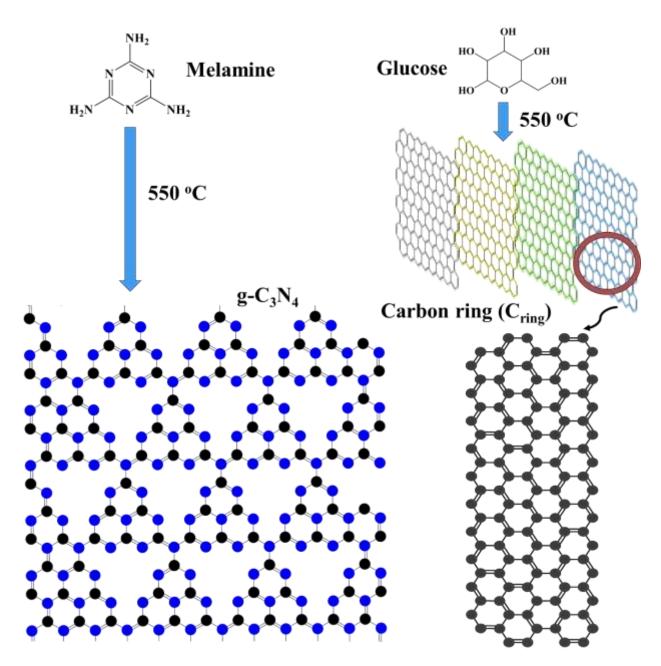
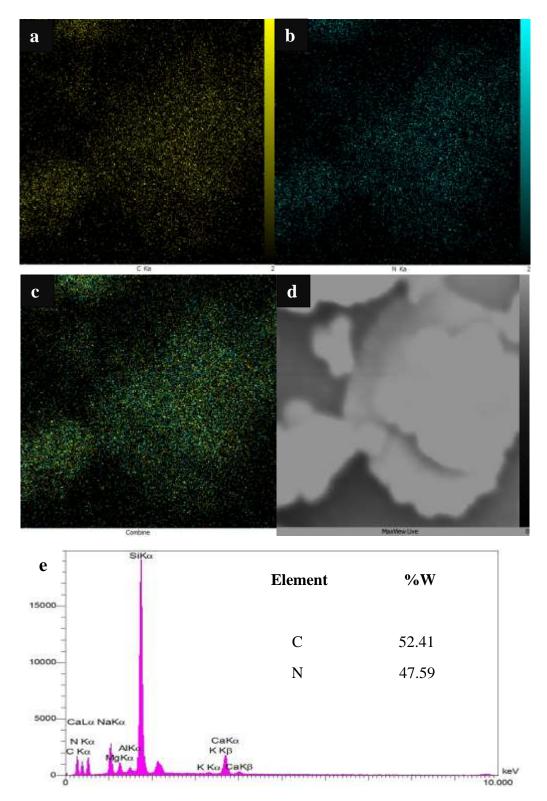
Supporting information

Characterizing Carbon Ring-C₃N₄ Nanosheets as a Light Harvesting and Charge Carrier Transfer Agent: Photodegradation of Methylene Blue and Photoconversion of CO₂ to CH₄ as Case Studies

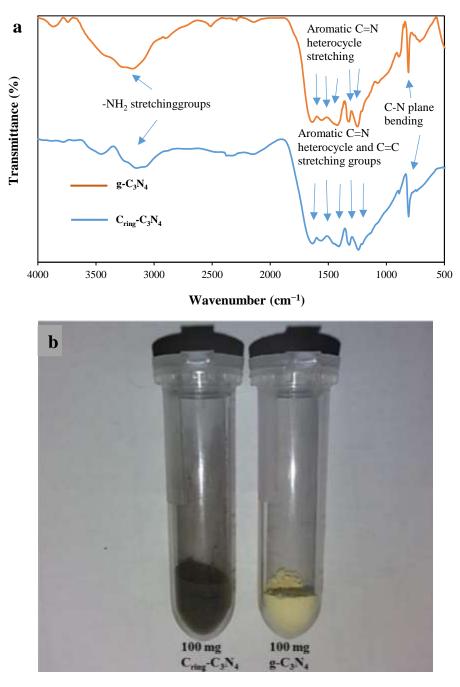
Hossein Ashrafi, Morteza Akhond, Maryam Zare, and Ghodratollah Absalan*,


Professor Massoumi Laboratory, Department of Chemistry, Shiraz University, Shiraz 71454, Iran *gubsulun@yahoo.com; absalan@shirazu.ac.ir

