
Supporting Information

Heterovalent Substitution in Mixed Halide Perovskite Quantum Dots for Improved and Stable Photovoltaic Performance

Dibyendu Ghosh, #Md. Yusuf Ali, # Anima Ghosh, Arnab Mandal and Sayan Bhattacharyya*

Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur - 741246, India

*Email for correspondence: sayanb@iiserkol.ac.in #Equal contribution

Figure S1. Schematic representation of the synthesis of $CsPb_{1-x}Ag_xI_{1.5}Br_{1.5}$ QDs *via* hot injection method.

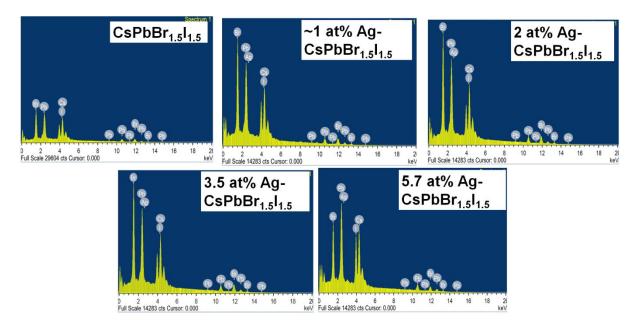


Figure S2. EDAX spectra of pristine and Ag-doped CPBI QDs.

Table S1. EDAX data of the in	ndividual elements in Ag	loaded CBPI QDs.
-------------------------------	--------------------------	------------------

Sample	Cs at%	Pb at%	Br at%	I at%	Ag at%	<i>x</i> in CsPb ₁₋ _{<i>x</i>} Ag _{<i>x</i>} Br _{1.5} I _{1.5}	<i>d</i> spacing in Å (XRD)	QD size (nm)*
CPBI	20.4	20.1	29.6	29.9	0	0	4.2573	8.4 ± 0.5
Ag _{0.01} -CPBI	20.5	19.8	30.1	29.75	0.15	0.01 (1 %)	4.2213	8.3 ± 0.3
Ag _{0.02} -CPBI	20.3	19.5	30.3	29.5	0.4	0.02 (2%)	4.1937	8.3 ± 0.6
Ag _{0.035} -CPBI	20.4	19.2	30.4	29.3	0.7	0.035 (3.5%)	4.1858	8.1 ± 0.4
Ag _{0.057} -CPBI	20.2	18.5	29.8	30.4	1.1	0.057 (5.7%)	4.1937	8.3 ± 0.5

*Error is estimated for 10 samples

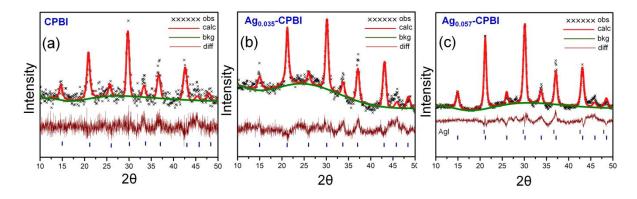
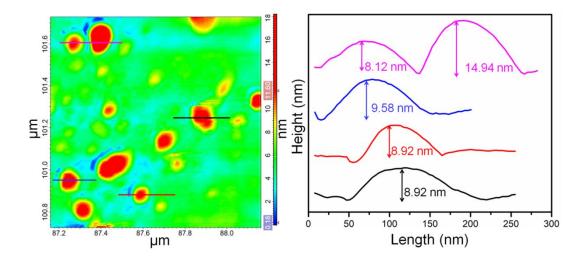



Figure S3. Rietveld refinement of XRD patterns of (a) CPBI, (b) $Ag_{0.035}$ -CPBI and (c) $Ag_{0.057}$ -CPBI QDs.

QD	Major Phases	Space	Volume	Lattice	GOF	R_{wp}
		Group	(Å ³)	parameter (Å)		-
CPBI	CsPbBr _{1.5} I _{1.5}	Pm-3m	212.028	5.963 ± 0.013	1.03	14.0*
			± 1.383			
Ag _{0.035} -CPBI	CsPbBr _{1.5} I _{1.5}	Pm-3m	211.389	5.957 ± 0.003	1.33	5.8
			± 0.312			
Ag _{0.057} -CPBI	CsPbBr _{1.5} I _{1.5} (97.5%)	Pm-3m	207.579	5.921 ± 0.016	1.58	6.3
_	AgI (2.5%)		± 1.741			

*The R_{wp} is high because of the scattered experimental data points in Figure S3a.

Figure S4. AFM image of $Ag_{0.035}$ -CPBI after 2 weeks of ageing (left panel) and its line profile (right panel).

