𝑘𝑎

(𝑘𝑎 − 𝑟1)
(𝑒−𝑟1𝑡 − 𝑒−𝑘𝑎𝑡)  

−   
𝑟2

2 − 𝜆𝑟2 + 𝜅

(𝑟2 − 𝑟1)(𝑟3 − 𝑟2)

𝑘𝑎

(𝑘𝑎 − 𝑟2)
(𝑒−𝑟2 𝑡 − 𝑒−𝑘𝑎𝑡)  

+  
𝑟3

2 − 𝜆𝑟3 + 𝜅

(𝑟3 − 𝑟1)(𝑟3 − 𝑟2)

𝑘𝑎

(𝑘𝑎 − 𝑟3)
(𝑒−𝑟3 𝑡 − 𝑒−𝑘𝑎𝑡)] ,                                              (𝑆4.23) 

𝑐𝑣 (𝑡) =
𝐹𝑎0𝑝1

𝑉𝑣

[
𝑤2 − 𝑟1

(𝑟2 − 𝑟1)(𝑟3 − 𝑟1)

𝑘𝑎

(𝑘𝑎 − 𝑟1)
(𝑒−𝑟1𝑡 − 𝑒−𝑘𝑎𝑡 )

−
𝑤2 − 𝑟2

(𝑟2 − 𝑟1)(𝑟3 − 𝑟2)

𝑘𝑎

(𝑘𝑎 − 𝑟2)
(𝑒−𝑟2 𝑡 − 𝑒−𝑘𝑎𝑡)

+
𝑤2 − 𝑟3

(𝑟3 − 𝑟1)(𝑟3 − 𝑟2)

𝑘𝑎

(𝑘𝑎 − 𝑟3)
(𝑒−𝑟3 𝑡 − 𝑒−𝑘𝑎𝑡)] ,                                              (S4.24) 

𝑐𝑇 (𝑡) =
𝐹𝑎0𝑝1𝑤1

𝑉𝑇

[
1

(𝑟2 − 𝑟1)(𝑟3 − 𝑟1)

𝑘𝑎

(𝑘𝑎 − 𝑟1)
(𝑒−𝑟1 𝑡 − 𝑒−𝑘𝑎𝑡)

−
1

(𝑟2 − 𝑟1)(𝑟3 − 𝑟2)

𝑘𝑎

(𝑘𝑎 − 𝑟2)
(𝑒−𝑟2 𝑡 − 𝑒−𝑘𝑎𝑡)

+
1

(𝑟3 − 𝑟1)(𝑟3 − 𝑟2)

𝑘𝑎

(𝑘𝑎 − 𝑟3)
(𝑒−𝑟3 𝑡 − 𝑒−𝑘𝑎𝑡)] .                                             (𝑆4.25) 

 

 

AUC, AUMC, and Mean Residence Time 

For compartment 𝑖, the AUC, AUMC, and MRT are related to the Laplace transform of the concentration 

by 

𝐴𝑈𝐶𝑖(∞) = 𝑐̃𝑖(0)                                                                                                         (𝑆4.26) 

𝐴𝑈𝑀𝐶𝑖(∞) = −𝑐̃𝑖
′(0)                                                                                                     (S4.27) 

𝑀𝑅𝑇𝑖 = −
𝑐̃𝑖

′ (0)

𝑐̃𝑖(0)
.                                                                                                   (𝑆4.28) 

Furthermore, if the Laplace tranforms of concentrations in two compartments, 𝑖 and 𝑗, are related by 

𝑐̃𝑖(𝑠) = 𝐹𝑖𝑗(𝑠)𝑐̃𝑗 (𝑠), then we have 

𝑀𝑅𝑇𝑖 = 𝑀𝑅𝑇𝑗 −
𝐹𝑖𝑗

′ (0)

𝐹𝑖𝑗 (0)
.                                                                                                (𝑆4.29) 

 

Here we have 

 

𝑐̃1(𝑠) = (
𝐹𝑎0𝑘𝑎

𝑉1

)[
𝑠2 + 𝜆𝑠 + 𝜅

(𝑠 + 𝑘𝑎)(𝑠3 + 𝛽𝑠2 + 𝛾𝑠 + 𝛿)
]                                    (S4.30) 

𝑐̃𝑇(𝑠) = (
𝐹𝑎0𝑘𝑎𝑝1𝑤1

𝑉𝑇

)
1

(𝑠 + 𝑘𝑎)(𝑠3 + 𝛽𝑠2 + 𝛾𝑠 + 𝛿)
                             (S4.31) 