Photocatalytic reduction of CO₂


Photocatalytic activity of the synthesized catalysts for CO_2 reduction was evaluated in a batch circulation water reactor (Pyrex tubular reactor) with a 300W Xe lamp as the light source. The reactor was double-walled for circulating water between these walls to maintain the solution at around 25°C. An amount of 40 mg photocatalyst powder and 100 mL H₂O were placed in the reactor. Then, the mixture was stirred under strong magnetic force for 10 min to homogenize the solution. The CO_2 (99.999%) gas was purged into the reactor for 40 min to saturate water with CO_2 and remove the dissolved air. After irradiation, the gas phase products were taken from the reactor in every 1 h by using a 1-mL Hamilton gas tight syringe to analyze it by gas chromatography equipped with flame ionisation detector. The isotope-labeled examination was carry out by gas chromatography-mass spectrometry (GC-MS, 7890A and 5875C, Agilent).

Electrochemical measurements


Electrochemical measurements were performed by a PGSTAT302N (Metrohm Autolab B.V., Utrecht, The Netherlands). The electrochemical cell was assembled with a conventional threeelectrode system. The working electrodes were prepared by using samples coated on FTO glass. A saturated Ag/AgCl (saturated KCl) and a platinum wire were used as reference and auxiliary electrodes, respectively. The electrolyte was Na₂SO₄ solution (0.5 mol L^{-1}) and the solution was purged with argon for 1h to remove O₂ before light irradiation. Electrochemical impedance spectroscopy (EIS) was performed using 5 mmol L^{-1} K₃[Fe(CN)₆]/K₄[Fe(CN)₆] solution as the reversible redox probe with 0.1 mol L^{-1} KCl as the electrolyte.

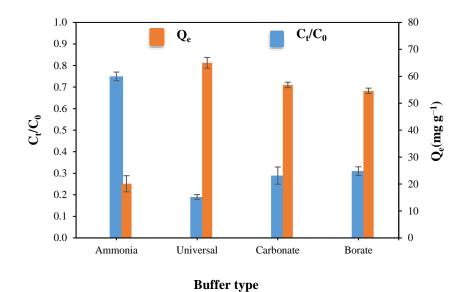

Figure S1. When glucose and melamine are heated to high temperatures, carbon and tri-s-triazine rings produce having sp^2 hybrid (two-dimensional domains in-plane with a similar aromatic structure).

Figure S2. The SEM-EDS mapping images and spectra of C_{ring} - C_3N_4 . (a), the C mapping image; (b), the N mapping image; (c), the combined C and N mapping image; (d), the SEM image shows the corresponding region for mapping; and (e), the EDS spectra of C_{ring} - C_3N_4 .

Figure S3. (a), the FT-IR spectra of C_{ring} - C_3N_4 and bulk g- C_3N_4 . (b), Comparison between color of C_{ring} - C_3N_4 and bulk g- C_3N_4 .

Figure S4. Effect of buffer type. Experimental conditions: 40.0 mL of 20.0 mg L^{-1} MB, 4.0 mg of C_{ring} - C_3N_4 with 0.01 mol L^{-1} universal buffer at pH=11.0.

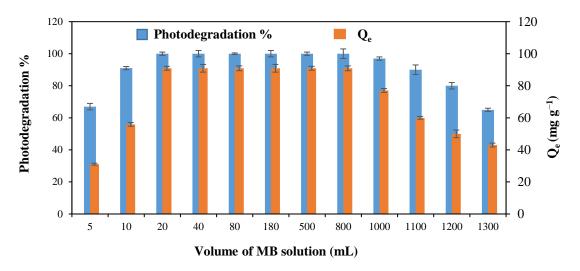
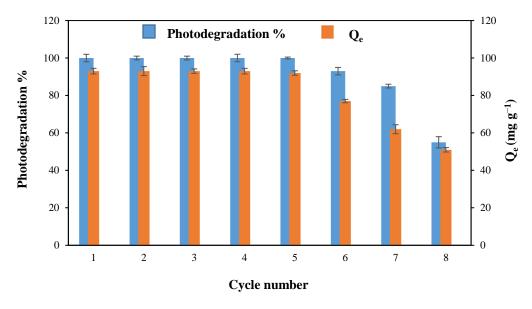
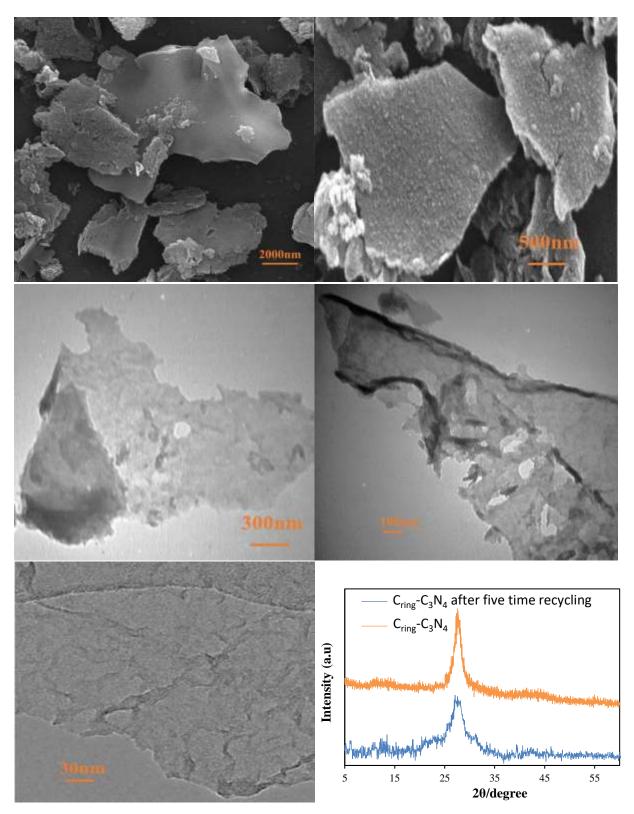



