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Figure S1. a) Fabrication process of the CNT–PDMS solution. b) Photographs corresponding to 

each process in the fabrication of the mesh-embedded composite
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Figure S2. As-fabricated mesh-embedded composite (180 mm × 100 mm). The optical microscope 

and SEM images show that each composite is separated by the mesh.
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Figure S3. SEM images of the top surface of the composite ⅰ) before and ⅱ) after the etching 

process.
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Figure S4. Detailed schematic of the experimental setup
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Figure S5. Dependence of the sensing performance on the position of the applied pressure. 

Although the sensing characteristics slightly vary according to the position, the deviation can be 

minimized by employing industrial-level equipment.
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Figure S6. Changes in the current of the sensor with (a) the unetched and (b) etched composites 

with increasing pressure
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Figure S7. The change in current of the sensor according to increasing and decreasing applied 

force. 
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Figure S8. a) Current of the sensor with an increasing pressure of 250 Pa. Sensor responses b) to 

the loading of a tiny object (1 g) and c) to finger touch
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Figure S9. a) Schematic diagram of the electrode arrangement and setup for the crosstalk test. b,c) 

Current values of the nine cells of the mesh-based sensor and the conventional sensor under a 

pressure of 40 kPa applied on the center of the cell-O in planar and bent states
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Figure S10. The changes in current of the 9 cells of the a) mesh-based sensor and the b) 

conventional sensor under a pressure of 800 Pa applied on the center of the cell-O
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Figure S11. a) The initial contact area between the sensing material and electrode in planar and 

bent state. b) Transient response to the repeated cycles of bending.
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Figure S12. Various data point distributions and SVM classification examples. a) Separating 

hyperplane and margin in 2D, determined by support vectors (black circles). b) Linearly 

inseparable case in 2D. c) Linearly separated in 3D by adding an additional dimension with the 

same data of (b). d) Separated with using the nonlinear kernel in the same data of (b).

The objective of the SVM is to find a separating hyperplane in an N-dimensional space, where 

N is the feature dimension. The separating hyperplane is defined by maximizing a margin that is 

the distance between the hyperplane and a supporting vector, denoted with a blank circle in 

Figure S9a. Binary classification is the process of classifying a given set of elements into two 
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predefined groups. One group can be labeled y = 1, and the other group can be labeled y = -1. 

Given training data comprised of pairs  where  and , the (𝒙𝑖,𝑦𝑖), i ∈ {1,…,𝑑} 𝒙𝑖 ∈ 𝑅𝑛 𝑦𝑖 ∈ {1, ― 1}

SVM requires the solution of the following optimization problem:

(1)min
𝑾,𝑏,𝜉

1
2𝒘𝑇𝒘 + 𝐶∑𝑑

𝑖 = 1𝜉𝑖

 (2)𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑦𝑖(𝒘𝑇𝜙(𝒙𝑖) + 𝑏) ≥ 1 ― 𝜉𝑖 , 𝜉𝑖 ≥ 0.

where is a normal vector of the plane.  is a mapping function related to a kernel trick. 𝒘 𝜙( ⋅ )

 and  are the slack variable and penalty parameter, respectively, related to whether the margin 𝜉 𝐶

is hard or soft.

When the given training data are not linearly separable, they can be addressed using kernel tricks 

(Figure S9b). Dimensional or spatial alignment of data can be manipulated with the mapping 

function . As the primal and dual optimizations require the inner product of  itself, 𝜙:𝑅𝑛→𝑅𝑚 𝒘

the kernel function can usually be defined as follows:

 (3)𝐾(𝒙𝑖, 𝒙𝑗) = 𝜙(𝒙𝑖)𝑇𝜙(𝒙𝑗)

Specific kernel functions are required to acquire additional dimensions for inseparable data and 

convert them into a spatial distribution (Figure S9c). These data are linearly separated by 

hyperplanes. Otherwise, hyperplanes in mapped spaces that are not “planes” in the original space 

can be obtained through kernel tricks (Figure S9d). One of the most adopted kernel tricks is the 

radial basis function (RBF) kernel as follows:

(4)𝐾𝑅𝐵𝐹(𝒙, 𝒙′) = exp ( ― 𝛾‖𝒙 ― 𝒙′‖2)
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where  is a user-defined hyperparameter. This article also uses this kernel, as it contains the 𝛾

expression of Euclidean distance, which is crucial for the classification scheme in this article.
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Figure S13. Two sample cases of Braille “N.” The two samples pressing different positions show 

the same shape.

Figure S10 illustrates two different sensor reading results in two different flattened vectors. The 

Braille translation shifts the position of the entries of the vector, which is identical to a linear 

transformation by multiplying the power of the cyclic permutation matrix. This entry shift can be 

interpreted as rotational symmetry with respect to the sum of the standard basis of . This is the 𝑅𝑛

rationale behind using the RBF kernel, as the rotation preserves the Euclidean distance of such 

vectors in . Hence, this distance becomes the main criterion for generating the hyperplane in 𝑅𝑛

this nonlinear SVM problem. For a demonstration, ideal Braille reading data are generated. Each 

Braille letter has 100 vector data by multiplying 100 different perturbations , and ~𝑁(1, 0.05)

comprises a synthesized dataset. The dataset is augmented with cyclic permutations of the vectors. 

As shown in Table 1, each letter has a prediction accuracy above 80%. This result shows that RBF-

kernel SVM is suitable for Braille classification.
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Letter Accuracy N 0.819
A 1 O 0.817

B 0.81 P 0.816

C 0.812 Q 0.818

D 0.811 R 0.815

E 0.809 S 0.823

F 0.808 T 0.812

G 0.814 U 0.819

H 0.819 V 0.816

I 0.811 W 0.818

J 0.811 X 0.825

K 0.825 Y 0.813

L 0.827 Z 0.813

M 0.814 Mean 0.823

Table S1. 10-fold cross-validation prediction accuracy with an average of 1000 procedures using 

ideal Braille data
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Figure S14. Block diagram of the current measurement, data acquisition, and visualization system


