Halide Effects in BiVO₄/BiOX Heterostructures

Decorated with Pd Nanoparticles for

Photocatalytic Degradation of Rhodamine B as a

Model Organic Pollutant

Mary O. Olagunju, ¹ Elsayed M. Zahran, ² Jacqueline M. Reed, ¹ Elnaz Zeynaloo, ¹ Dharmendra Shukla, ³ Joshua L. Cohn, ³ Bapurao Surnar, ⁴ Shanta Dhar, ⁴ Leonidas G. Bachas, ^{1,5} and Marc R. Knecht^{1,5,*}

- 1. Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
- 2. Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
- 3. Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, Florida 33146, United States
- 4. Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, 1011 NW 15th St., Miami, Florida 33136, United States
- 5. Dr. J.T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, UM Life Science and Technology Building, 1951 NW 7th Ave, Suite 475, Miami, Florida 33136, United States

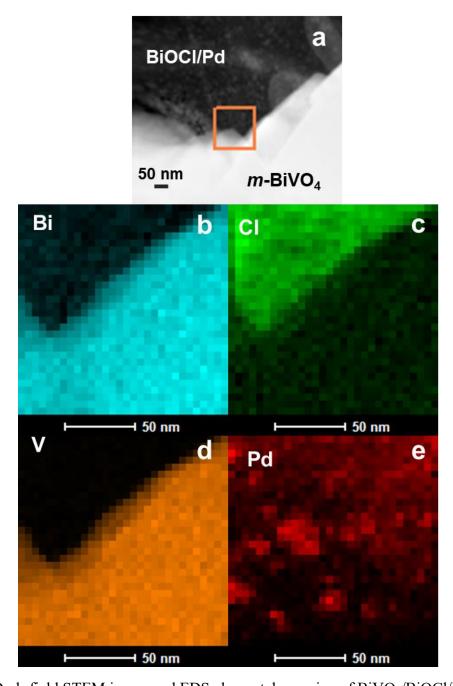
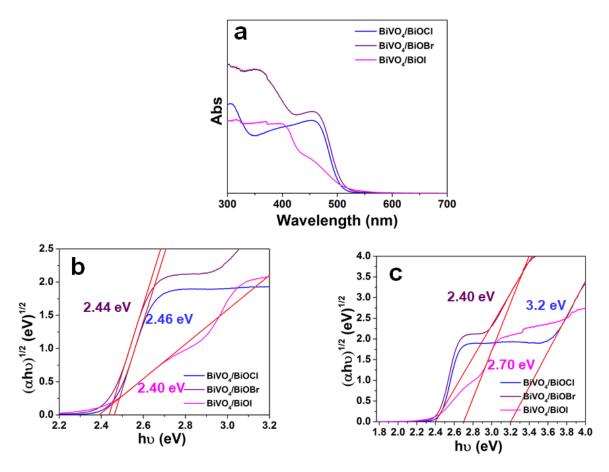
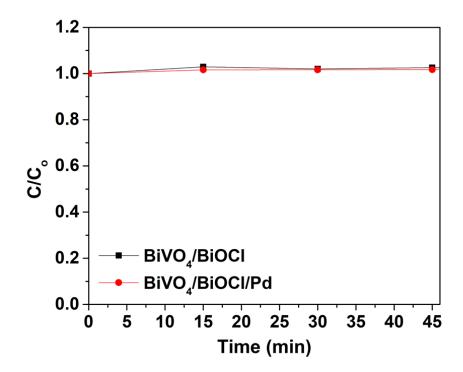
KEYWORDS: BiVO₄, BiOCl, BiOI, BiOBr, halide effects, Pd, photocatalysis

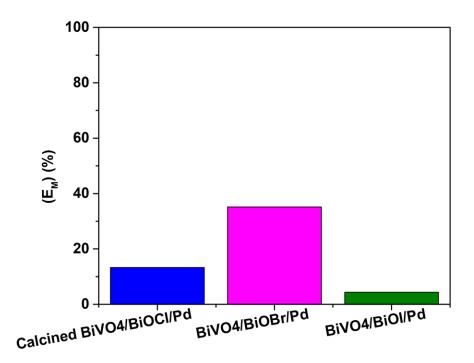
^{*}To whom correspondence should be address: MRK – knecht@miami.edu

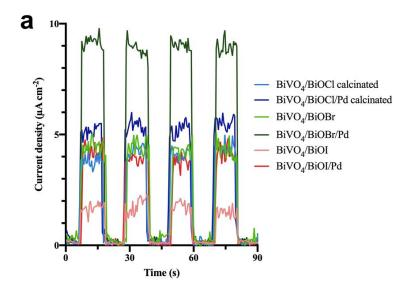
SUPPORTING INFORMATION

Material	Pd (wt %)
BiVO ₄ /BiOCl/Pd	2.93
Calcined BiVO ₄ /BiOCI/Pd	3.32
BiVO ₄ /BiOBr/Pd	1.73
BiVO₄/BiOI/Pd	2.95

Figure S1. Pd wt% on the indicated BiVO₄/BiOX/Pd materials as determined by ICP-MS.


Figure S2. Dark-field STEM image and EDS elemental mapping of BiVO₄/BiOCl/Pd


Figure S3. UV-vis DRS spectra of the BiVO₄/BiOX materials (top) and Tauc plots (bottom) for the (b) BiVO₄ and (c) BiOX components.

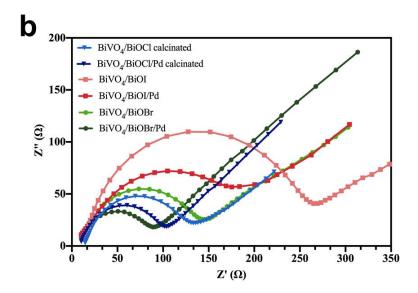


Figure S4. Measurements of RhB concentration changes in the dark prior to irradiation and reaction initiation using the BiVO₄/BiOCl and BiVO₄/BiOCl/Pd materials. No changes in concentration were evident after 45 min, indicating lack of adsorption of the dye on the materials.

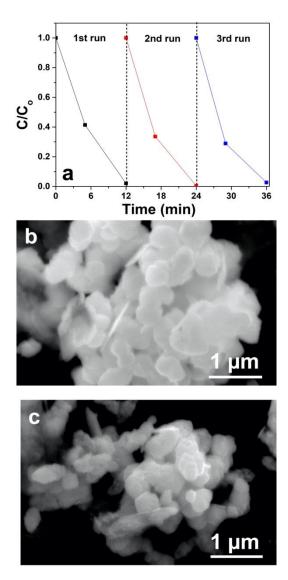

Figure S5. Total organic carbon mineralized using the indicated photocatalytic material where E_M represents the efficiency of RhB mineralization.

Figure S6. Part (a) presents the transient photocurrent spectra of the BiVO₄/BiOX/Pd materials, while part (b) displays the EIS spectra of the indicated materials.

SUPPORTING INFORMATION

Figure S7. Catalytic recycling analysis for the degradation of RhB using the calcined BiVO₄/BiOCl/Pd photocatalyst. Part (a) presents the reactivity analysis over three catalytic cycles, while parts (b and c) display an SEM image of the materials (b) before and (c) after one catalytic cycle.