Figure S5. Breakthrough volume in adsorption/photodegradation of MB.

Figure S6. Reusability of the photocatalysts in several successive processes in the adsorption/photodegradation of MB.



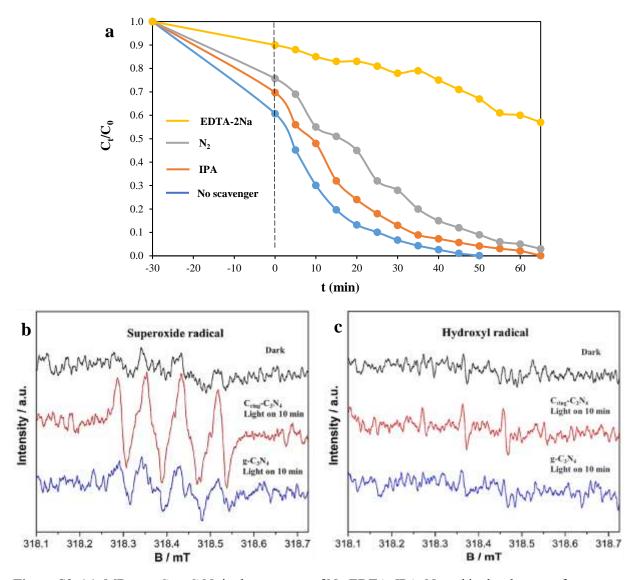


Figure S7. SEM, TEM, and XRD analyses after 5-time usage of C_{ring} - C_3N_4 photocatalyst.

Figure S8. The kinetic simulation curves of MB photodegradation under visible light irradiation. Experimental conditions: 4.0 mg C_{ring} - C_3N_4 , 40.0 mL of 20.0 mg L^{-1} MB with 0.05 M universal buffer at pH=11.0).

Figure S9. (a), MB over C_{ring} - C_3N_4 in the presence of Na₂EDTA, IPA, N₂ and in the absence of scavengers; (b), ESR spectra of DMPO- $O_2^{\circ-}$ for C_{ring} - C_3N_4 and bulk g- C_3N_4 ; (c), ESR spectra of DMPO- $^{\circ}OH$ for C_{ring} - C_3N_4 and bulk g- C_3N_4 .

Figure S10. Picture of the employed photo-reactor for photoreduction of CO₂ to CH₄.

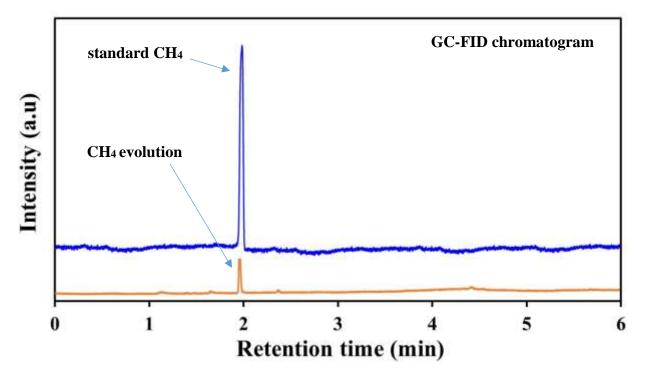


Figure S11. The chromatogram of the standard methane sample and the reaction mixture.