Sample	PLQY (%)	B 1	τ ₁ (ns)	B ₂	τ_2 (ns)	B ₃	τ ₃ (ns)	χ^2	$\langle \tau \rangle$ (ns)*
CPBI	72	34.72	2.95	46.23	12.2	19.05	0.66	1.07	10.60 ± 0.03
Ag _{0.01} -CPBI	74	30.60	3.49	56.68	13.4	12.72	0.79	1.04	12.04 ± 0.08
Ag _{0.02} -CPBI	75	27.85	3.14	57.00	14.4	15.15	0.68	1.19	13.17 ± 0.12
Ag _{0.035} -CPBI	78	18.32	3.84	73.91	17.7	7.71	0.72	1.08	16.92 ± 0.06
Ag _{0.057} -CPBI	73	41.65	2.14	25.16	7.8	33.19	0.53	1.04	5.07 ± 0.14

Table S3. Transient PL parameters of pristine and Ag-doped CPBI QDs.

*Error is estimated on 5 samples.

*Error is estimated on 5 samples. τ : lifetime, B: corresponding amplitude, $\langle \tau \rangle$: average lifetime, $\langle \tau \rangle = \frac{\sum_{t=1}^{3} B * \tau^{2}}{\sum_{t=1}^{3} B * \tau}$

Measurement of PL Quantum Yield (PLQY):

To measure PLQY the samples were dispersed in hexane and with the help of standard dye, according to the following formula:^{S1,S2}

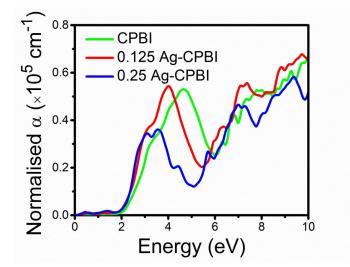
$$(QY)_{S} = (QY)_{R} \frac{\eta_{S}^{2}}{\eta_{R}^{2}} \frac{I}{A} \frac{A_{S}}{I_{R}}$$

Here,

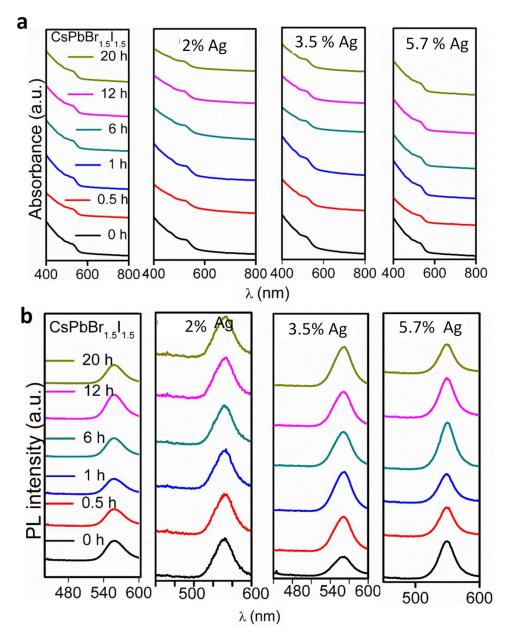
 $(QY)_{S} = Quantum Yield of sample$

 $(QY)_R$ = Quantum Yield of reference

 $\eta_{\rm S}$ = Refractive Index of the sample


 $\eta_{\rm R}$ = Refractive Index of the reference

 I_R = Integrated fluorescence Intensity of the reference


 I_{S} = Integrated fluorescence Intensity of the sample

 A_R = the absorbance of the reference at the excitation wavelength

 A_{S} = the absorbance of the sample at the excitation wavelength

Figure S5. Calculated absorption coefficient (α) plots of CsPb_{1-x}Ag_xI_{1.5}Br_{1.5} (x = 0, 0.125, 0.25) structures.

Figure S6. Stability test of pristine and Ag-doped CPBI QDs with respect to (a) optical absorbance and (b) PL intensity. The QD solutions were monitored in 20h continuous measurement under ambient conditions.

References

(S1) Brouwer, A. M. Standards for Photoluminescence Quantum Yield Measurements in Solution (IUPAC Technical Report), *Pure Appl. Chem.* **2011**, *83*, 2213–2228.

(S2) Su, Y.; Chen, X.; Ji, W.; Zeng, Q.; Ren, Z.; Su, Z.; Liu, L. Highly Controllable and Efficient Synthesis of Mixed-Halide CsPbX₃ (X = Cl, Br, I) Perovskite QDs toward the Tunability of Entire Visible Light, *ACS Appl. Mater. Interfaces* **2017**, *9*, 33020–33028.