𝐹(𝑠) = (
𝑉1𝑝1 𝑤1

𝑉𝑇

)
1

𝑠2 + 𝜆𝑠 + 𝜅
                                                                       (𝑆4.32) 

 
with derivatives 
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𝑐̃1
′ (𝑠) = (

𝐹𝑎0𝑘𝑎

𝑉1

){
2𝑠 + 𝜆

(𝑠 + 𝑘𝑎)(𝑠3 + 𝛽𝑠2 + 𝛾𝑠 + 𝛿)

−
(𝑠2 + 𝜆𝑠 + 𝜅)[(𝑠3 + 𝛽𝑠2 + 𝛾𝑠 + 𝛿) + (𝑠 + 𝑘𝑎)(3𝑠2 + 2𝛽𝑠 + 𝛾)]

[(𝑠 + 𝑘𝑎)(𝑠3 + 𝛽𝑠2 + 𝛾𝑠 + 𝛿)]2 }            (S4.33) 

𝐹′ (𝑠) = − (
𝑉1𝑝1𝑤1

𝑉𝑇

)
2𝑠 + 𝜆

(𝑠2 + 𝜆𝑠 + 𝜅)2                                                                                                       (S4.34) 

𝑐̃𝑇
′ (𝑠) = 𝐹(𝑠)𝑐̃1

′ (𝑠) + 𝐹′ (𝑠)𝑐̃1(𝑠).                                                                                                             (𝑆4.35) 
 

Evaluating these at 𝑠 = 0 gives 

𝑐̃1(0) =
𝐹𝑎0

𝐶𝐿
 

𝑐̃𝑇(0) =
𝐾𝐵𝐹𝑎0

𝐶𝐿
 

𝐹(0) = 𝐾𝐵 

𝑐̃1
′ (0) = −

𝐹𝑎0

𝐶𝐿
[
𝐾𝐵𝑉𝑇

𝐶𝐿
+

𝑉1

𝐶𝐿
+

1

𝑘𝑎
+

𝑉𝑣

𝐶𝐿
] 

𝐹′ (0) = −𝐾𝐵 [
𝐾𝐵𝑉𝑇

𝑄𝑇
+

𝑉𝑣

𝑄𝑇
+

𝑉𝑇

𝜙𝑇𝑓𝑢𝑇𝑃𝑆𝐴𝑟

] 

𝑐̃𝑇
′ (0) = −

𝐾𝐵𝐹𝑎0

𝐶𝐿
[
𝐾𝐵𝑉𝑇

𝑄𝑇
+

𝑉𝑣

𝑄𝑇
+

𝑉𝑇

𝜙𝑇𝑓𝑢𝑇 𝑃𝑆𝐴𝑟
+

𝐾𝐵𝑉𝑇

𝐶𝐿
+

𝑉1

𝐶𝐿
+

1

𝑘𝑎
+

𝑉𝑣

𝐶𝐿
]. 

 

We can now directly read off 

 

𝐴𝑈𝐶1 =
𝐹𝑎0

𝐶𝐿
                                                                                                                           (S4.36) 

𝐴𝑈𝐶𝑇 =
𝐾𝐵𝐹𝑎0

𝐶𝐿
                                                                                                                     (S4.37) 

𝐴𝑈𝑀𝐶1 =
𝐹𝑎0

𝐶𝐿
[
𝐾𝐵𝑉𝑇

𝐶𝐿
+

𝑉1

𝐶𝐿
+

1

𝑘𝑎
+

𝑉𝑣

𝐶𝐿
]                                                                         (S4.38) 

𝐴𝑈𝑀𝐶𝑇 =
𝐾𝐵𝐹𝑎0

𝐶𝐿
[
𝐾𝐵𝑉𝑇

𝑄𝑇
+

𝑉𝑣

𝑄𝑇
+

𝑉𝑇

𝜙𝑇𝑓𝑢𝑇 𝑃𝑆𝐴𝑟
+

𝐾𝐵𝑉𝑇

𝐶𝐿
+

𝑉1

𝐶𝐿
+

1

𝑘𝑎
+

𝑉𝑣

𝐶𝐿
]              (S4.39) 

𝑀𝑅𝑇1 =
𝐾𝐵𝑉𝑇

𝐶𝐿
+

𝑉1

𝐶𝐿
+

1

𝑘𝑎
+

𝑉𝑣

𝐶𝐿
                                                                                         (S4.40) 