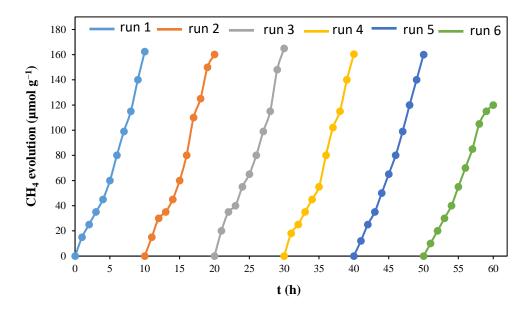


Figure S12. Reusability study of C_{rng}-C₃N₄ in the photocatalytic conversion of CO₂ to CH₄.

Calculation of AQY: Photocatalytic reaction with Cring-C3N4 nanosheet photocatalyst from [1]:

Main product: CH₄ Reactor type: Batch circulation water reactor (pyrex tubular reactor) Product yield: 162.4 μ mol g_{cat}⁻¹ after 10 h Apparent light input (H): 438 mW/cm² Area of irradiation (A): computed from tubular reactor dimensions (length: 10.0 cm × diameter: 6.0 cm) A = 0.006 m² Band gap: 2.7 eV

The number of reacted electrons is computed by:

Number of reacted electrons = $\begin{bmatrix} mol \text{ of product} \\ produced \text{ in time, t} \end{bmatrix} * \begin{bmatrix} Number \text{ of electrons} \\ required \text{ to produce} \\ 1 \text{ mol of product} \end{bmatrix} * N_A$

Since $CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$, it requires 8 electrons to produce 1 mole of CH₄ as the product

Number of reacted electrons = $\left[\frac{162.4 * 10^{-6}}{10} \frac{\text{mol}}{\text{g h}}\right] * [8] * 6.022 * 10^{23}$

Number of reacted electrons = $7.82 * 10^{19}$

The number of incident photons is computed by:

Effective number of incident photons = $\left[\frac{\text{Light absorbed by the photocatalyst}}{\text{Average photon energy}}\right] * t$

where

Light absorbed by the photocatalyst = H * A = 43.8
$$\frac{W}{m^2}$$
 * 0.006 m² = 0.2628 W

Average photon energy $= \frac{hC}{\lambda}$

And, λ is the average wavelength of the absorption range of the photocatalyst. The maximum wavelength from the band gap is computed by:

$$\lambda_{\max} = \frac{hC}{E_g} = \frac{(6.626 * 10^{-34} j.s) * (3 * 10^8 m/s)}{2.7 \text{ eV}} * \frac{1 \text{ eV}}{1.6 * 10^{-19} j} * 10^9 = 460.1 \text{ nm}$$

Therefore, the average wavelength would be:

$$\lambda = \frac{\lambda_{\min} + \lambda_{\max}}{2} = \frac{250 + 460.1}{2} = 355.05$$

The average photon energy is then computed to be:

Average photon energy =
$$\frac{(6.626 * 10^{-34} j.s) * (3 * 10^8 m/s)}{355.05 * 10^{-9} m} = 5.6 * 10^{-19}$$

Effective number of incident electrons = $\left[\frac{0.2628 \text{ W}}{5.6 * 10^{-19} j} \frac{3600 \text{ s}}{1 \text{ h}}\right] = 1.689 * 10^{21}$

AQY calculation:

$$AQY (\%) = \left[\frac{\text{number of reacted electrons}}{\text{Effective number of incident electrons}}\right] * 100$$

AQY (%) =
$$\left[\frac{7.82 * 10^{19}}{1.689 * 10^{21}}\right] * 100 = 4.63 \%$$

Photocatalytic reaction with bulk g-C₃N₄ photocatalyst:

Reactor type: Batch circulation water reactor (pyrex tubular reactor) Product yield: 6.875 μ mol g_{cat}⁻¹ after 10 h Apparent light input (H): 438 mW/cm² Area of irradiation (A): computed from tubular reactor dimensions (length: 10.0 cm × diameter: 6.0 cm) A = 0.006 m² Band gap: 2.7 eV

The number of reacted electrons is computed by:

Number of reacted electrons =
$$\begin{bmatrix} mol \text{ of product} \\ produced \text{ in time, t} \end{bmatrix} * \begin{bmatrix} Number \text{ of electrons} \\ required \text{ to produce} \\ 1 \text{ mol of product} \end{bmatrix} * N_A$$

Since $CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$, it requires 8 electrons to produce 1 mole of CH_4

Number of reacted electrons =
$$\left[\frac{6.875 * 10^{-6}}{10} \frac{\text{mol}}{\text{g h}}\right] * [8] * 6.022 * 10^{23}$$

Number of reacted electrons = $3.3121 * 10^{18}$

The number of incident photons is computed by:

 $Effective number of incident photons = \left[\frac{\text{Light absorbed by the photocatalyst}}{\text{Average photon energy}}\right] * t$

Wherein light absorbed by the photocatalyst and average photon energy is found to be:

