Electronic Supplementary Information

Cocrystallization of an Antiretroviral Drug

Nevirapine: An Eutectic, A Cocrystal Solvate,

and A Cocrystal Hydrate

Indumathi Sathisaran¹ and Sameer Vishvanath Dalvi^{2,*}

¹Biological Engineering and ²Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj-382355, Gujarat, INDIA.

I. SUPPLEMENTARY FIGURES

II. SUPPLEMENTARY TABLES

I. SUPPLEMENTARY FIGURES

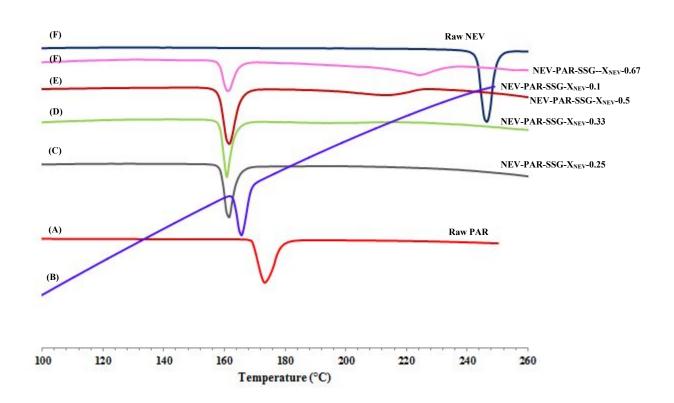


Figure S1. Overlay of DSC thermograms of various NEV-PAR-SSG mixtures (A) Raw PAR (X_{NEV} -0), (B) NEV-PAR-SSG- X_{NEV} -0.1, (C) NEV-PAR-SSG- X_{NEV} -0.25, (D) NEV-PAR-SSG- X_{NEV} -0.33, (E) NEV-PAR-SSG- X_{NEV} -0.5, (F) NEV-PAR-SSG- X_{NEV} -0.67 and (G) Raw NEV(X_{NEV} -1).

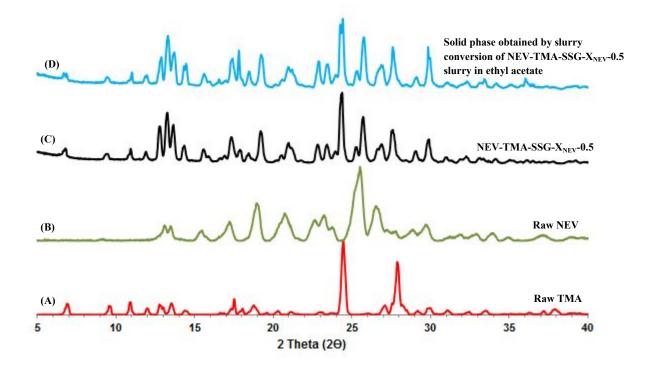
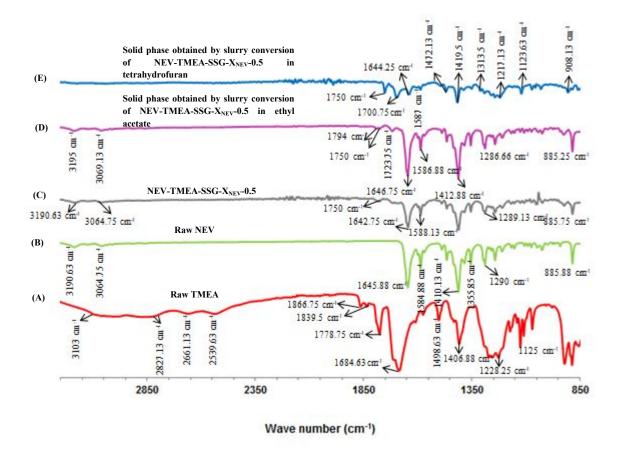


Figure S2. Overlay of PXRD patterns of (A) Raw TMA, (B) Raw NEV, (C) NEV-TMA-


SSG-X_{NEV}-0.5 and (D) NEV solid phase obtained by slurry conversion of NEV-TMA-

SSG- X_{NEV} -0.5 in ethyl acetate.

Alert level B					
PLAT230_ALERT_2_B Hirshfeld Test	Diff	for	0002	C1	12.0 s.u.

Response: The shape of the carbon atom in acetate functionality of NEV-TMEA methyl ester (1:1) cocrystal hydrate was not ideally shaped. However, it does not indicate incorrect atom assignment.

Figure S3. A snapshot of Alert level B observed in the CheckCIF report of NEV-TMEA methyl ester (1:1) cocrystal hydrate.