𝑀𝑅𝑇𝑇 =
𝐾𝐵𝑉𝑇

𝑄𝑇
+

𝑉𝑣

𝑄𝑇
+

𝑉𝑇

𝜙𝑇𝑓𝑢𝑇𝑃𝑆𝐴𝑟
+

𝐾𝐵𝑉𝑇

𝐶𝐿
+

𝑉1

𝐶𝐿
+

1

𝑘𝑎
+

𝑉𝑣

𝐶𝐿
                                  (S4.41) 

𝑀𝑅𝑇𝑇 = 𝑀𝑅𝑇1 +
𝐾𝐵𝑉𝑇

𝑄𝑇
+

𝑉𝑣

𝑄𝑇
+

𝑉𝑇

𝜙𝑇𝑓𝑢𝑇𝑃𝑆𝐴𝑟
                                                                 (𝑆4.42) 

 

Equation (S4.42) appears in the main text as equation (3). To get main text equation (1), combine (S4.36) 

and (S4.37) to get 

                                                   𝐴𝑈𝐶𝑇 = 𝐾𝐵𝐴𝑈𝐶1,                                                              (𝑆4.43) 
and use 𝐴𝑈𝐶𝑢𝑇 = 𝑓𝑢𝑇 𝐴𝑈𝐶𝑇, 𝐴𝑈𝐶𝑢𝑏 = 𝑓𝑢𝑏𝐴𝑈𝐶1, and equation (S4.9) to write 

                                         𝐴𝑈𝐶𝑢𝑇 = (
𝜙𝑏

𝜙𝑇

)(
𝑃𝑆𝐴𝑓

𝑃𝑆𝐴𝑟

) 𝐴𝑈𝐶𝑢𝑏  .                                                 (𝑆4.44) 



S18 
 

The unbound tissue: blood partition coefficient, 𝐾𝐵,𝑢𝑢, is defined through 𝑐𝑢𝑇 = 𝐾𝐵,𝑢𝑢𝑐𝑢𝑏. 

Using 𝑐𝑢,𝑖 = 𝐴𝑈𝐶𝑢,𝑖/𝜏, where 𝜏 is the dose interval, and using Equation (S4.44), we immediately 

arrive at equations (1) and (2) in the main text.  
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S5 Compartmental model with fast and slow tissues 
 

Figure S3. Diagram of the compartmental model described in this supplement. 

 

 

In this section we describe the PK model with fast and slow tissues which was used to generate Figures 4 

and 5 of the main text. The model consists of a central compartment, a GI compartment, and two 

peripheral compartments, each of which is divided into a tissue-associated vascular space (consisting of 

vascular space and rapidly equilibrating interstitial space) and a tissue compartment (Fig. S3). For 

simplicity we only consider a neutral compound. (For an ionizable compound simply replace all instances 

of 𝑓𝑢𝑏  and 𝑓𝑢𝑡  with the fraction that is both unbound and unionized.) The kinetic equations for this 

system are 

 
𝑑𝑎1

𝑑𝑡
= −(𝐶𝐿 + 𝑄𝑇𝑓 + 𝑄𝑇𝑠)𝑐1 + 𝑄𝑇𝑓 𝑐𝑇𝑓 + 𝑄𝑇𝑠 𝑐𝑇𝑠 + 𝑘𝑎𝑎𝐺𝐼 (𝑆1) 

𝑑𝑎𝑣𝑓

𝑑𝑡
= 𝑄𝑇𝑓 𝑐1 − 𝑄𝑇𝑓𝑐𝑣𝑓 − 𝑓𝑢𝑏𝑃𝑆𝐴𝑓𝑓𝑐𝑣𝑓 + 𝑓𝑢𝑇𝑓𝑃𝑆𝐴𝑟𝑓𝑐𝑇𝑓      (𝑆2) 

𝑑𝑎𝑇𝑓

𝑑𝑡
= 𝑓𝑢𝑏𝑃𝑆𝐴𝑓𝑓𝑐𝑣𝑓 − 𝑓𝑢𝑇𝑓𝑃𝑆𝐴𝑟𝑓𝑐𝑇𝑓                                          (𝑆3) 

𝑑𝑎𝑣𝑠

𝑑𝑡
= 𝑄𝑇𝑠𝑐1 − 𝑄𝑇𝑠𝑐𝑣𝑠 − 𝑓𝑢𝑏𝑃𝑆𝐴𝑓𝑠𝑐𝑣𝑠 + 𝑓𝑢𝑇𝑠 𝑃𝑆𝐴𝑟𝑠𝑐𝑇𝑠         (𝑆4) 