Light absorbed by the photocatalyst = H * A = 43.8 $\frac{w}{m^2}$ * 0.006 m² = 0.2628 W

Average photon energy $= \frac{hC}{\lambda}$

where λ is the average wavelength of the absorption range of the photocatalyst. The maximum wavelength from the band gap was computed by:

$$\lambda_{\max} = \frac{hC}{E_g} = \frac{(6.626 * 10^{-34} j.s) * (3 * 10^8 m/s)}{2.7 \text{ eV}} * \frac{1 \text{ eV}}{1.6 * 10^{-19} j} * 10^9 = 460.1 \text{ nm}$$

Therefore, the average wavelength would be

$$\lambda = \frac{\lambda_{\min} + \lambda_{\max}}{2} = \frac{250 + 460.1}{2} = 355.05$$

The average photon energy is then computed to be

Average photon energy =
$$\frac{(6.626 * 10^{-34} \text{ j. s}) * (3 * 10^8 \text{ m/s})}{355.05 * 10^{-9} \text{ m}} = 5.6 * 10^{-19}$$

Effective number of incident electrons =
$$\left[\frac{0.2628 \text{ W}}{5.6 * 10^{-19} \text{ j}} \frac{3600 \text{ s}}{1 \text{ h}}\right] = 1.689 * 10^{21}$$

AQY calculation:

$$AQY (\%) = \left[\frac{\text{number of reacted electrons}}{\text{Effective number of incident electrons}}\right] * 100$$

AQY (%) =
$$\left[\frac{3.3121 * 10^{18}}{1.689 * 10^{21}}\right] * 100 = 0.1961 \%$$

$$\left[\frac{\text{AQY (\%) } C_{\text{ring}} - C_3 N_4}{\text{AQY (\%) } g - C_3 N_4}\right] = \left[\frac{4.63}{0.1961}\right] = 23.61$$

Name of models isotherm	Equations	Plots for isotherms	
	Linear adsorption isotherms		
Langmuir model ¹	$\frac{C_{e}}{Q_{e}} = \frac{1}{Q_{m}}C_{e} + \frac{1}{k_{L}Q_{m}}$	$\frac{C_e}{Q_e}$ vs. C_e	
Freundlich model ²	$\ln q_e = \ln k_f + \frac{1}{n} \ln C_e$	ln Q _e vs. ln C _e	
Temkin model ³	$\ln q_e = \ln k_f + \frac{1}{n} \ln C_e$ $Q_e = \left(\frac{RT}{b}\right) \ln k_T + \left(\frac{RT}{b}\right) \ln C_e$ $B_T = \frac{RT}{b}$	Q _e vs. ln C _e	
Dubinin-radushkevich model ³	$B_{T} = \frac{RT}{b}$ $ln Q_{e} = ln Q_{m} - \beta \epsilon^{2}$ $E = \frac{1}{\sqrt{(-2\beta)}}$	$ln Q_e vs. \epsilon^2$	
	$\varepsilon = RT \ln \left(1 + \frac{1}{C_e}\right)$ Nonlinear adsorption isotherms		
Langmuir model ¹		Q _e vs. C _e	
Freundlich model ²	$Q_e = k_f C_e^{\frac{1}{n}}$	Q _e vs. C _e	
Temkin model ³	$Q_{e} = Q_{m}k_{L}\frac{C_{e}}{1 + k_{L}C_{e}}$ $Q_{e} = k_{f}C_{e}^{\frac{1}{n}}$ $Q_{e} = \frac{RT}{b}(ln k_{T}C_{e})$ $B_{T} = \frac{RT}{b}$	Q _e vs. C _e	
Dubinin-radushkevich model ³	$Q_e = q_m e^{-\beta \epsilon^2}$	Q _e vs. C _e	

 Table S1. Linear and nonlinear equations of absorption isotherms.

Table S2. Linear and nonlinear equations of kinetic isotherms.

Name of models isotherm	Equations	Plots for isotherms					
linear kinetic isotherms							
Pseudo-first-order model ⁴	$ln\left(\mathbf{Q}_{\mathrm{e}}-\mathbf{Q}_{\mathrm{t}}\right)=\ln\mathbf{Q}_{\mathrm{e}}-\mathrm{tk}_{\mathrm{1}}$	$ln (Q_e - Q_t) vs. t$					
Pseudo-second-order model ⁵	$\frac{t}{Q_t} = \frac{1}{k_2 Q_e^2} + \frac{t}{Q_e}$	$\frac{t}{Q_t}$ vs. t					
Elovich model ⁶	$Q_t = \frac{1}{\beta} \ln (\alpha \beta) + \frac{1}{\beta} \ln t$	Q _t vs. ln t					
Intraparticle diffusion model ⁷	$Q_t = k_{id}t^{\frac{1}{2}} + k_0$	$Q_t vs. t^{\frac{1}{2}}$					
I	Nonlinear kinetic isotherms						
Pseudo-first-order model ⁴	$Q_t = Q_e(1 - \exp - kt)$	Q _t vs. t					
Pseudo-second-order model ⁵	$Q_t = \frac{k_2 Q_e^2 t}{1 + k_2 Q_e t}$	Q _t vs. t					
Elovich model ⁶	$Q_t = \beta \ln (\alpha \beta t)$	Q _t vs. t					
Intraparticle diffusion model ⁷	$Q_t = k_{id}t^{\frac{1}{2}} + k_0$	Q _t vs. t					