Figure S4. Overlay of FT-IR spectra of (A) Raw TMEA, (B) Raw NEV, (C) NEV-TMEA-SSG-X_{NEV}-0.5, (D) Solid phase obtained by slurry conversion of NEV-TMEA-

SSG-X_{NEV}-0.5 in ethyl acetate and (E) Solid phase obtained by slurry conversion of

NEV-TMEA-SSG- X_{NEV} -0.5 in tetrahydrofuran.

II. SUPPLEMENTARY TABLES

 Table S1. Summary of literature reports available on NEV cocrystals/eutectics and its dissolution/solubility enhancement.

					Crystal	
S.No	Coformer	Cocrystal	Cocrystallization method	Comments on dissolution/solubility	structure	Reference(s)
		Stoichiometry		Enhancement/anti-viral activity	reported	
01.	Saccharin	2:1	Neat co-grinding, liquid-assisted	Nevirapine-saccharin (2:1) cocrystal	Yes	1
			(solvent-drop) grinding and co-	showed 20-25% enhanced dissolution		
			precipitation in solvents	than raw nevirapine. Also, the cocrystal		
				exhibited 1.4 times higher solubility than		
				raw nevirapine		
02.	Saccharin	2:1	Reaction crystallization in 1-	Influence of pH on solubility of the	No	2
			pentanol	cocrystal phase was investigated		
03.	Saccharin	1: 1 and 2:1	Liquid assisted grinding in grinding	Not reported	No	3
			jar with stainless steel balls and			
			slow evaporation			
03.	rac-tartaric acid	1:1	Neat co-grinding, liquid-assisted	Nevirapine-saccharin (2:1) cocrystal	Yes	1
			(solvent-drop) grinding and co-	showed 10-15% enhanced dissolution		
			precipitation in solvents	than raw nevirapine. The cocrystal		

				exhibited 1.2 times higher solubility than		
				raw nevirapine		
04.	Maleic acid	1:1	Neat co-grinding, liquid-assisted	Nevirapine-maleic acid cocrystal	Yes	1
			(solvent-drop) grinding and co-	exhibited five-fold increase in the		
			precipitation in solvents	aqueous solubility of nevirapine. Also, the		
				cocrystal exhibited 5.3 times higher		
				solubility than raw nevirapine		
05. Maleic acid	Maleic acid	1:1	Reaction crystallization in	Effect of pH on solubility of the cocrystal	No	2
			chloroform	phase was studied		
06. Glutaric acid	Glutaric acid	1:1	Neat co-grinding, liquid-assisted	The cocrystal exhibited 1.2 times higher	Yes	1
			(solvent-drop) grinding and co-	solubility than raw nevirapine		
			precipitation in solvents			
07.	Salicylic acid	2:1	Neat co-grinding, liquid-assisted	The cocrystal exhibited 1.1 times higher	Yes	1
			(solvent-drop) grinding and co-	solubility than raw nevirapine		
			precipitation in solvents			
08.	Salicylic acid	2:1	Reaction crystallization in	Influence of pH on solubility of the	No	2
			chloroform	cocrystal phase was studied		
09.	Salicylic acid		Liquid assisted grinding in grinding	Not reported	No	3
			jar with stainless steel balls and			
			slow evaporation			
09.	1,2,4,5-	1:1	Slow evaporation	Not reported	Yes	4

	tetrafluoro-3,6-					
	diiodobenzene					
10.	1,3-	2:1	Slow evaporation	Not reported	Yes	4
	diiodobenzene					
11.	3-	1:1 and 2:1	Liquid assisted grinding in grinding	Not reported	No	3
	hydroxybenzoic		jar with stainless steel balls and			
	acid		slow evaporation			
12.	4-	1:1 and 2:1	Liquid assisted grinding in grinding	Not reported	Yes	3
	hydroxybenzoic		jar with stainless steel balls and			
	acid		slow evaporation			
13.	Theophylline	1:1 and 2:1	Liquid assisted grinding in grinding	Intrinsic dissolution profile shows that the	No	3
			jar with stainless steel balls and	cocrystal exhibits 5 times higher		
			slow evaporation	dissolution than raw NEV in 0.1 N Hcl		
				and water as dissolution medium		
14.	Caffeine	1:1 and 2:1	Liquid assisted grinding in grinding	Intrinsic dissolution profile shows that the	No	3
			jar with stainless steel balls and	cocrystal exhibits 10 times higher		
			slow evaporation	dissolution than raw NEV in 0.1 N Hcl		
				and water as dissolution medium		
15.	Urea	1:1 and 2:1	Liquid assisted grinding in grinding	Not reported	An eutectic	3
			jar with stainless steel balls and		phase	
			slow evaporation			
16.	Saccharin, rac-	1:1	Hot-Stage microscopy was used	The dissolution of nevirapine cocrystals	No	5