𝑑𝑎𝑇𝑠

𝑑𝑡
= 𝑓𝑢𝑏𝑃𝑆𝐴𝑓𝑠𝑐𝑣𝑠 − 𝑓𝑢𝑇𝑠𝑃𝑆𝐴𝑟𝑠𝑐𝑇𝑠                                            (𝑆5) 

 

where 𝑎1 is the amount of drug in the central compartment, 𝑎𝑣𝑖 is the amount of drug in the tissue-

associated vascular space (𝑖 = 𝑓 for fast tissue, 𝑖 = 𝑠 for slow tissue), 𝑎𝑇𝑖  is the amount of drug in the 

tissue space (𝑖 = 𝑓 for fast, 𝑖 = 𝑠 for slow), and the compartment volumes (𝑉1 , 𝑉𝑣𝑓 ,𝑉𝑇𝑓 , etc), tissue 

blood flow (𝑄𝑇𝑓  and 𝑄𝑇𝑠), and drug concentrations (𝑐1 = 𝑎1 𝑉1⁄ , 𝑐𝑣𝑓 = 𝑎𝑣𝑓 𝑉𝑣𝑓⁄ , etc) follow the same 

subscript convention. The drug is dosed orally and absorbed from the GI via a first-order process with 

rate 𝑘𝑎, and we have 𝑎𝐺𝐼(𝑡) = 𝑎0𝑒−𝑘𝑎𝑡 for the amount of drug in the GI compartment, where 𝑎0 is the 

total amount of drug dosed (here we assume the fraction absorbed is 1). Drug is cleared via first -order 

clearance from the central compartment. 
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This system was constructed and solved in SimBiology (Matlab R2019b). 

 

We denote the total tissue volume as 𝑉𝑡𝑜𝑡,𝑖 (𝑖 = 𝑠, 𝑓) and let 𝐹𝑉  be the fraction of vascular space, here 

assumed equal in the two tissues. Then we have 𝑉𝑣𝑖 = 𝐹𝑉 𝑉𝑡𝑜𝑡,𝑖 and 𝑉𝑇𝑖 = (1 − 𝐹𝑉 )𝑉𝑡𝑜𝑡,𝑖 . We used 
muscle as a prototypical slow tissue and spleen as a prototypical fast tissue – all other tissues were 

assumed to be extremely fast and grouped in with the central compartment. (In reality it is unlikely that 

muscle would be the only slow compartment, but the model is only being used for illustrative purposes 

and it is convenient to select a single fast and single slow tissue to parameterize the tissue 

compartments.) 

 

All plots in Figures 4 and 5 were generated assuming the compound has a molecular weight of 500 

g/mol and the subject received a PO dose of 10 mg/kg. 

 

The baseline simulation (Figure 4A) was run with parameters listed in Table S6. Parameter changes used 

to generate Figures 4B, 4C, and all plots in Figure 5 are described in the figure captions in the main text. 

 

Parameter Value Units 

𝑽𝟏 1000 ml/kg 

𝑽𝒕𝒐𝒕,𝒇 2.02 ml/kg 

𝑽𝒕𝒐𝒕,𝒔  242 ml/kg 

𝑭𝑽 0.27 dimensionless 

𝑸𝑻𝒇  128.4 ml/hr/kg 

𝑸𝑻𝒔  461.4 ml/hr/kg 

𝑪𝑳 542.86 (a) ml/hr/kg 

𝑷𝑺𝑨𝒇𝒇 181.8 (b) ml/hr/kg 

𝑷𝑺𝑨𝒓𝒇 181.8 (c) ml/hr/kg 

𝑷𝑺𝑨𝒇𝒔 6089.4 (d) ml/hr/kg 

𝑷𝑺𝑨𝒓𝒔 6089.4 (c) ml/hr/kg 

𝒌𝒂 10 hr−1 

𝒇𝒖𝒃  0.1 dimensionless 

𝒇𝒖𝑻 0.1 dimensionless 

Table S6. Baseline model parameters. 
(a) 𝐶𝐿 was assumed to be 50% of liver blood flow. 

(b) The permeability-surface area product for the fast tissue was obtained by using the capillary surface area 

of the spleen (70 cm2/(g tissue)), the spleen volume (2.02 ml/kg), and assuming the drug has high 

permeability (100 × 10−6 cm/s). 
(c) The baseline simulation assumes the tissue influx and efflux rates are identical, i.e., there are no active 

transport processes. 
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(d) The permeability-surface area product for the slow tissue was obtained using the capillary surface area of 

the muscle (250 cm2/(g tissue)), the muscle volume (242 ml/kg), and assuming the drug has high 

permeability (100 × 10−6 cm/s). 

 