Adsorption	Sum Sq	Sum Sq	Mean	Mean Sq	F	Pvalue	ACI
isotherm		Error	Sq	Error			
Langmuir	6.9×10 ⁻²	5.3×10 ⁻⁴	6.9×10 ⁻²	8.89×10 ⁻⁵	783.24	1.4×10^{-7}	-22.1812
Freundlich	1.35	5.3×10 ⁻²	1.35	8.98×10 ⁻³	152.23	1.7×10 ⁻⁵	-6.1914
Temkin	5309.6	690.11	5309.6	115.02	46.16	4.9×10 ⁻⁴	26.7114
Dubinin- radushkevich	1.03	0.37	1.03	6.3×10 ⁻²	16.45	6.7×10 ⁻³	0.593
Kinetics							
modeling							
Pseudo first order	9.42	8.9×10 ⁻²	9.42	1.3×10^{-2}	738.91	2.3×10 ⁻⁸	-5.447
Pseudo second order	0.31	3.8×10 ⁻²	3.1×10 ⁻¹	5.5×10 ⁻³	56.32	1.4×10 ⁻⁴	-8.7281
Elovich	12295	259.14	12295	37.02	332.11	3.7×10 ⁻⁷	25.7218
Intraparticle diffusion	5666.7	333.08	5666.7	55.51	102.08	5.5×10 ⁻⁵	26.8826

Table S3. Anova and Akaike information criterion tests for linear kinetic and adsorption isotherms.

Photocatalyst	CH4 Yield (µmol/g h)	Light input (W/m ²)	Area of irradiation (m ²)	Band gap (eV)	Wavel	C	Ave. λ (nm)	No. of reacted electrons	Average photon energy (J)	No. of incident photons	AQY (%)
					λmin	λmax					
Pt-XG/RBT ⁸	37	1000	0.00049	2.41	250	515.5	383	1.78×10^{20}	5.19×10 ⁻¹⁹	3.4×10 ²¹	5.2479
C,N-TNT06 ⁹	9.75	1000	0.00071	2.8	250	443.7	347	4.7×10 ¹⁹	5.73×10 ⁻¹⁹	4.46×10 ²¹	1.0532
In ₂ O ₃ -C ₃ N ₄ ¹⁰	7.991	12000	0.00063	2.8	250	444	347	3.85×10 ¹⁹	5.73×10 ⁻¹⁹	4.71×10 ²¹	0.082
CZTS-ZnO ¹¹	0.095	1000	0.00041	1.74	250	714	482	4.58×10 ¹⁷	4.12×10 ⁻¹⁹	3.58×10 ²¹	0.0128
HCP-TiO ₂ -FG ¹²	27.62	4330	0.00031	2.34	420	531	475	1.33×10 ²⁰	4.18×10 ⁻¹⁹	1.17×10 ²²	1.14
Pd _x Cu ₁ -TiO ₂ ¹³	19.6	20	0.0064	-	250	400	325	9.44×10 ¹⁹	6.12×10 ⁻¹⁹	7.53×10 ²⁰	12.53
Pt-X-RT ¹⁴	1.13	1000	0.00071	2.85	250	435.9	343	5.44×10 ¹⁸	5.8×10 ⁻¹⁹	4.41×10 ²¹	0.1234
Pt/TiO ₂ ¹⁵	2.85	348	0.0084	3.18	250	391	320	1.37×10 ¹⁹	6.21×10 ⁻¹⁹	1.69×10 ²²	0.081
Cu _x O-TiO ₂ ¹⁶	0.152	1000	0.00071	3.15	250	394.4	322	7.32×10 ¹⁷	6.17×10 ⁻¹⁹	4.14×10 ²¹	0.0177
C _{ring} -C ₃ N ₄ In this work	16.24	43.8	0.006	2.7	250	460.1	355.05	7.82×10 ¹⁹	5.6×10 ⁻¹⁹	1.689×10 ²¹	4.63

Table S4. A comparison between the various photocatalysts for photoreduction of CO₂ to CH₄.