	tartaric acid,	for determining the purity of the	was increased in presence of coformers		
	maleic acid,	cocrystal. The fourier transform -	in the cocrystal as well as in the physical		
	salicylic acid	infra red spectroscopy was used	mixture.		
	and glutaric	as an analytical method to identify	The nevirapine-glutaric acid (1:1)		
	acid	cocrystal formation.	cocrystal was the only cocrystal that		
			yielded better dissolution than the		
			physical mixture.		
			The nevirapine cocrystals prepared with		
			saccharin, salicylic acid, maleic acid and		
			glutaric acid exhibited improved anti-viral		
			activity than raw nevirapine.		
17.	Series of 30 -	Two different structure-informatics	Not reported	No	6
	coformers	methods namely Hydrogen-bond			
		propensity (HBP) and hydrogen-			
		bond coordination (HBC), and one			
		approach based on hydrogen-			
		bond interaction energies			
-					

Table S2. Summary of different NEV solid forms obtained by evaporative

Cocrystallization method	Product other than cocrystal	Cocrystal form (solid powders/crystal)	Confirmation technique
Methanol	1:1 cocrystal methanol solvate	plate-like transparent crystals	adopted PXRD and SCXRD
Acetone-Toluene (1:1 volume ratio)	NEV	rod-like transparent crystals	SCXRD
Ethyl acetate- Toleuene (1:1 volume ratio)	NEV and NEV hemihydrate	plate like and rod-like crystals	SCXRD
Ethyl acetate	NEV hemihydrate	aggregates of rod- like crystals	SCXRD
Tetrahydrofuran	NEV	rod-like transparent crystals	PXRD
Acetonitrile-Methanol (1:1 volume ratio)	NEV hemihydrate	plate-like transparent crystals	SCXRD
Ethyl acetate- Methanol (1:1 volume ratio)	NEV and NEV hemihydrate	rod-like and plate- like transparent crystals	SCXRD
Methanol-Toluene (1:1 volume ratio)	NEV	rod-like transparent crystals	SCXRD

crystallization of NEV-TMA-SSG- X_{NEV} -0.5 in different solvent systems.

REFERENCES

Caira, M. R.; Bourne, S. A.; Samsodien, H.; Engel, E.; Liebenberg, W.; Stieger, N.; Aucamp, M. Co-crystals of the antiretroviral nevirapine: crystal structures, thermal analysis and dissolution behavior. *CrystEngComm* **2012**, 14, 2541-2551.

(2) Kuminek, G.; Rodriguez-Hornedo, N.; Siedler, S.; Rocha, H. V.; Cuffini, S. L.;

Cardoso, S. G. How cocrystals of weakly basic drugs and acidic coformers might modulate solubility and stability. *ChemCommun.* **2016**, 52(34), 5832-5835.

(3) Costa, R. N.; Reviglio, A. L.; Siedler, S.; Cardoso, S. G.; Linck, Y. G.; Monti, G.

A.; Carvalho, A. M. G.; Resende, J. A. L. C.; Chaves, M. H. C.; Rocha, H. V. A.; Choquesillo-Lazarte, D.; Infantes, L.; Cuffini, S. L. New Multicomponent Forms of the Antiretroviral Nevirapine with Improved Dissolution Performance. *Cryst.Growth Des.* **2020**, 20, 688-698. (4) Kryukova, M. A.; Sapegin, A. V.; Novikov, A. S.; Krasavin, M.; Ivanov, D. M. New Crystal Forms for Biologically Active Compounds. Part 1: Noncovalent Interactions in Adducts of Nevirapine with XB Donors. *Crystals* **2019**, 9(2), 71.

(5) Samsodien, H.; Bapoo, M.; Doms, Tl.; Harneker, Z.; Louw, A. S.; Scheepers, I.

C.; Sonday, A. B.; Geldenhuys, B. FTIR, Dissolution and Anti-viral Activity of Nevirapine Co-crystals. *Pharm. Anal. Acta.* **2017**, 8(9), DOI: 10.4172/2153-2435.1000561.

(6) Sarkar, N.; Aakeroy, C. B. Evaluating hydrogen-bond propensity, hydrogen-bond coordination and hydrogen-bond energy as tools for predicting the outcome of attempted co-crystallisations. *Supramolecular Chemistry* **2019**, 32(2), 81-90.