Supporting Information

Enhanced Electrical Properties of Lithography-Free Fabricated MoS₂ Field Effect Transistors with Chromium Contacts

Hui Yang, Sa Cai, Yifei Zhang, Dongping Wu *, and Xiaosheng Fang *.

Hui Yang–Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
Sa Cai–Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
Yifei Zhang–State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, P.
R. China
Dongning Wu–State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433

Dongping Wu-State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433,

P. R. China E-mail: dongpingwu@fudan.edu.cn

Xiaosheng Fang-Department of Materials Science, Fudan University, Shanghai 200433, P. R.

China E-mail: xshfang@fudan.edu.cn

Table of contents:

Figure S1. The optical microscope image of maze-like source/drain electrodes.

Figure S2. Statistics of Cr-MoS₂ FETs and Au-MoS₂ FETs in terms μ_{FE} and SS_{min}.

Figure S3. Fabrication of Au-MoS $_2$ FETs using liquid assisted exfoliation method and electrical performance of a typical Au-MoS $_2$ FET.

Figure S4. Statistics of Au-MoS₂ FETs before and after MWA in terms μ_{FE} and I_{ON}.

Figure S5. XRD image of Cr and Cr/Au/Cr films on the eighth day.

Note 1. Extraction of intrinsic mobility and contact resistance.

Supplementary Figures

Figure S1. The optical microscope image of maze-like source/drain electrodes. (a) before and (b) after MoS_2 crystals mechanically exfoliated and MoS_2 flakes transferred. (c) The optical microscope image of maze-like source/drain electrodes with MoS_2 flakes at higher magnification, the selected devices are marked with orange boxes. Here, the substrate is Si/SiO_2 and the metal of source/drain electrodes is 20 nm-chromium (Cr), and the space between electrodes are set to be 5 or 10 μ m. The flakes are exfoliated and the probability of single channel/multiple channels being formed on the same source drain electrode pair is quite high. It is noted that the multiple channels formed on the same source/drain electrode pair can result in reduced yield of final devices which should be carefully examined.

Figure S2. Statistics of Cr-MoS₂ FETs and Au-MoS₂ FETs in terms μ_{FE} and SS_{min} , demonstrating a beneficial trend in device performance as a result of Cr source/drain electrodes for a total of 10+ devices. The electrical parameters of multilayer MoS₂ FETs are extracted at $V_{DS} = 50 \text{ mV}$.

Figure S3. Fabrication of Au-MoS₂ FETs using liquid assisted exfoliation method and electrical performance of a typical Au-MoS₂ FET. (a) The control experiment flow of using solution to create more intimate contact between multilayer MoS₂ and Au electrodes. Step 1, Prepare the substate; Step 2, Drop with a drop of solution (mixture of alcohol and deionized water, the ratio is 1:1) on the substrate, then transferring the MoS₂ flake onto the moist substrate (Step 3); Step 4, Find the target multilayer MoS₂ FET. The multilayer MoS₂ FET is characterized after the solution is completely volatilized. (b)Transfer curves of Au-MoS₂ FET using solution assisted exfoliation.

Figure S4. Statistics of Au-MoS₂ FETs before and after MWA in terms μ_{FE} and I_{ON} , demonstrating a beneficial trend in device performance as a result of MWA for a total of 10 devices. The electrical parameters of multilayer MoS₂ FETs are extracted at $V_{DS} = 50$ mV.

Figure S5. XRD image of Cr and Cr/Au/Cr films on the eighth day. As shown in Figure S6, the Cr_xO_y peak intensity of the two films was basically at the same level, and was consistent with the peak intensity of Cr/Au/Cr film on the fifth day. Therefore, it was inferred that Cr metal reached stable oxidation level after 8 days.

Supplementary Notes

Note 1: Extraction of intrinsic mobility and contact resistance.

Here, we used Y-function method to evaluate the electrical parameters of the fabricated multilayer MoS_2 FETs, and it has been proven that Y-function is a reliable method of extracting intrinsic mobility and contact resistance in MoS_2 FETs.¹⁻²

The Y-function method is based on the analysis of the transfer characteristics (I_{DS} - V_{GS}) in the linear region. Considering that V_{GS} - V_{TH} >> V_{DS} under strong inversion at low V_{DS} , the I_{DS} - V_{GS} equation in the linear region can be simply expressed as¹

$$I_{DS} = C_{OX} \frac{W}{L} (V_{GS} - V_{TH}) V_{DS} \left(\frac{\mu_0}{1 + \theta (V_{GS} - V_{TH})} \right)$$
(S1)

Where C_{OX} is the gate capacitance, W and L are the FET width and length, respectively. V_{TH} is the threshold voltage, V_{GS} and V_{DS} are the gate and drain voltages, respectively. The mobility degradation factor, $\theta = \theta_0 + \mu_0 C_{OX} \frac{W}{L} R_C$, is included to better depict the realistic device performance. μ_0 and R_C are the intrinsic mobility and contact resistance, respectively.

Assume that R_C is not V_{GS} dependent, Y-function can be expressed as

$$\mathbf{Y} = \frac{I_{DS}}{g_m} = \left(C_{OX} \frac{W}{L} V_{DS} \mu_0\right)^{0.5} \left(V_{GS} - V_{TH}\right)$$
(S2)

Where g_m is the transconductance defined as dI_{DS}/dV_{GS} . The Y-function curve can be used to extract the V_{TH} (intercept), and μ_0 (slope) of the MoS₂ FET.

Using equation (1), θ can be calculated by the known V_{TH} and μ_0 . As demonstrated by Na,² the θ_0 component can be ignored in multilayer MoS₂ FET. Then the R_C can be calculated by the known θ and μ_0 .

Reference

- Chang, H. Y.; Zhu, W. N.; Akinwande, D. On the Mobility and Contact Resistance Evaluation for Transistors Based on MoS₂ or Two-Dimensional Semiconducting Atomic Crystals. *Appl. Phys. Lett.* 2014, *104*, 113504.
- (2) Na, J.; Shin, M.; Joo, M. K.; Huh, J.; Kim, Y. J.; Choi, H. J.; Shim, J. H.; Kim, G. T. Separation of Interlayer Resistance in Multilayer MoS₂ Field-Effect Transistors. *Appl. Phys. Lett.* 2014, *104*, 233502.