Table S5. The comparison of the synthesized photocatalyst with some literature-reported photocatalysts in term of their ability for

Photocatalyst	WCatalyst (g)	Volume and concentration of MB	Irradiation Time (h)	mg MB/W _{Catalyst}	Degradation efficiency ^a	Reference
Nanoporous Graphitic Carbon Nitride	0.025	50 mL 10 mg/L	3	20	0.11	17
TiO ₂ nano-sized particles	1	600 mL 20 mg/L	9	12	0.02	18
TiO ₂ /ZnO	0.3	10 mL 10 mg/L	5	0.3	0.001	19
Al ₂ O ₃ /Fe ₂ O ₃	0.2	100 mL 25 mg/L	1.5	12.5	0.14	20
Fe3O4@rGO@ TiO2	0.05	50 mL 10 mg/L	2	10	0.08	21
TiO ₂ /polyacryl amide	0.025	25 mL 10 mg/L	5	10	0.03	22
SnO ₂ /S-doped g-C ₃ N ₄	0.14	500 mL 6 mg/L	2.5	21.4	0.14	23
Ag/g-C ₃ N ₄	0.1	300 mL 10 mg/L	1	30	0.5	24
C ₃ N ₄ /ZnO	0.15	150 mL 3.2 mg/L	2	3.2	0.03	25
npg-C ₃ N ₄	0.001	20 mL 20 mg/L	0.75	400	8.9	26
Cring-C3N4	0.004	40 mL 20 mg/L	0.75	200	4.4	This work

^aDegradation efficiency was defined as (mg MB/W_{Catalyst}) per minute of the irradiation time in this table.

References

(1) Hallajiqomi, M.; Eisazadeh, H., Adsorption of manganese ion using polyaniline and it's nanocomposite: Kinetics and isotherm studies. *J. Ind. Eng. Chem.* **2017**, 55, 191-197.

(2) Araújo, C. S.; Almeida, I. L.; Rezende, H. C.; Marcionilio, S. M.; Léon, J. J.; de Matos, T. N., Elucidation of mechanism involved in adsorption of Pb (II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. *Microchem. J.* **2018**, 137, 348-354.

(3) Dada, A.; Olalekan, A.; Olatunya, A.; Dada, O., Langmuir, Freundlich, Temkin and Dubinin– Radushkevich isotherms studies of equilibrium sorption of Zn²⁺ unto phosphoric acid modified rice husk. IOSR-JAC. **2012**, 3, 38-45.

(4) Badawi, M.; Negm, N.; Abou Kana, M.; Hefni, H.; Moneem, M. A., Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: isotherms, kinetics, thermodynamics and process mechanism. *Int. J. Biol. Macromol.* **2017**, 99, 465-476.

(5) Tan, K.; Hameed, B., Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. *J. Taiwan Inst. Chem. Eng.* **2017**, 74, 25-48.

(6) Cheung, C. W.; Porter, J. F.; McKay, G., Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char. *J. Chem. Technol. Biotechnol.* **2000**, 75, 963-970.

(7) Aljeboree, A. M.; Alkaim, A. F.; Al-Dujaili, A. H., Adsorption isotherm, kinetic modeling and thermodynamics of crystal violet dye on coconut husk-based activated carbon. *Desalin Water Treat.* **2015**, 53, 3656-3667.

(8) Sorcar, S.; Thompson, J.; Hwang, Y.; Park, Y. H.; Majima, T.; Grimes, C. A.; Durrant, J. R.;
In, S.-I., High-rate solar-light photoconversion of CO₂ to fuel: controllable transformation from C1 to C2 products. *Energy Environ. Sci.* 2018, 11, 3183-3193.

(9) Parayil, S. K.; Razzaq, A.; Park, S.-M.; Kim, H. R.; Grimes, C. A.; In, S.-I., Photocatalytic conversion of CO₂ to hydrocarbon fuel using carbon and nitrogen co-doped sodium titanate nanotubes. *Appl. Catal.*, *A.* **2015**, 498, 205-213.

(10) Cao, S.-W.; Liu, X.-F.; Yuan, Y.-P.; Zhang, Z.-Y.; Liao, Y.-S.; Fang, J.; Loo, S. C. J.; Sum, T. C.; Xue, C., Solar-to-fuels conversion over In₂O₃/g-C₃N₄ hybrid photocatalysts. *Appl. Catal., B.* 2014, 147, 940-946.

(11) Zubair, M.; Razzaq, A.; Grimes, C. A.; In, S.-I., Cu₂ZnSnS₄ (CZTS)-ZnO: A noble metalfree hybrid Z-scheme photocatalyst for enhanced solar-spectrum photocatalytic conversion of CO₂ to CH₄. *J. CO2 Util.* **2017**, 20, 301-311.

(12) Wang, S.; Xu, M.; Peng, T.; Zhang, C.; Li, T.; Hussain, I.; Wang, J.; Tan, B., Porous hypercrosslinked polymer-TiO₂-graphene composite photocatalysts for visible-light-driven CO₂ conversion. *Nat. Commun.* **2019**, 10, 1-10.

(13) Long, R.; Li, Y.; Liu, Y.; Chen, S.; Zheng, X.; Gao, C.; He, C.; Chen, N.; Qi, Z.; Song, L., Isolation of Cu atoms in Pd lattice: forming highly selective sites for photocatalytic conversion of CO₂ to CH₄. *J. Am. Chem. Soc.* **2017**, 139, 4486-4492.

(14) Razzaq, A.; Sinhamahapatra, A.; Kang, T.-H.; Grimes, C. A.; Yu, J.-S.; In, S.-I., Efficient solar light photoreduction of CO₂ to hydrocarbon fuels via magnesiothermally reduced TiO₂ photocatalyst. *Appl. Catal.*, *B.* **2017**, 215, 28-35.

(15) Li, X.; Zhuang, Z.; Li, W.; Pan, H., Photocatalytic reduction of CO₂ over noble metal-loaded and nitrogen-doped mesoporous TiO₂. *Appl. Catal., A.* **2012**, 429, 31-38.

(16) Park, S.-M.; Razzaq, A.; Park, Y. H.; Sorcar, S.; Park, Y.; Grimes, C. A.; In, S.-I., Hybrid Cu_xO–TiO₂ Heterostructured Composites for Photocatalytic CO₂ Reduction into Methane Using Solar Irradiation: Sunlight into Fuel. *ACS Omega.* **2016**, 1, 868-875.

(17) Xu, J.; Wang, Y.; Zhu, Y., Nanoporous graphitic carbon nitride with enhanced photocatalytic performance. *Langmuir.* **2013**, 29, 10566-10572.

(18) Dariani, R.; Esmaeili, A.; Mortezaali, A.; Dehghanpour, S., Photocatalytic reaction and degradation of methylene blue on TiO₂ nano-sized particles. *Optik.* **2016**, 127, 7143-7154.

(19) Chekir, N.; Benhabiles, O.; Tassalit, D.; Laoufi, N. A.; Bentahar, F., Photocatalytic degradation of methylene blue in aqueous suspensions using TiO₂ and ZnO. *Desalin Water Treat*. **2016**, 57, 6141-6147.

(20) Singh, A.; Khare, P.; Verma, S.; Bhati, A.; Sonker, A. K.; Tripathi, K. M.; Sonkar, S. K., Pollutant Soot for Pollutant Dye Degradation: Soluble Graphene Nanosheets for Visible Light Induced Photodegradation of Methylene Blue. *ACS Sustainable Chem. Eng.* 2017, 5, 8860-8869.
(21) Yang, X.; Chen, W.; Huang, J.; Zhou, Y.; Zhu, Y.; Li, C., Rapid degradation of methylene blue in a novel heterogeneous Fe₃O₄@rGO@TiO₂-catalyzed photo-Fenton system. *Sci. Rep.* 2015, 5, 10632.

(22) Kazemi, F.; Mohamadnia, Z.; Kaboudin, B.; Karimi, Z., Photodegradation of methylene blue with a titanium dioxide/polyacrylamide photocatalyst under sunlight. *J. Appl. Polym. Sci.* **2016**, 133.

(23) Jourshabani, M.; Shariatinia, Z.; Badiei, A., In situ fabrication of SnO₂/S-doped g-C₃N₄ nanocomposites and improved visible light driven photodegradation of methylene blue. *J. Mol. Liq.* **2017**, 248, 688-702.

(24) Li, H.; Jing, Y.; Ma, X.; Liu, T.; Yang, L.; Liu, B.; Yin, S.; Wei, Y.; Wang, Y., Construction of a well-dispersed Ag/graphene-like g-C₃N₄ photocatalyst and enhanced visible light photocatalytic activity. *RSC Adv.* **2017**, *7*, 8688-8693.

(25) Amornpitoksuk, P.; Suwanboon, S.; Sirimahachai, U.; Randorn, C.; Yaemsunthorn, K., Photocatalytic degradation of methylene blue by C_3N_4/ZnO : the effect of the melamine/ZnO ratios. *Bull. Mater. Sci.* **2016**, 39, 1507-1513.

(26) Ashrafi, H., Akhond, M., Absalan, G. Adsorption and photocatalytic degradation of aqueous methylene blue using nanoporous carbon nitride. *J. Photochem. Photobiol.*, A. **2020**, 396, 112533.